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Task

Given: N measurements.

Goal: develop and compare models to account 
for the measured data.

This is a central task in science!!!



Example: Curve fitting

Find interpolant through data. 

Criteria: explain data and predict interpolate 
well to new data (predict/generalize well).

Solution: 1) Assume a parameterized model is 
true, find the best fit parameters. 
2) Compare different models.

Questions: Best fit in what sense? How do we 
compare models?



Two levels of inference

1. Fix model (=function class). Fit parameters.
Find the most probable parameters, given 
the data! 
Do this for each model.

2.Rank different models by the evidence we 
have for the model from the data.



1. Function fitting

Given a function class F with parameterized 
functions f(x,w), where w are the 
parameters, find the function f(x,w*) with 
the most likely parameters w*, given the 
data D.

“Most likely”? That’s a probabilistic notion. 



Finding the best 
parameters

Data:  

Model class M. Parameterized function: f(x,w)

Probability of the parameters, given the data 
(and given that we assume the model is true):
p(w|D,M)  <- This is hard to compute!

Probability (Likelihood) of the data, given the 
model and the parameters:
p(D|w,M)  <- Easy to compute

D = {xi, yi}



Use Bayes’ rule to calculate the posterior p(w|D,M) 
probability of the parameters (after we have seen 
the data) from the likelihood p(D|w,M) of the data 
given the parameters:

p(w|D,M) = p(D|w,M)p(w|M)/p(D|M)

p(w|M): prior prob. of parameters; p(D|M): Evidence 
for the model M.

Posterior = Likelihood * Prior / Evidence

Shorthand notation (M dropped, normalizing 
constant p(D) ignored): 
p(w|D) ~ p(D|w)p(w)



Example: Fitting function 
to noisy data

Assume gaussian noise: y = f(x,w) + noise

Likelihood: 

with:                             (mean squared error)
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Need a regularizer to control smoothness.

Example: Cubic spline interpolation.

Can be expressed as prior on weights:
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Altogether: Posterior ~ Likelihood * Prior

Maximizing the (log of the) posterior is the 
same as minimizing 

Under gaussian noise model, minimizing MSE 
finds the maximum likelihood parameters. (No 
regularization)
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Recall: Two levels of 
inference

1. Fix model (=function class). Fit parameters.
Find the most probable parameters, given the 
data! 
Do this for each model.

2.Rank different models by the evidence we 
have for the model from the data.
Bayesian inference embodies “Occam’s Razor”!



Occam’s Razor

Never use an unnecessarily complicated (or: 
complex) model.

Concept goes back at least to Aristoteles

William of Occam is often quoted for stating it. 

We will see that bayesian inference embodies 
“Occam’s Razor”!



Bayesian Model Comparison
Model M, Data set D. 

p(M|D) ~ p(D|M)p(M)

Posterior probability of Model ~ Evidence*Prior

recall: Evidence appeared as normalizing 
constant in bayesian parameter estimation
p(w|D,M) = p(D|w,M)p(w|M)/p(D|M) 

If models have equal prior probability, they are 
ranked by evaluating the evidence.



Why are complex models 
penalized - Intuition

Bayes embodies Occam’s razor because a 
more complex model (H ) predicts a greater 
variety of data sets D), thus does not predict 
the data in a given region (C ) as strongly. 
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Evaluating the evidence

Posterior over parameters 

often has a strong peak around the most likely 
parameters w 

Approximate Evidence by the height of the peak 
times it’s width:

p(w|D,Hi) � p(D|w,Hi)p(w|Hi)

p(D|Hi) =
�
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Occam Factor

Evidence is approximately the best fit likelihood 
times the Occam factor.

     is the posterior uncertainty in the 
parameters. With uniform prior: 

Occam facor = 

Ratio of posterior accessible volume of model’s 
parameter space to the prior accessible volume. 
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Occam Factor



Recall: Posterior ~ Likelihood * Prior

Maximizing the (log of the) posterior is the 
same as minimizing 

Under gaussian noise model, minimizing MSE 
finds the maximum likelihood parameters. (No 
regularization)
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Noisy interpolation
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Noisy interpolation
Bayesian choice of parametes     :  
Evaluate posterior:

             is the evidence for     , given by 
the ratio of the normalizing constants:

Find the integrals Z  , Z  , Z  .
Assume that the regularizer is a quadratic 
functional => Z  is gaussian.
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Noisy interpolation

Model comparison: 

Evidence:

p(H|D) � p(D|H)p(H)

p(D|H) =
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Interpolation: Example

The best interpolant depends on the regularization 
parameter (use flat prior on   and                ).  EW =
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Interpolation: Example

�Most probable    with error bars



Homework

Write a program that lets you fit a 
polynomial of order n to data 

(1) without and 

(2) with regularization (“ridge regression”).


