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Today...

I We explore the concept of vorticity fields in electromagnetism
I We introduce the concept of vorticity fields in a plasmas
I We study the generation of vorticity
I We introduce the concept of helicity



Maxwell equations



Maxwell equations

Dynamics

∂B
∂t

= −∇× E

∂E
∂t

+ J = ∇× B

Constraints

∇ · B = 0

∇ · E = ρ

E,B electric and magnetic fields
ρ, J charge and current densities (sources)



Maxwell equations

The dynamics is consistent with the constraints

∇· → ∂B
∂t

= −∇× E =⇒ ∇ · B = 0

∇ · ∂E
∂t

+ J = ∇× B =⇒ ∂

∂t
∇ · E =

∂ρ

∂t
= −∇ · J

via the continuity equation

And they produce the wave-like equations(
∂2

∂t2 −∇
2
)

B = ∇× J

(
∂2

∂t2 −∇
2
)

E = −∂J
∂t
−∇ρ



Electromagnetic fields and potentials

∇ · B = 0 =⇒ B = ∇× A

∂B
∂t

= −∇× E =⇒ ∇×
(
∂A
∂t

+ E
)

= 0 =⇒ ∂A
∂t

+ E = −∇φ



Electromagnetic fields and potentials

∇ · B = 0 =⇒ B = ∇× A
The magnetic field is the vorticity of the electromagnetic field

∂B
∂t

= −∇× E =⇒ ∇×
(
∂A
∂t

+ E
)

= 0 =⇒ ∂A
∂t

+ E = −∇φ

The no-sources Maxwell equations become indetically satisfied
The sources Maxwell equations are written as(

∂2

∂t2 −∇
2
)

A = J−∇
(
∂φ

∂t
+∇ · A

)
∇ ·
(
∇φ− ∂A

∂t

)
= ρ

If Lorentz gauge is used ∂tφ+∇ · A = 0, then(
∂2

∂t2 −∇
2
)

A = J ,
(
∂2

∂t2 −∇
2
)
φ = ρ



Vorticity

The vorticity field is any psedovector that is the rotational (curl) of a
vector field (potential).



Magnetic helicity

The vorticity field has associated a quantity called helicity

h =

∫
A · B d3x

such that

∂h
∂t

=

∫
∂A
∂t
· B d3x +

∫
A · ∂B

∂t
d3x

=

∫
(−E−∇φ) · B d3x−

∫
A · ∇ × E d3x

≡ −2
∫

E · B d3x−
∫

(φB + E× A) · d2x

≡ −2
∫

E · B d3x



Non-relativistic plasma



Non-relativistic plasma fluid

Fluid equation

m
(
∂

∂t
+ v · ∇

)
v = q (E + v× B)− 1

n
∇p

Maxwell equations

∂B
∂t

= −∇× E

∂E
∂t

+ J = ∇× B

And an equation of state



Non-relativistic plasma fluid

We re-write the fluid equation as

m
∂v
∂t
− mv× (∇× v) = q (E + v× B)− 1

2
∇v2 − 1

n
∇p

where we have used a× (∇× b) = (∇b) · a− (a · ∇)b

m
∂v
∂t

= q
[

E + v×
(

B +
m
q
∇× v

)]
− 1

2
∇v2 − 1

n
∇p

It appears the interesting field

Ω = B +
m
q
∇× v = ∇× P

that will be a generalized vorticity with the potential [the canonical
momentum]

P = A +
m
q

v



Generalized vorticity

Taking the curl of the previous equation

m
q
∂∇× v
∂t

= ∇× E +∇× (v× Ω)− 1
2q
∇×∇v2 −∇×

(
1
qn
∇p
)

can be written as

∂Ω

∂t
−∇× (v× Ω) =

1
qn2∇n×∇p

and

∂P
∂t
− v× Ω = − 1

qn
∇p−∇φ



Fluid helicity

The helicity associated to the fluid is

h =

∫
P · Ω d3x

which satisfies

∂h
∂t

=

∫
∂P
∂t
· Ω d3x +

∫
P · ∂Ω

∂t
d3x

=

∫ (
v× Ω− 1

qn
∇p−∇φ

)
· Ω d3x

+

∫
P ·
[
∇× (v× Ω) +

1
qn2∇n×∇p

]
d3x

≡ −
∫

1
qn
∇p · Ω d3x +

∫
1

qn2 P · ∇n×∇p d3x ≡ −
∫

2
qn
∇p · Ω

the helicity is conserved if p = p(n). 2

2Mahajan & Yoshida, Phys. Plasmas 18, 055701 (2011).



Sources for Generalized vorticity
∂tΩ−∇× (v× Ω) = 1

n2∇n×∇p

If p = p(n), then∇n×∇p = 0

∂Ω

∂t
−∇× (v× Ω) = 0

Therefore, if initiallhy the vorticity is null, it remains null for all times

If ∇n×∇p 6= 0, then the term

1
n2∇n×∇p

is so-called Biermann battery. It can generate vorticity from plasma
thermodynamical inhomogenities.



I The conservation of helicity establishes topological constraints.
It can forbid the creation (destruction) of vorticity in plasmas.

I We can see that the generalized helicity remains unchanged in
ideal dynamics. This conservation implies serious contraints on
the origin and dynamics of magnetic fields.

I Otherwise, the nonideal effects can change the helicity. For
example, if gradients of pressure and temperature have different
directions [Biermann battery].

I An anisotropic pressure tensor may also generate vorticity.



Special relativistic plasma



Special Relativistic plasma fluids

For relativistic plasmas there exist also a generalized voticity and a
fluid helicity. Now the relativistic plasma fluid is a little more
complicated. We have to consider:

I the rest-frame density of the lfuid n.
I the energy density of the fluid ε.
I the pressure of the fluid p.
I the enthalpy density of the fluid h = ε+ p.
I the relativistic velocity, through the Lorentz factor
γ = (1− v2)−1/2.

I coupled to Maxwell equations via the current density nγv.



Special Relativistic plasma fluids - covariant form

The relativistic ideal plasma description can be obtained from the
conservation of the ideal fluid energy-momentum tensor ∂νTµν = 0,
with

Tµν = (ε+ p)UµUν + p ηµν

with
ηµν = (−1, 1, 1, 1) UµUµ = −1

such that in the rest-frame, where Uµ = (1, 0, 0, 0), we find

T00 = ε

T0i = 0

T ij = pδij

The equation for the plasma fluid is

Uν∂ν (mfUµ) = qFµνUν −
1
n
∂µp

with
f =

ε+ p
mn



Special Relativistic plasma fluids - covariant form

Also we have the continuity equation

∂µ(nUµ) = 0

and Maxwell equations

∂νFµν = qnUµ



Magnetofluid Unification3

Instead of solving the previous equations, let us look the big picture.
The covariant fluid equation can be cast in the form

qUνMµν = T∂µσ

where the magnetofluid tensor is

Mµν = Fµν +
m
q

Sµν

with
Sµν = ∂µ(fUν)− ∂ν(fUµ)

and the entropy density follows

∂µσ =
1

nT
(∂µp− mn∂µf )

For an ideal relativistic gas

f = K3(m/T)/K2(m/T)

3Mahajan PRL 90, 035001 (2003); Mahajan & Yoshida, PoP 18, 055701 (2011).



Magnetofluid tensor (why is important)

Mµµ ≡ 0

M0i → ξ = E− m
q
∂t(fγv)− m

q
∇(fγ)

Mij → Ω = B +
m
q
∇× (fγv)

The magnetofluid tensor is the natural extension to the covariant form
of the plasma vorticity.

Equation qUνMµν = T∂µσ is the covariant vorticity equation for the
plasma.

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ξ + v× Ω =
T
qγ
∇σ



Magnetofluid tensor (why is important)

Mµµ ≡ 0

M0i → ξ = E− m
q
∂t(fγv)− m

q
∇(fγ)

Mij → Ω = B +
m
q
∇× (fγv)

The magnetofluid tensor is the natural extension to the covariant form
of the plasma vorticity.
Equation qUνMµν = T∂µσ is the covariant vorticity equation for the
plasma.

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ξ + v× Ω =
T
qγ
∇σ



Defining the potential (generalized canonical momentum)

Pµ = Aµ +
m
q

fUµ = (P0,P)

then
Mµν = ∂µPν − ∂νPµ

In this way

ξ = −∂P
∂t
−∇P0 , Ω = ∇×P

=⇒ ∇× ξ = −∂Ω

∂t
⇐⇒ 1

2
εαβµν∂

βMµν = 0

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ∂P
∂t
− v× Ω = − T

qγ
∇σ −∇P0

This last equation is the potential equation for the vortical dynamics!



Defining the potential (generalized canonical momentum)

Pµ = Aµ +
m
q

fUµ = (P0,P)

then
Mµν = ∂µPν − ∂νPµ

In this way

ξ = −∂P
∂t
−∇P0 , Ω = ∇×P

=⇒ ∇× ξ = −∂Ω

∂t
⇐⇒ 1

2
εαβµν∂

βMµν = 0

(For µ = 0) =⇒ v · ξ = − T
qγ
∂σ

∂t

(For µ = i) =⇒ ∂P
∂t
− v× Ω = − T

qγ
∇σ −∇P0

This last equation is the potential equation for the vortical dynamics!



Generalized relativistic vorticity and its dynamics

Ω = ∇×P = B +
m
q
∇× (fγv)

∂Ω

∂t
−∇× (v× Ω) = −∇

(
T
qγ

)
×∇σ

I The Generalized voticity has both kinematical and thermal
relativistic corrections [NR limit γ → 1, f → 1].

I The vortical dynamics contains those corrections. It appears a
more general battery.



Generalized relativistic helicity 4

Kµ =
1
2
εµναβPνMαβ

∂µKµ =
1
2
εµναβ∂µPνMαβ +

1
2
εµναβPν∂µMαβ = εµναβ∂µPνMαβ

the Generalized helicity

h ≡
∫

K0d3x =

∫
ε0ijkPiMjkd3x =

∫
P · Ωd3x

Then∫
∂µKµd3x =

∫
∂tK0d3x = ∂th

=

∫
∂tP · Ωd3x +

∫
P · ∂tΩd3x =

∫
2

qγ
∇σ · Ωd3x

There is room for generation!

4Mahajan PRL 90, 035001 (2003)
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Spacetime dynamics⇐⇒ Generation of magnetic fields! 5

Ω = ∇×P = B +
m
q
∇× (fγv)

∂Ω

∂t
−∇× (v× Ω) = −∇

(
T
qγ

)
×∇σ

= −∇
(

1
qγn

)
×∇p +

m
q
∇
(

1
γ

)
×∇f

=
∇n

qγn2 ×∇p +
∇γ

qγ2n
×∇p− m

qγ2∇γ ×∇f

I The first one is the “relativistic-corrected” Biermann battery
I The second and third one are the RELATIVISTIC DRIVES. The

third one is a kinematically and thermally relativistic correction.

5Mahajan & Yoshida, PRL 105, 095005 (2010)



Spacetime dynamics⇐⇒ Generation of magnetic fields! 5
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(
T
qγ

)
×∇σ

= −∇
(

1
qγn

)
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m
q
∇
(

1
γ

)
×∇f

=
∇n
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qγ2n
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Special relativistic drives (pure relativistic batteries)

∂Ω

∂t
−∇× (v× Ω) =

∇T
qγ
×∇σ +

T∇γ
qγ2 ×∇σ

They can generate a generalized vorticity (a magnetic field) from the
relativistic plasma interaction between its kinematics and its
thermodynamics.

In most astrophysical settings p = p(n) and∇n×∇p = 0.
in this situations the only possible source for a vorticity is the
relativistic drive.
Even so, if

T|∇γ|
γ|∇T|

∼ T|∇(v2/c2)|
|∇T|(1− v2/c2)

� 1

then the relativistic drive is more relevant than Biermann battery (for
v→ c or very inhomogenous hot plasmas).
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That’s all (for now).
Thanks!
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