
Non-equilibrium quantum systems

(Updated lecture-notes)

Giuseppe E. Santoro,

SISSA, Trieste

(e-mail: santoro@sissa.it)

Printed on May 13, 2016



2

Preface

This is a continuously updated version of the lecture notes for the Course on “Non-

equilibrium quantum systems” held within the Spring College on “Physics of Complex Sys-

tems”. Please check the College website regularly for updates.

http://indico.ictp.it/event/7644/other-view?view=ictptimetable


Contents

1. Thouless adiabatic pump: generalities 5

1.1. Setting up the problem on the continuum . . . . . . . . . . . . . . . . . . . . 5

1.2. The current and the trick of twisted boundary conditions . . . . . . . . . . . 6

1.3. The adiabatic state: a glimpse at the adiabatic theorem . . . . . . . . . . . . 9

1.4. The pumped charge and its topological features . . . . . . . . . . . . . . . . . 12

2. Berry phase 17

2.1. Berry phase: generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Berry phase: A spin S in a magnetic field . . . . . . . . . . . . . . . . . . . . 20

2.3. Berry phase: A closer look at the spin-1/2 case . . . . . . . . . . . . . . . . . 21

3. Thouless adiabatic pump: tight-binding approaches 27

3.1. The Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. The pumped charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. The Rice-Mele model with open boundaries: edge states . . . . . . . . . . . . 32

4. Floquet systems 35

4.1. Periodically driven pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2. Time-periodic Hamiltonians: The Floquet theorem . . . . . . . . . . . . . . . 39

4.3. Dynamical localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1. The kicked pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2. The quantum kicked pendulum . . . . . . . . . . . . . . . . . . . . . . 46

A. Sensitivity to initial conditions: Lyapunov exponents 51





1. Thouless adiabatic pump: generalities

We plan to investigate here a very instructive example, the Thouless adiabatic pump [1],

which shows many ingredients at play: non-equilibrium physics (in the adiabatic regime),

with non-trivial topological properties as a manifestation of Berry phase in transport. Apart

from being very instructive, the interest in this problem has been revived recently by the

appearence of two different experiments, exploiting cold atoms settings, where the idea is

explicitly realized and demonstrated. In one experiment [2], from the group of I. Bloch,

they use 87Rb (bosonic) atoms; in the other [3], 171Yb (fermionic) atoms, with two hyperfine

nuclear levels playing the role of the fermionic spin 1/2. The interested reader can also

profit from the reading of Raffaele Resta’s lecture notes [4, Sec. 4.6 and Chap. 5], where the

connection with the modern theory of electronic polarization is explained in detail.

1.1. Setting up the problem on the continuum

The problem that Thouless concieved is that of an insulator (in one dimension) which is

subject to a time-dependent potential term which tends to drive the system in one direction.

You could write the Hamiltonian as:

Ĥ(t) =
N∑
j=1

( p̂2
j

2m
+ Vs(xj) + Vl(xj − vt)

)
+

1

2

∑
i 6=j

Vint(|xi − xj |) . (1.1)

In the recent experimental realizations

Vs(x) = Vs sin2

(
πx

ds
+
π

2

)
is a standing wave sinusoidal potential induced by a pair of counter-propagating lasers with

a certain wavelength, resulting in periodic potential with period ds. Vl is a similar potential

with a longer periodicity dl, such that ds = αdl and α = 1/2:

Vl(x− vt) = Vl sin
2

(
π(x− vt)

dl

)
= Vl sin

2

(
πx

dl
− ϕ(t)

2

)
where ϕ(t) = 2πt/T = 2πvt/dl. As you see, the Hamiltonian is time-periodic, i.e., Ĥ(t =

T ) = Ĥ(t = 0) in such a setting. Moreover, for any fixed t, the potential is periodic with a

lattice constant a = dl = 2ds for the present choice of α. Fig. 1.1 shows this potential for

several values of the phase difference ϕ.

The assumption that Thouless made is that the system is an insulator, i.e., if Ĵx denotes

the total current operator in the x-direction, and |Ψ(0)〉 is the ground state of Ĥ(0), then
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Figure 1.1.: The potential used in the experimental realization of the Thouless pump at dif-

ferent values of the phase difference ϕ. The tight-binding parameters used in the

Rice-Mele model, indicated in the figure, will be explained later on.

〈Ψ(0)|Ĵx|Ψ(0)〉 = 0. 1 But the surprising feature that Thouless pointed out is that even

insulators, in some cases, can transport charge. In particular, you can calculate the charge

transported in a period T as:

Q = lim
L→∞

1

L

∫ T

0
dt 〈Ψ(t)|Ĵx|Ψ(t)〉 , (1.2)

and you will find that, provided the adiabatic condition holds — i.e., T is long enough —, this

Q can be different from 0 in some cases, although necessarily an integer. In other words the

adiabatically pumped charge is necessarily quantized. The cases where Q 6= 0 are associated

to non-trivial topological features of the insulator.

In order to proceed in this journey, we have to learn a few basic things, starting from

the form of the current operator, and continuing with learning the rules-of-the-game of the

adiabatic theorem and Berry phase. Let us consider these ingredients one after the other.

1.2. The current and the trick of twisted boundary conditions

You have encountered the current in elementary quantum mechanics. You remember that,

for a single particle in, say, one dimension, the current density (omitting the charge −e in

1For an insulator, the current would identically vanish even in presence of a small force which tends to drift

the particles: a small electric field, if the particles are charged.
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front, if you are dealing with, say, electrons) would be given by

j(x) =
1

2m

(
ψ∗(x)[p̂ψ(x)] + [p̂ψ(x)]∗ψ(x)

)
.

It is essentially the sandwitch of the momentum operator p̂ = −i~∂x, which can however be

applied either to the ket to the right, or to the bra on the left, in a completely symmetric

fashion (in such a way that the result is real, i.e., the second term is the complex conjugate

of the first). If you integrate over all x, you get the total current as

J =

∫ ∞
−∞

dx j(x) =
1

2m

(
〈ψ|p̂ψ〉+ 〈p̂ψ|ψ〉

)
= 〈ψ| p̂

m
|ψ〉 ,

i.e., essentially, the velocity. Hence, you can say that the total current operator is Ĵ = p̂/m.

All this should be known and rather elementary. Now I tell you a useful trick that allows to

calculated the average total current in a very handy way, a trick invented by Kohn long ago,

and which has to do with working with boundary conditions. Consider, to start with, a free

particle, say in two-dimensions. Its Hamiltonian is:

Ĥ =
p̂2
x

2m
+

p̂2
y

2m
.

The particle stays in a finite rectangular region Lx × Ly, but to solve the problem I have

to specify the boundary conditions used. A standard assumption is that periodic boundary

conditions (PBC) are used, i.e., the solutions of Ĥψ(x, y) = Eψ(x, y) should be such that

ψ(x+Lx, y) = ψ(x, y) and ψ(x, y+Ly) = ψ(x, y). Physically, if Lx is large enough 2 you can

picture the x-PBC as having the particle on a cylinder of circumpherence Lx, while the y-

PBC would be picture as closing the cylinder into a torus. But let us forget about y-PBC and

leave the cylinder open. You can think of inserting at the center of the cylinder a magnetic

fluex Φ, which will induce a constant vector potential AΦ directed along the circumpherence

of the cylinder, AΦ = Φ/Lx by Stokes theorem. Hence the Hamiltonain on the cylinder in

the presence of the flux would read

Ĥ(Φ) =

(
p̂x + eΦ

cLx

)2

2m
+

p̂2
y

2m
.

Question: can we get rid of this constant vector potential term from the Hamiltonian? An-

wer: Yes, but the wavefunction would no longer be obeying PBC! Indeed, let us define new

wavefunctions given by

ψ̃κ(x, y) = eiκxψ(x, y) .

The transformation has to be implemented on the Hamiltonian as well, by the unitary trans-

formation H̃κ = eiκxĤ(Φ)e−iκx. A simple calculation shows that eiκxp̂xe−iκx = p̂x − ~κ.

Hence, the transformed Hamiltonian is

H̃κ =

(
p̂x + eΦ

cLx
− ~κ

)2

2m
+

p̂2
y

2m
=

p̂2
x

2m
+

p̂2
y

2m
,

where the last equality follows for the obviously optimal choice

~κ =
eΦ

cLx
=⇒ κ =

2π

Lx

Φ

Φ0
, (1.3)

2A cylinder has a curvature, but if Lx is large enough, it does not matter.
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where Φ0 = hc/e is the flux quantum. The transformed wave-funcions ψ̃κ(x, y) carry the

information of the flux by obeying twisted boundary conditions:

ψ̃κ(x+ Lx, y) = eiκLxψ̃κ(x, y) . (1.4)

All this is very general, and applies to many particles, even in presence of external po-

tential and interactions. For instance, the Hamiltonian in the presence of a flux, for the

one-dimensional problem we are dealing with (on the cylinder), would be:

Ĥ(κ, t) =

N∑
j=1

((p̂j + ~κ)2

2m
+ Vs(xj) + Vl(xj − vt)

)
+

1

2

∑
i 6=j

Vint(|xi − xj |) . (1.5)

As explained above, it would be totally equivalent to solve the same problem with κ not

appearing in the Hamiltonian, but appearing in the wave-funcions as a twist of the boundary

condition for each particle: ψ̃κ(· · · , xj + Lx, · · · ) = eiκLxψ̃κ(· · · , xj , · · · ). But even more

important to us is the fact that you can easily write down the total current operator as

Ĵ =
1

~
∂Ĥ(κ, t)

∂κ

∣∣∣
κ=0

=
∑
j

p̂j
m
, (1.6)

whose usefulness will become clear in a moment.

Before ending this section, let us observe the strong similarity between this result and a

well known fact about Bloch wavefunctions in crystalline systems. You know that, in band

theory, you can classify the single-particle states of a particle moving in a periodic potential

v(x + a) = v(x) (for simplicity, we treat the one-dimensional case) through Bloch waves of

the form

ψnk(x) = eikxunk(x) (1.7)

where unk(x) = unk(x + a) is a periodic function, k is a wave-vector which you can take to

be in the first Brillouin zone (BZ) of the reciprocal lattice k ∈ (−π/a, π/a], and n the so-

called band-index. The band dispersion εnk is nothing but the eigenvalue in Ĥψnk = εnkψnk,

with Ĥ = p̂2/(2m) + v(x). You can ask yourself what is the (time-independent) Schrödinger

equation that the unk satisfy. You realize that you have to do essentially the same algebra

as above: unk(x) satisfies:

e−ikxĤeikx︸ ︷︷ ︸
Ĥ(k)

unk(x) = εnk unk(x) ,

and the Hamiltonian Ĥ(k) is given by

Ĥ(k) = e−ikxĤeikx =
(p̂+ ~k)2

2m
+ v(x) .

The advantage of working with unk(x), rather than with ψnk(x), is that all the unk live in a

common Hilbert space: that of periodic functions of period a. More about this, later on.
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1.3. The adiabatic state: a glimpse at the adiabatic theorem

The problem we would like to study is the time-dependent Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 , (1.8)

where Ĥ(0) = Ĥ(T ) and the period T is very long, i.e., the Hamiltonian changes slowly in

time. In these circumstances, the adiabatic theorem helps us. To be general, let us assume

that Ĥ(t) depends on some n-dimensional set of parameters which we denote by R, which are

changed in time slowly and in a periodic fashion, Ĥ(R(t)). Let us assume that the trajectory

R(t) follows some curve Rs : s ∈ [0, 1]→ Rs ∈ Rn, with R(t) = Rs=t/T , i.e., we are rescaling

the time t by the total time T , in such a way as to be able to control the overall “slowness”

of the motion.

For every instantaneous value of R, let us assume that we can find all eigenstates and

eigenvalues of Ĥ(R):

Ĥ(R)|Φm(R)〉 = Em(R)|Φm(R)〉 . (1.9)

Notice, however, that the overall phase in front of each |Φm(R)〉 is rather arbitrary. Let us

assume that an arbitrary choice of phases is made in such a way that |Φm(R)〉 is continuous

enough that we can take derivatives with respect to R. 3

If you want to have a simple explicit example in mind, which will turn out to be crucially

important in the following (incidentally, also the example that Berry addressed in his original

paper [?]), you could think of Ĥ(t) to represent a single spin-1/2 in a slowly varying magnetic

field:

Ĥ(R(t)) = gµBŜ ·B(t) = R(t) · σ̂ , (1.10)

where we have reabsorbed a gµB/2 ≈ µB inside a general vectorial parameter R(t) =

(gµB/2)B(t). R can parameterized by the usual spherical coordinates: R, the “distance”

from the origin, and two polar angles θ and φ. The two eigenstates of the spin in direction

R can be chosen to be:

|Φ+ 1
2
(R)〉N =

(
cos θ2

eiφ sin θ
2

)
|Φ− 1

2
(R)〉N =

(
e−iφ sin θ

2

− cos θ2

)
, (1.11)

with corresponding energy E± 1
2

= ±R. Notice that R∗ = 0 is a degeneracy point in parameter

space, where the gap between the two eigenstates closes. Notice also that this choice of phase

of the eigenstates is not the only one possible, hence our subscript N to indicate that this

choice is well defined everywhere around the North pole (θ = 0) but is singular exactly at

the South pole θ = π because there sin (π/2) = 1 but the term e±iφ is totally undetermined.

We will see later on how this singularity reflects itself in the form of the Berry connection.

Assume that at the initial time the system is in some eigenstates, say |Φ0(R0)〉, and that

the spectrum of eigenvalues is non degenerate and with a gap, i.e, every eigenvalue is separated

3Indeed, any diagonalization routine would provide eigenstates with rather arbitrary phases. We will discuss

some numerical aspects later on. We will also address the issue of defining smooth phases over all the

manifold of the parameters, which can usually be done only locally.
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from the other ones by a non vanishing quantity En(R)−Em(R) = ~ωnm with |ωnm| > 0. 4

The adiabatic theorem states that, if T is long enough, then the time dependent state |Ψ(t)〉
is close to the instantaneous state |Φ0(R(t))〉. 5

We will see a glimpse of the crucial ingredient in the proof below. A full proof, quite heavy

to digest, is given in the book by Messiah [5, p. 747]. One of the non-trivial aspects of the

story is that the phase accumulated by the state must have an extra piece, on top of the

dynamical phase that you expect:

|Ψ(t)〉 ≈ eiγ0(t)e−
i
~
∫ t
0 dt
′E0(R(t′))|Φ0(R(t))〉 ,

where the geometric phase γ0(t) — known as Berry phase — is necessary in order to have

that

〈Ψ(t)|
(
i~
d

dt
− Ĥ(R(t))

)
|Ψ(t)〉 = 0 .

As you can verify with a simple calculation, this extra phase is given by

γ0(t)
def
= i

∫ t

0
dt′ Ṙ(t′) · 〈Φ0(R(t′))|∇RΦ0(R(t′))〉 . (1.12)

The fact that this extra phase is geometrical in nature can be seen, mathematically, from

the property that γ0(T ) is invariant by re-parametrization of the curve R(t): for instance if

t = sT , then a factor T appears from the Jacobian dt = Tds but is exactly canceled by a

factor 1/T given by the derivative Ṙ(t) = 1
T Ṙs.

6 Physically, you see that γ0(T ) has a strict

mechanical analogy in the total work done by the force field

A(R) = i〈Φ0(R)|∇RΦ0(R)〉 = −Im〈Φ0(R)|∇RΦ0(R)〉 , (1.13)

in going from R0 to R1 along the path R(t): as such, the “work” depends in general on the

path, but not on the “velocity” with which you travel in it. The second important property of

the geometrical phase γ0(t) is that it depends on the choice of phase (assumed differentiable)

we made for the eigenstate |Φ0(R)〉, except when we make a closed path in parameter space,

i.e., R(T ) = R(0). We will see this in detail in the next section, where we will show that

the “force field” introduced above — the so-called Berry connection A(R) — changes as

A→ A′ = A+∇Λ(R) when a smooth change of phase |Φ0(R)〉 → |Φ′0(R)〉 = e−iΛ(R)|Φ0(R)〉
is performed. More about it later on: here, it will play a rather minor role.

4In a condensed matter system all eigenvalues are extensive, i.e., they tend to infinity with the size of the

system. Nevertheless, in an insulator, excitations cost a finite amount of energy, and this provides the

necessary gap we are postulating.
5If you define by ÛT (s) the evolution operator, satisfying

i~ d
ds
ÛT (s) = TĤ(Rs) ÛT (s) ,

with ÛT (0) = 1, then a mathematically more precise statement of the adiabatic theorem is that:

lim
T→∞

ÛT (s) P(R0) = P(Rs) lim
T→∞

ÛT (s) .

6 More generally, you can easily prove that the same is true for any monotonic change of variables t = g(s)

where the function g(s) is such that g(0) = 0 and g(1) = T .
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Unfortunately, the lowest order adiabatic result will not be sufficient for our purposes: we

will have to derive the first-order correction into an adiabatic perturbation theory scheme.

Let us see how it works. Assuming a completely general expansion of the form:

|Ψ(t)〉 =
∑
m

cm(t) eiγm(t) e−
i
~
∫ t
0 dt
′Em(R(t′)) |Φm(R(t))〉 , (1.14)

it is rather simple to derive an exact differential equation that the unknown coefficients cm(t)

have to satisfy:

ċn(t) =
∑
m 6=n

e
i
~
∫ t
0 dt
′(En−Em) Fnm(t) cm(t) , (1.15)

where the coefficients Fnm(t) are given by:

Fnm(t) = −ei[γm(t)−γn(t)] 〈Φn(R(t))|∂tΦm(R(t))〉 . (1.16)

The initial condition for this system of differential equations is cn(0) = δn,0. Hence, it is

rather simple to understand that the most important term in the right-hand side is precisely

the term with n = 0 (which starts from 1), while the other terms start having cm(t) ≈ 0 for

small t. Hence, we can write the equation for cn(t), when n 6= 0, as follows:

ċn(t) = (1− δn,0) e
i
~
∫ t
0 dt
′(En−E0) Fn0(t) c0(t) +

∑
m6=(0,n)

(· · · )

where the (1 − δn,0) term reminds us that n 6= 0 in that expression. Now, let us take one

moment to comment on the effect of going slow, making T → ∞. By implementing the

change of variables to the rescaled time, t → s = t/T , you immediately realize that the

Schrödinger equation can be rewritten as:

i~
d

ds
|Ψ̃(s)〉 = TĤ(Rs)|Ψ̃(s)〉 , (1.17)

where |Ψ̃(s)〉 = |Ψ(t = sT )〉. So, the whole role of T is to multiply the Hamiltonian, hence

the instantaneous eigenvalues En(Rs). Formally, in the rescaled time s you might rewrite

the previous equation for the coefficient cn as follows:

ċn(s) = (1− δn,0) e
iT
~

∫ s
0 ds
′(En−E0) Fn0(s) c0(s) +

∑
m 6=(0,n)

(· · · ) .

And now you realize that a large factor T in the exponential makes the phase factor wildly

oscillatory, provided |En − E0| > 0. If you want to see that this wild oscillation makes the

contribution small, simply integrate by parts the exponential. 7 You will write something

like:

cn(s) =
eiT

∫ s′
0 ds′′ωn0

iTωn0(s′)
Fn0(s′) c0(s′)

∣∣∣∣∣∣
s

0

−
∫ s

0
ds′

eiT
∫ s′
0 ds′′ωn0

iTωn0(s′)

d

ds

(
Fn0(s′) c0(s′)

)
· · · +

 ∑
m6=(n,0)

· · ·

 ,

showing that the coefficients cn6=0 have an overall factor 1/T in front. And this is not all. The

gap ωn0 appears in the denominator. But if you examin more closely the Fn0, you discover

an extra factor of ωn0 coming out of it. Let us examine in detail Fn0(s):

Fn0(s) = −ei[γ0(s)−γn(s)] Ṙs · 〈Φn(Rs)|∇RΦ0(Rs)〉 .
7In integrating by parts, we neglect and collect under the · · · a term coming from the derivative of the

denominator iTωn0(s).
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The crucial assumption in the statement of the adiabatic theorem is that the energy gap

~ωn0(s) = En(s)− E0(s) is never zero along the whole path. In other words, the eigenvalue

E0 is assumed to be non-degenerate and separated by a finite gap from all other states. Then,

by taking the derivative of the time-independent Schrödinger problem in Eq. (1.9), and taking

the scalar product with 〈Φn|, it is immediate to prove that:

〈Φn(Rs)|∇RΦ0(Rs)〉 = −〈Φn(Rs)|∇RĤ|Φ0(Rs)〉
En(Rs)− E0(Rs)

, (1.18)

which, upon substitution in Fn0 gives:

Fn0(s) = ei[γ0(s)−γn(s)] Ṙs · 〈Φn(Rs)|∇RĤ|Φ0(Rs)〉
En(Rs)− E0(Rs)

. (1.19)

So, the larger (in modulus) is the gap ~ωn0 = En − E0, the smaller is Fn0. One might be

tempted to even put down a condition for adiabaticity by requiring the smallness of the first

term, i.e., for all s ∈ [0, 1]:∣∣∣∣ Fn0(s)

Tωn0(s)

∣∣∣∣ =

∣∣∣∣∣ ~T Ṙs · 〈Φn(Rs)|∇RĤ|Φ0(Rs)〉
[En(Rs)− E0(Rs)]2

∣∣∣∣∣� 1 . (1.20)

Let us now return to our usual time t, and make a perturbation theory expansion up to

first order. Hence, to zeroth order we take c
(0)
n (t) = δn,0, and plug this into the right-hand

side of 1.15, obtaining the solution up to first-order in the form:

ċ(1)
n (t) = (1− δn0) ei

∫ t
0 dt
′ωn0 Fn0(t) . (1.21)

Notice that there are no corrections to c0 at first order. Now, as previously done to show the

crucial ingredient behind the adiabatic theorem, integrate this equation by parts and neglect

all terms which contain derivatives (because they come with an extra factor 1/T ):

c(1)
n (t) = (1− δn0)

ei
∫ t
0 dt
′ωn0

iωn0
Fn0(t) + derivative terms . (1.22)

Inserting this expression in the expansion of the state, we can finally write an approximate

expression for |Ψ(t)〉, to first-order in the time-derivatives, as follows:

|Ψ(t)〉 = eiγ0(t) e−
i
~
∫ t
0 dt
′E0(t′)

[
|Φ0(t)〉+ i~

∑
n6=0

|Φn(t)〉〈Φn(t)|∂tΦ0(t)〉
En(t)− E0(t)

]
, (1.23)

which coincides with Eq. (2.3) of Ref. [1]. The second term contains an important correction

to the adiabatic state which will play a crucial role in transport, as we shall presently see.

1.4. The pumped charge and its topological features

Now we have all the ingredients to calculate the pumped charge Q. Let us start from the

average current 〈Ψ(t)|Ĵ |Ψ(t)〉. With the results derived so far we can write:

〈Ψ(t)|Ĵ |Ψ(t)〉 = 〈Φ0(t)|1
~
∂κĤ(t)|Φ0(t)〉+ i

∑
n6=0

[
〈Φ0(t)|∂κĤ(t)|Φn(t)〉〈Φn(t)|∂tΦ0(t)〉

En(t)− E0(t)
− c.c.

]
,
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where “c.c.” is an abbreviation for the complex conjugate. In the second term we have kept

the correction to the adiabatic state only once. Notice that the correction is “small” in the

adiabatic limit: of order 1/T . However, this correction will make up for the whole interesting

part of the story, since when integrated over time in [0, T ] it will indeed give a non-vanishing

(topological) contribution. Recall that we will have to set κ = 0 at the end, and that all

eigenstates are calculated for given κ (although not explicitly indicated). The first term can

be calculated through the Hellmann-Feynman theorem, which guarantees that

〈Φ0(t)|∂κĤ(t)|Φ0(t)〉 = ∂κ〈Φ0(t)|Ĥ(t)|Φ0(t)〉 = ∂κE0(t) .

In the second term we can substitute 8

〈Φ0(t)|∂κĤ(t)|Φn(t)〉
En(t)− E0(t)

= −〈∂κΦ0(t)|Φn(t)〉 ,

valid for all n 6= 0. Whence we get:

〈Ψ(t)|Ĵ |Ψ(t)〉 =
1

~
∂κE0(κ, t)− i

∑
n6=0

[
〈∂κΦ0(t)|Φn(t)〉〈Φn(t)|∂tΦ0(t)〉 − c.c.

]

=
1

~
∂κE0(κ, t)− i

[
〈∂κΦ0(t)|∂tΦ0(t)〉 − c.c.

]
, (1.24)

where in the final step we have used the fact that a term with n = 0 can be freely added

because it is real,9 hence it cancels when you subtract the complex conjugate; hence the whole

unrestricted sum over n can be eliminated, since it gives the identity.

So far, we did not assume that the system was a band insulator. Suppose now that we can

treat the interaction in some mean-field way, within the usual approach of the band-theory of

crystals. Then the ground state |Φ0〉 would be (for fermionic systems) a Slater determinant

of Bloch waves. If we work with the periodic functions un,k(x, t), you might write it (in a

second-quantization form) as

|Φ0(t)〉 =
occ∏
ν

BZ∏
kn

ĉ†ν,kn(t) |0〉 ,

where ĉ†ν,k(t) creates a particle in the instantaneous (i.e., at fixed value of t) state uν,k(x, t) =

〈x|ĉ†ν,k(t)|0〉. Here kn indicate all the wave-vector of a discretization of the BZ (assuming

we have a very large system of size L = Na with PBC applied, kn = 2πn/L with n =

−N/2 + 1, · · · , N/2). While we might sometimes omit the dependence on t, we should

always remember that we are assuming a fixed value of t. Recall that the (single-particle)

Hamiltonian which governs the uν,k have an explicit momentum dependence in the kinetic

8It is simple to derive this relationship. Start from Ĥ(t)|Φn(t)〉 = En(t)|Φn(t)〉, apply a derivative with

respect to κ and take the scalar product with 〈Φ0| (assuming n 6= 0).
9Notice that 〈∂κΦ0|Φ0〉 is purely imaginary, since:

〈∂κΦ0|Φ0〉+ 〈Φ0|∂κΦ0〉 = ∂κ〈Φ0|Φ0〉 = 0 .
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energy Ĥ(k, t) = (p̂ + ~k)2/(2m) + v(x, t). In the presence of the extra flux, it would also

acquire an extra piece ~κ:

Ĥ(k, κ, t) =
(p̂+ ~k + ~κ)2

2m
+ v(x, t) .

From there you see that everything depends only on k + κ, so that the total energy of the

Slater determinant in the presence of κ would be:

E0(κ, t) =
occ∑
ν

BZ∑
kn

εν,kn+κ(t) .

From there you see that the total current associated to |Φ0〉, taking a derivative and setting

κ = 0, would be:

〈Φ0|Ĵ |Φ0〉 =

occ∑
ν

BZ∑
kn

1

~
∂εν,k
∂k

∣∣∣
k=kn

= 0 .

The reason is simple: the contribution to the current from each wave of momentum k is

given by the group velocity ∂kεν,k but there are cancellations between positive and negative

momenta: in particular, this is rather obvious in an insulator, where all k’s in the BZ are

occupied, and there are no partially filled bands. Notice that this would be true for any given

fixed time t.

Let us now see how the second term in Eq. 1.24 looks like for a band insulator. If you have

a single particle in some band state uν,k(x, t), then

〈∂κΦ0(t)|∂tΦ0(t)〉
∣∣∣
κ=0

= 〈∂kuν,k|∂tuν,k〉 .

More generally, if you have a certain number of bands fully occupied for all the momenta k

in the BZ, a simple application of second quantization (or directly with Slater determinants)

shows that you will get:

〈∂κΦ0(t)|∂tΦ0(t)〉
∣∣∣
κ=0

=

occ∑
ν

BZ∑
k

〈∂kuν,k|∂tuν,k〉 .

Putting all the ingredients together, we finally arrived at the following expression for the

average current:

〈Ψ(t)|Ĵ |Ψ(t)〉 = −i
occ∑
ν

BZ∑
k

[
〈∂kuν,k|∂tuν,k〉 − c.c.

]
. (1.25)

Notice that the sum over the (discretized) wave-vectors k runs over the N = L/a points in

the BZ: this clearly shows that the total current is extensive, i.e., proportional to L. To get

the “charge” that passes, during a period [0, T ], from one side of the sample to the other,

you have to divide the current by L (taking the limit L→∞), and integrate it over time:

Q = lim
L→∞

1

L

∫ T

0
dt 〈Ψ(t)|Ĵ |Ψ(t)〉 =

= −
occ∑
ν

∫ +π
a

−π
a

dk

2π

∫ T

0
dt i

[
〈∂kuν,k|∂tuν,k〉 − c.c.

]
︸ ︷︷ ︸

Bνk,t

, (1.26)
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where the sum over the k’s has been transformed into an integral 10 in the limit L → ∞.

The final expression for Q we got is the crucial goal of our long journey. It involves a double

integral, over k and t, of an object that will be the main actor in the discussion of the Berry

phase, the Berry curvature of the ν-th band:

Bν
k,t(k, t) = i

[
〈∂kuν,k|∂tuν,k〉 − c.c.

]
. (1.27)

The notation is here a bit reduntant, as k, t appear both as pedices of B (to recall the order

in which you take the derivatives of uν,k in the anti-symmetric combination shown above), and

as variables, because B depends on the point k, t on which you calculate it. But the crucial

aspect of the story is that the integration you should perform is on the two-dimensional torus

in (k, t) space, as both the BZ and the time-integral involve a periodic identification of their

end-points. A proof that the integral of Bν
k,t over the torus in (k, t) space gives necessarily an

integer, is one of the key-points in Ref. [1]. An explicit proof, making use of Stokes’ theorem,

is reported in Ref. [6][Sec. IIB]. We will not present it explicitly in class simply because the

fact that Q is an integer, does not show that this integer is different from 0. In order to

show that this integer can be non-trivial, i.e., Q 6= 0, we will resort to an explicit calculation

within a tight-binding approximation, leading to the Rice-Mele model discussed later on.

10 This follows from thinking the integral in terms of discrete Riemann sums, with the width of the rectangles

which discretize the integral being all equal to 2π/L. Hence:

lim
L→∞

1

L

BZ∑
k

f(k) =

∫ +π
a

−π
a

dk

2π
f(k) .





2. Berry phase

I present in this chapter the essential properties of the so-called Berry phase [7] in quantum

mechanics, concentrating on the crucial example of a spin-1/2 system. Traditional condensed

matter applications, like the dynamical Jahn-Teller effect and other Born-Oppenheimer-

related aspects are discussed in the literature — see, for instance, the very nice lecture

notes by Raffaele Resta [4] — and will not be touched upon here. For references on the early

experiments revealing the Berry phase, you can consult Ref. [8, Chap. 5].

The appearence of the geometric phase within a context of adiabatic dynamics and adia-

batic theorem is briefly presented in Sec. 1.3.

2.1. Berry phase: generalities

Let us explore another route to get the geometrical phase we have found in discussing the

adiabatic theorem. Consider the phase-difference between two (0-th) eigenstates at points

Rs1 and Rs2 :

e−i∆φ12 =
〈Φ0(Rs1)|Φ0(Rs2)〉
|〈Φ0(Rs1)|Φ0(Rs2)〉|

.

It is clear that:

∆φ1,2 = −Im log 〈Φ0(Rs1)|Φ0(Rs2)〉 ,

does depend on the the arbitrary choice of phases for the eigenstates. However, consider, for

instance, three states and calculate the change of phase in the triangle in parameter space

connecting the states:

∆φ1,2 + ∆φ2,3 + ∆φ3,1 = −Im log 〈Φ0(Rs1)|Φ0(Rs2)〉〈Φ0(Rs2)|Φ0(Rs3)〉〈Φ0(Rs3)|Φ0(Rs1)〉 .

A moment reflection will lead you to conclude that this quantity is indeed independent on

the choice of phase you make for the eigenstates, because each state appears as a ket and as

a bra in the expression. More generally, imagine having a closed polygonal path in parameter

space with sj ∈ [0, 1], j = 0, . . . P , such that s0 = 0 and sP = 1 with R1 = R0. Then the

phase difference accumulated along the polygonal path:

γ(P ) =

P−1∑
j=0

∆φj,j+1 = −Im log 〈Φ0(R0)|Φ0(Rs1)〉〈Φ0(Rs1)|Φ0(Rs2)〉 · · · 〈Φ0(RsP−1)|Φ0(R0)〉 ,

does not depend at all on the arbitrary choice of the phases of Φ0(R), as long as the path

is closed. Notice, that you do not even have to assume that the phase choice is smooth! It
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does not matter: the arbitrary phases cancel in the loop. If you further assume that the

phase-choice is such that |Φ0(R)〉 is differentiable, then one can show that:

∆φj,j+1 = −Im log 〈Φ0(Rsj )|Φ0(Rsj+1)〉
= −Im log

(
1 + 〈Φ0(Rsj )|∇RΦ0(Rsj )〉 ·∆R + · · ·

)
= i〈Φ0(Rsj )|∇RΦ0(Rsj )〉 ·∆R + · · · , (2.1)

with ∆R = Rsj+1 −Rsj , where we used that log (1 + z) = z + · · · , and that Im〈Φ0|∇RΦ0〉
can be replaced by −i〈Φ0|∇RΦ0〉 because the scalar product is purely imaginary, as discussed

before. In the limit in which the number of intervals P goes to ∞, the Riemann sums turn

into a closed line-integral:

lim
P→∞

γ(P ) = γ =

∮
C
A(R) · dR

where C denotes the closed path, and the so-called Berry connection A is defined as:

A(R) = i〈Φ0(R)|∇RΦ0(R)〉 = −Im〈Φ0(R)|∇RΦ0(R)〉 . (2.2)

The Berry connection A depends on the (smooth) choice of phases we make on |Φ0(R)〉.
Suppose indeed we consider a new |Φ′0(R)〉 = e−iΛ(R)|Φ0(R)〉. Then the associated Berry

connection A′ is given by

A′ = A + ∇RΛ(R) , (2.3)

i.e., a form identical to the change of gauge for the standard vector potential in electromag-

netism. Obviously, Λ is irrelevant when we integrate A over a closed loop C, and therefore

the closed-path Berry phase γ is gauge invariant! As such, you expect γ to be experimentally

measurable, through interferometric and spin-polarization-type experiments, as indeed was

verified [8, Chap. 5].

The vector field (or 1-form) A can related, by Stokes’ theorem, to another important

quantity: the analogue of the magnetic field B. Suppose, indeed, that the parameter space

in which R leaves in dimension n = 3. Then, we can calculate the “curl of A” as:

B(R) = ∇R ×A(R) = −Im〈∇RΦ0(R)| × |∇RΦ0(R)〉 , (2.4)

where we used the fact that ∇R×|∇RΦ0〉 = 0. Now, if the curve C is the boundary of some

surface Σ (i.e., C = ∂Σ), then Stokes’ theorem guarantees that:

γ =

∮
∂Σ

A(R) · dR =

∫
Σ
B(R) · n dσ . (2.5)

In general dimension n, one cannot deal with the familiar “curl”: one has to introduce the

so-called 2-form to write Stokes theorem. Let us return to the expression in d = 3, where the

curl works wonderfully well. The three components of B(R) read:

B1(R) = −Im
[
〈∂2Φ0(R)|∂3Φ0(R)〉 − 〈∂3Φ0(R)|∂2Φ0(R)〉

]
, (2.6)

and similar equations for B2 and B3 in the usual cyclic way. For a more compact notation

we have indicated, as we will do from now on, ∂α = ∂
∂Rα

. Notice that the Im-part is totally
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irrelevant, because the expression in parenthesis is manifestly anti-symmetric, and hence its

Re-part vanishes by construction. Therefore we can equivalently write:

B1(R) = i
[
〈∂2Φ0(R)|∂3Φ0(R)〉 − 〈∂3Φ0(R)|∂2Φ0(R)〉

]
= −2Im〈∂2Φ0(R)|∂3Φ0(R)〉 . (2.7)

It is now evident that a manifestly anti-symmetric object of the same form, known as Berry

curvature, can be written in any dimension by defining:

Bαβ(R) = −2Im〈∂αΦ0(R)|∂βΦ0(R)〉 = i
[
〈∂αΦ0(R)|∂βΦ0(R)〉 − 〈∂βΦ0(R)|∂αΦ0(R)〉

]
,

(2.8)

the only difference being that in general this object has more components, n(n−1)/2 for gen-

eral n > 1. By construction Bαβ = −Bβα, hence Bαα = 0. 1 Recalling that 〈Φ0(R)|∂βΦ0(R)〉
is purely imaginary, it is evident that:

Im
[
〈∂αΦ0(R)|Φ0(R)〉〈Φ0(R)|∂βΦ0(R)〉

]
= 0 .

This shows that we can freely insert a projectorQ(R) = 1−|Φ0(R)〉〈Φ0(R)| in the definition

of Bαβ(R) as follows:

Bαβ(R) = −2Im〈∂αΦ0(R)|Q(R)|∂βΦ0(R)〉 . (2.9)

The advantage of this way of writing is the manifest gauge-invariance of such an object.

Indeed, let us see what happens if you do a smooth change of phase (gauge, in the new

language) to the state

|Φ0(R)〉 → |Φ′0(R)〉 = e−iΛ(R)|Φ0(R)〉 .

Then:

|∂βΦ′0(R)〉 = −i∂βΛ e−iΛ(R)|Φ0(R)〉 + e−iΛ(R)|∂βΦ0(R)〉 .

This shows that the new derivative has an extra term proportional to ∂βΛ, which, however, is

along |Φ0(R)〉 and therefore cancels out exactly when meeting the projector Q(R). In other

words, you can easily convince yourself that:

Bαβ → B′αβ = −2Im〈∂αΦ′0(R)|Q(R)|∂βΦ′0(R)〉 = Bαβ ,

i.e., the Berry curvature is manifestly gauge invariant, a result that should not surprise you

from the knowledge of electromagnetism, if you think that B plays the role of a magnetic

field. 2

1In dimension n = 3, the new tensorial notation is related to the traditional curl notation by B1 = B23,

B2 = B31 = −B13, B3 = B12.
2 Indeed, you can easily see that the Im-part prescription played no role in this proof. If you define, more

generally, the tensor

Gαβ(R) = 〈∂αΦ0(R)|Q(R)|∂βΦ0(R)〉 , (2.10)

of which Bαβ is the Im-part (or, equivalently, the anti-symmetric part), then Gαβ(R) is manifestly gauge-

invariant. We can show that the ReG (i.e., the symmetric part) is related to a metric tensor associated to

the distance

D2
R1,R2

= 1− |〈Φ0(R1)|Φ0(R2)〉|2 .
Moreover, one can show that Gαβ can be written fully in terms of projectors (the most manifestly gauge-

invariant way of writing):

Gαβ(R) = Tr
[
(∂αP(R))Q(R)(∂βP(R))

]
.

See Ref. [4].
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We are now in the position to write a further expression for Bαβ(R), perhaps mathemati-

cally less elegant, but still physically very useful. If you recall that discussion on the adiabatic

theorem, see Eq. (1.18), you will remember that for all states with En 6= E0 we have (in the

new notation): 3

〈Φn(R)|∂βΦ0(R)〉 =
〈Φn(R)|∂βĤ|Φ0(R)〉
E0(R)− En(R)

. (2.13)

But this restriction on n 6= 0 is precisely that imposed by the projector Q, hence:

Bαβ(R) = −2Im
∑
n6=0

〈∂αΦ0(R)|Φn(R)〉〈Φn(R)|∂βΦ0(R)〉

= −2Im
∑
n6=0

〈Φ0(R)|∂αĤ|Φn(R)〉〈Φn(R)|∂βĤ|Φ0(R)〉
[E0(R)− En(R)]2

. (2.14)

This expression for Bαβ, involving standard energy denominators, often appears in physical

calculations and also reveals some interesting aspects related to singularities of Bαβ(R). In

particular, on notices that Bαβ(R) is singular whenever the gap between En and E0 closes at

some point R∗, which might be away from your physical trajectory R(t), but will nevertheless

have important physical implications. One of the important advantages of it is the fact that it

does not involve any derivative of the states, hence it can be calculated with any phase choice

for the states, including choices that are not smooth (as, for instance, when the eigenstates

are obtained numerically).

2.2. Berry phase: A spin S in a magnetic field

Let us consider an important example which allows us to carry out explicit calculations.

Consider a spin S subject to a magnetic field B(t) which varies slowly in time. We will in

the end consider the case of a S = 1/2, but carry out first the calculations for a general S.

The Hamiltonian is:

Ĥ(B(t)) = −gµŜ ·B(t) , (2.15)

3Recall here the similarity with the results of first-order perturbation theory. If Ĥ(λ) = Ĥ0 + λV̂ , we know

that, for a non-degenerate state |Φn(λ)〉 we can write:

|Φn(λ)〉 = |Φn(0)〉+ λ
∑
m 6=n

|Φm(0)〉 〈Φm(0)|V̂ |Φn(0)〉
En(0)− Em(0)

+O(λ2) . (2.11)

From this expression, and the fact that ∂λĤ(λ) = V̂ , you immediately deduce that, for m 6= n:

〈Φm(0)|∂λΦn(λ)〉
∣∣∣
λ=0

=
〈Φm(0)|∂λĤ(λ)|Φn(0)〉

En(0)− Em(0)

∣∣∣
λ=0

, (2.12)

which closely mimics the result given in the text. However, what you almost invariably never learn when

studying first-order perturbation theory, is that there is an important contribution to the change of the

state in the direction of |Φn(0)〉 itself, i.e., 〈Φn(0)|∂λΦn(λ)〉
∣∣∣
λ=0

, which, sometimes, should be accounted

for. This term, for which the first-order formula cannot be applied because of the energy denominators, is

exactly at the origin of the Berry phase.
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where g is the gyromagnetic ratio and µ = q~/(2Mc) the magnetic moment, q being the

charge of the particle and M its mass. Notice that the spin operators Ŝ are in units of ~
which is now hidden inside µ. Evidently, here B(t) plays the role of R(t) in our previous

discussion.

We first tackle this problem in a traditional way, as you find it, for instance, in Sakurai,

by calculating directly the Berry curvature without much discussion about how precisely the

phase of the eigenstates are selected. We select the eigenstates when the magnetic field is

B(t) as the eigenstates of Ŝz′ , where ẑ′ is in the direction of B(t), i.e., Ŝz′ = Ŝ·B̂, and indicate

them as |Φm(B)〉, with m = −S, · · · , S rather than with the standard expression |S,m(B)〉.
The energy of such states is Em(B) = −gµBm where B = |B|. In the previous notation, we

should also calculate ∂αĤ = −gµŜα. Let us focus on a given eigenstate m (which we denoted

with 0 in the general discussion) and calculate accordingly the associated Berry curvature:

B
(m)
αβ (B) = −2Im

∑
m′ 6=m

〈Φm(B)|Ŝα|Φm′(B)〉〈Φm′(B)|Ŝβ|Φm(B)〉
B2[m−m′]2

, (2.16)

where a factor (gµ)2 cancelled in the numerator against the squared energies in the denom-

inator. It is clear that when either α or β is z′, then the results is zero because |m′〉 are

eigenstates of Ŝz′ . Therefore, the only non-vanishing term is:

B
(m)
x′y′(B) = −2Im

∑
m′ 6=m

〈Φm(B)|Ŝx′ |Φm′(B)〉〈Φm′(B)|Ŝy′ |Φm(B)〉
B2[m−m′]2

. (2.17)

If you recall that Ŝx′ = (Ŝ+ + Ŝ−)/2 and Ŝy′ = (Ŝ+ − Ŝ−)/(2i) and that 〈Φm±1|Ŝ±|Φm〉 =√
S(S + 1)−m(m± 1), it is easy to calculate that:

B
(m)
x′y′(B) = − m

B2
, (2.18)

but remember that this choice of spin direction is related to the direction of B. Returning to

the usual definition of curl in n = 3 dimension we have, therefore, a B which is in the radial

direction B and proportional to −m/B2:

B(m)(B) = −m B̂

B2
. (2.19)

Evidently, the Berry curvature has a singularity at the degeneracy point B∗ = 0 where all

2S + 1 eigenvalues are degenerate. Stokes’ theorem then gives:

γm(C) =

∫
ΣC

B(m)(B) · n dσ = −m
∫

ΣC

B̂

B2
· B̂ B2 dΩ = −mΩ(C) , (2.20)

where Ω(C) is the solid angle subtended by the circuit C from the degeneracy point B∗ = 0.

2.3. Berry phase: A closer look at the spin-1/2 case

Let us consider in more detail the case S = 1/2 which will occur very often in the discussion

of the different models we will tackle. The reason for doing that (after all, the previous
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calculation was made for general S) is that we will better appreciate some subtleties about

the choice of phase of the eigenstates which were somehow hidden in the previous approach:

Remember that we selected the eigenstates as those of Ŝ ·B but we did not have to discuss

what phases they had, since the Berry curvature was gauge-invariant: this time, we will

address questions about phases and the form of the Berry connection A in more detail.

So, let us take as Hamiltonian that of a spin-1/2 electron in a magnetic field

Ĥ(R(t)) = gµBŜ ·B(t) = R(t) · σ̂ , (2.21)

where we have reabsorbed a gµB/2 inside a general vectorial parameter R(t) = (gµB/2)B(t).

Assume now R to be parameterized by the usual spherical coordinates: R, the “distance”

from the origin, and two polar angles θ and φ. The two eigenstates of the spin in direction

R can be chosen to be:

|Φ+ 1
2
(R)〉N =

(
cos θ2

eiφ sin θ
2

)
|Φ− 1

2
(R)〉N =

(
e−iφ sin θ

2

− cos θ2

)
, (2.22)

with corresponding energy E± 1
2

= ±R. Again R∗ = 0 is a degeneracy point. Notice that

this choice of phase of the eigenstates is not the only one possible, hence our subscript N

to indicate that this choice is well defined everywhere around the North pole (θ = 0) but is

singular exactly at the South pole θ = π because there sin (π/2) = 1 but the term e±iφ is

totally undetermined. We will see how this singularity reflects itself in the form of the Berry

connection. An alternative choice of phase is obtained by multiplying by e∓iφ, giving:

|Φ+ 1
2
(R)〉S =

(
e−iφ cos θ2

sin θ
2

)
|Φ− 1

2
(R)〉S =

(
sin θ

2

−eiφ cos θ2

)
, (2.23)

which is now regular all around the South pole, but singular at the North pole (θ = 0).

Let us first calculate the Berry connection of the states |Φ± 1
2
〉N . Using spherical coordinates

we have:

A = ARR̂ + Aθθ̂ + Aφφ̂ , (2.24)

where we have introduced the standard unit vectors along the spherical coordinates, and then

calculate

A
(N)
R,± = i〈Φ± 1

2
|∂RΦ± 1

2
〉N = 0

A
(N)
θ,± =

1

R
i〈Φ± 1

2
|∂θΦ± 1

2
〉N = 0

A
(N)
φ,± =

1

R sin θ
i〈Φ± 1

2
|∂φΦ± 1

2
〉N = ∓

sin2 θ
2

R sin θ
= ∓1− cos θ

2R sin θ
, (2.25)

which as a clear vortex singularity at the South pole. In a similar fashion, we can calculate:

A
(S)
R,± = i〈Φ± 1

2
|∂RΦ± 1

2
〉S = 0

A
(S)
θ,± =

1

R
i〈Φ± 1

2
|∂θΦ± 1

2
〉S = 0

A
(S)
φ,± =

1

R sin θ
i〈Φ± 1

2
|∂φΦ± 1

2
〉S = ±

cos2 θ
2

R sin θ
= ±1 + cos θ

2R sin θ
, (2.26)
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with a vortex singularity at the North pole.

To get the Berry curvature B = ∇×A, we calculate the curl in spherical coordinates:

B =
R̂

R sin θ
[∂θ(sin θAφ)− ∂φAθ] +

θ̂

R

[
1

sin θ
∂φAR − ∂R(RAφ)

]
+
φ̂

R
[∂R(RAθ)− ∂θAR] .

This immediately gives:

B± =
R̂

R sin θ

[
∂θ

(
∓1− cos θ

2R

)]
= ∓1

2

R̂

R2
, (2.27)

which coincides with Eq. (2.19) for m = ±1
2 . This B looks like the magnetic field generated by

a magnetic monopole at the origin. One immediately realizes that the same result is obtained

by calculating ∇ ×A
(S)
± . In other words, the Berry curvature, which is gauge invariant, is

singular at the origin R∗ = 0 but otherwise regular everywhere else and totally independent

of the choice of the phases of the wave-functions, while the Berry connection has to have a

vortex singularity somewhere on the sphere, for instance at the North pole, or at the South

pole, the position of the vortex singularity depending on the choice of the phases of the

wave-functions.

Notice that this calculation provides an answer to the point raised long ago by Dirac

regarding the quantization of electric charges if a magnetic monopole exists. Since this is,

in itself, a piece of fundamental physics, which is, moreover, strongly related to our subject,

let me recall it for you, in the version devised by T.T. Wu and C.N. Yang. If a magnetic

monopole of strength eM exists, i.e., ∇ ·B = 4πeMδ(R), then the magnetic field around it is

given by

B = eM
R̂

R2
,

exactly as the electric field generated by a charge. Contrary to the electric field case, where

we search for a potential V such that E = −∇V , it is impossible to find a regular-everywhere

vector potential A such that B = ∇×A. 4 To be more precise, one cannot find a single A

which is regular everywhere, except possibly at the origin R∗ = 0, which gives B = ∇×A.

The proof of this fact is very instructive and quite pertinent to our discussion. Consider a

sphere S2 of radius R = 1 enclosing the monopole, and denote by ΣN and ΣS the North and

South hemisphere, having, as a common frontier, the equator C. Assume an orientation on

S compatible with the application of Stokes’ theorem to ΣS , i.e., such that∫
ΣN

B · n dσ =

∫
C

A · dR .

In a similar way, one can apply Stokes’ theorem to calculate the flux of B through ΣS , but

one has to be careful in noting that C is now traveled in the opposite direction and therefore:∫
ΣS

B · n dσ =

∫
−C

A · dR = −
∫
C

A · dR .

4The argument given in the book by Sakurai, Sec. 2.6, is not very convincing. It goes as follows: if such a

regular A would exist, then automatically ∇ · (∇×A) = 0, so that by Gauss theorem the flux of magnetic

field around a surface enclosing R∗ = 0 should vanish, contrary to the fact that such a flux is 4πeM for

the monopole we have postulated. The objection to this is that nobody really assures that the regularity

of A would eliminate the possibility of a delta-function emerging at R = 0 from ∇ · (∇×A) = 0.
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Summing together the two fluxes we conclude that∫
S2

B · n dσ =

∫
C

A · dR−
∫
C

A · dR = 0 ,

contrary to the fact that the flux should be 4πeM .

Yet another way of appreciating the inescapable necessity of a singularity, physically more

transparent. Consider a small circle C, of radius R sin θ, encircling the North pole of the

sphere at an angle θ. The magnetic flux through the solid angle 2π(1− cos θ) enclosed by C

is simply Φ(θ) = eM2π(1− cos θ). We can obviously represent such a flux by the line integral

of a vector potential A(N) tangential to the circle C in such a way that:

A
(N)
φ 2πR sin θ = Φ(θ) = eM2π(1− cos θ) =⇒ A

(N)
φ (θ) =

eM
R

(1− cos θ)

sin θ
.

As the angle θ increases, the total flux enclosed steadily increases towards Φ(π) = 4πeM ,

while the total length of the circumference of C first increases, for 0 < θ < π/2, but then,

once we pass the equator, steadily decreases to shrink towards 0 when we are around the

South pole: the vector potential A(N) has to compensate for the shrinking to 0 of the path-

length by a divergence of its strength around the South pole, in essence, a vortex singularity.

The same argument can be used to show that, no matter what point you chose to construct

the vector potential, you will find a vortex singularity at the opposite point on the sphere.

The two solutions we have found above for A are exactly two possible choices of A, one

regular around the North pole (with a vortex at the South pole), and one regular around the

South pole (with a vortex at the North pole), both giving the monopole field:

A(N) =
eM
R

1− cos θ

sin θ
φ̂

A(S) = −eM
R

1 + cos θ

R sin θ
φ̂ . (2.28)

I plot them in Fig. 2.1. Observe that the two choices are related by a gauge transformation

Λ = 2eMφ:

A(N) −A(S) = 2eM
1

R sin θ
φ̂ = ∇Λ = ∇(2eMφ) . (2.29)

Consider next the orbital wave-function ψ(R) of an electrically charged particle of charge e

subject to the previous monopole field. As you know, the wave-function ψ must be single-

valued everywhere, 5 but their phase depends on the choice of gauge. You can therefore write

a ψ(N) and a ψ(S) which must be related by:

ψ(S)(R) = exp

(
−i2eeM

~c
φ

)
ψ(N)(R) . (2.30)

Consider making a full turn by 2π, φ → φ + 2π. Since both ψ(N,S) must be single-valued,

then you immediately conclude that:

2eeM
~c

= n with n = 0,±1,±2, · · · (2.31)

5Recall that the wave-function is nothing but the amplitude in a position eigenkets expansion: there must

be a unique amplitude associated to a given position ket, and a phase ambiguity is not possible.
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Figure 2.1.: Two of the possible choices of monopole vector potentials: A(N) (top, including

a view from above and a front view) which is regular at the North pole and with

a vortex at the south pole, and A(S) (bottom), vice-versa. Notice the opposite

direction of rotation of the arrows in the two cases.

So, magnetic charges must be quantized in units of ~c
2|e| and, vice-versa, if a magnetic monopole

is assumed to exists, then all electric charges in the universe must be quantized in units of
~c

2|eM | .

We stress that the previous discussion does not imply that quantum mechanics predicts

the existence of magnetic monopoles. However, it unambiguously shows that a magnetic

monopole, if ever found in nature, must be quantized in units of ~c
2e , where e is the electronic

charge.

One last note which is of some relevance to the discussion of Chern insulators. Returning

to the calculation of the flux of the B field through S2, we can now amend our previous

calculation by saying that:∫
ΣN

B · n dσ =

∫
C

A(N) · dR∫
ΣS

B · n dσ = −
∫
C

A(S) · dR∫
S2

B · n dσ =

∫
C

[A(N) −A(S)] · dR =

∫
C

2eM∇φ · dR = 4πeM . (2.32)

Notice that the line-integral of ∇φ around the equator C gives 2π, and not zero as one might

be tempted to conclude: it gives 2π times the winding number of the angle φ appearing in

the gauge transformation Λ = 2eMφ.





3. Thouless adiabatic pump: tight-binding

approaches

Until now, we have set up the problem of Thouless pumping on the continuum. But the fact

that any charge is transported is still not clear: after all, 0 is an integer, and the interesting

things would be to have a non trivial integer with Q 6= 0. In order to see that such non-

trivial cases are possible, let us do an explicit realization where the calculations can be easily

performed, but within a tight-binding approximation. The tight-binding approximation relies

on switching from the basis of Bloch states, to a basis of Wannier orbitals centered on the

different sites of the potential v(x, t). We will consider a situation in which the parameters

(mass m of the atoms, wavelength λ of the laser, determining the period ds of the standing

wave Vs(x) and the confining kinetic energy ~2/(2md2
s) and the height of the barriers) are

such that you expect that a single wannier orbital is important and relevant in each valley of

the potential. Let us denote this Wannier orbital by wjA(x) and wjB(x), where the notation

is such that each valley is labelled as j, A/B where j = 1 · · ·N denotes the periodicity unit

cell, and A/B the sublattice index referring to which of the two valleys in the unit cell we

consider. Let us write down, right away, a tight-binding model which describes such physical

situation: it is a model introduced long ago by Rice and Mele.

3.1. The Rice-Mele model

The Rice-Mele model can be written as follows:

ĤRM = −J1

N∑
j=1

(
ĉ†j,B ĉj,A + H.c.

)
−J2

N∑
j=1

(
ĉ†j+1,Aĉj,B + H.c.

)
+

N∑
j=1

(
εAn̂j,A + εBn̂j,B

)
(3.1)

Let us start assuming that periodic boundary conditions (PBC) are used, in such a way that

ĉ†N+1,A/B ≡ ĉ
†
1,A/B, i.e., the cell number N + 1 coincides with cell number 1 (or equivalently,

you can visualize your system as being on a ring). The parameters J1 (intra-cell hopping),

J2 (inter-cell hopping) and εA/B (the on-site energy of the Wannier orbital wj,A/B) clearly

depend on the phase difference ϕ, which in turn depends on time as ϕ(t) = 2πt/T . Hence, in

the end, what we have is a time-dependent non-interacting Hamiltonian ĤRM(t), where the

dependence on t comes through the parameters J1(ϕ(t)), J2(ϕ(t)), εA/B(ϕ(t)). To simplify
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the problem a bit, let us assume that the parameters depend on time as follows:

J1(t) = J0 + δ0 cos
2πt

T
= J0 + δ(t)

J2(t) = J0 − δ0 cos
2πt

T
= J0 − δ(t)

εA(t) = ε0 + ∆0 sin
2πt

T
= ε0 + ∆(t)

εB(t) = ε0 −∆0 sin
2πt

T
= ε0 + ∆(t) . (3.2)

Hence, setting the zero of energy in such a way that ε0 = 0 we can rewrite our model as:

ĤRM(t) = −(J0 + δ(t))

N∑
j=1

(
ĉ†j,B ĉj,A + H.c.

)
− (J0 − δ(t))

N∑
j=1

(
ĉ†j+1,Aĉj,B + H.c.

)

+∆(t)
N∑
j=1

(
n̂j,A − n̂j,B

)
. (3.3)

When periodic boundary conditions (PBC) are applied, one can exploit translational in-

variance, defining the Bloch-Wannier transformations:
ĉ†k,A =

1√
N

N∑
j=1

eikaj ĉ†j,A

ĉ†k,B =
1√
N

N∑
j=1

eikaj ĉ†j,B


ĉ†j,A =

1√
N

BZ∑
k

e−ikaj ĉ†k,A

ĉ†j,B =
1√
N

BZ∑
k

e−ikaj ĉ†k,B

. (3.4)

Here N is the number of unit cells making-up a big periodically-repeated lattice of length

L = Na (i.e., wrapped-up on a circle): as a consequence, the discrete wave-vectors allowed

are

k =
2πn

Na
=

2πn

L
with n ∈ Z , (3.5)

with the understanding that only N of them are independent; for instance n = 0 · · ·N − 1,

or n = −N/2 + 1, · · ·N/2, making up the first Brillouin Zone (BZ) of the reciprocal lattice.

Inserting these expressions into the Rice-Mele model, we can transform it in the form:

ĤRM(t) =

BZ∑
k

[
ĉ†k,A ĉ

†
k,B

] [
Ĥ(k, t)

] [ ĉk,A
ĉk,B

]
(3.6)

where, for each k ∈ BZ, the Hamiltonian Ĥ(k, t) is a 2× 2 Hermitean matrix, which one can

always parameterize, in terms of the identity 1 and the three Pauli matrices σ̂. Here, as the

trace of the matrix is zero, we can write Ĥ(k, t) = R(k, t) · σ̂, or, more explicitly:

Ĥ(k, t) =

[
Rz Rx − iRy

Rx + iR+ y −Rz

]
= Rx(k, t)σ̂x +Ry(k, t)σ̂y +Rz(k, t)σ̂z . (3.7)
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A simple calculation 1 shows that:

Rx(k, t) = −J1(t)− J2(t) cos ka

Ry(k, t) = −J2(t) sin ka

Rz(k, t) = ∆(t) , (3.8)

Notice that R(k + 2π/a, t) = R(k, t) and R(k, t + T ) = R(k, t), i.e., the effective magnetic

field acting on the pseudo-spin-1/2 sublattice A/B degree-of-freedom is doubly periodic both

in the BZ, and in time. Interestingly, the projection of R on the x − y plane is simply a

circumference of radius J2 centered at (−J1, 0). Hence, you immediately realize that there

are three possible situations:

1) J1 > J2: the circumference stays to the left of the origin, without enclosing it.

2) J1 < J2: the circumference encloses the origin.

3) J1 = J2: the circumference touches the origin.

Case 1) and 2) are realized, here, for ϕ = 0 and ϕ = π, where Rz = ∆ = 0 and hence the

two circumferences are precisely on the x − y plane; Case 3) is realized for ϕ = π/2, 3π/2,

which are associated to Rz = ∆ = ±∆0. The “topological features” of case 1) and 2) above

are very different: in the first case the magnetic field does not wind around the origin, while

in the second case it does so. We will see the consequence of this fact when discussing edge

states for the system with open boundary conditions.

Diagonalizing Ĥ(k, t) for any given k ∈ BZ at a fixed value of t is a simple spin-1/2 problem.

The two eigenvalues are

εk,±(t) = ±|R(k, t)| = ±
√
J2

1 + J2
2 + 2J1J2 cos ka+ ∆2 . (3.9)

The two eigenvectors are exactly the two spinors we have discussed for the spin-1/2 prob-

lem, for which the story of the choice of the phase and the unavoidable presence of vortex

singularities applies as well (see discussion in Sec. 2.3). Let us denote by |uk±(t)〉 the spinors

corresponding to the two bands. Notice that we can parameterize them by simply knowing

the angles θk(t) and φk(t) that the “magnetic field” R(k, t) has on the (Bloch) sphere in spin

space. In all cases, unless the parameters are specially tuned (see below) the two bands are

separated by a gap, which implies that the system is an insulator if the number of particles

is so chosen that the lower band is completely filled and the upper band is empty: for that,

you need a half-filling situation, i.e., the number of electrons has to be half the number of

available orbitals 2N , i.e., Ne = N . The crucial point (we will see this, with illustrations,

later on, don’t worry) will be if, when k spans over the BZ of the lattice and t ∈ [0, T ] (a

torus, due to the double periodicity of R(k, t)), this “magnetic field” R(k, t) will wrap around

the origin of the Bloch sphere in spin-space or not. In the second case, we will see that there

is no pumped charge; in the first case, there is. More about this, in a short while.

1Simply notice that:

J1

N

∑
j

BZ∑
k,k′

[
e−ikajeik

′aj ĉ†k,B ĉk,A + H.c.
]

= J1

BZ∑
k

[
ĉ†k,B ĉk,A + H.c.

]
,

and similarly for the other two terms.
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3.2. The pumped charge

In the Rice-Mele model, working with PBC, there are two bands, a lower band εk,−(t) and

an upper band εk,+(t) separated by a finite gap provided |R| 6= 0. The condition |R| = 0, as

one can simply verify, implies the gapless metallic situation J1 = J2 = J0 and ∆ = 0, which

is never encountered during the dynamics. The dynamics can indeed be pictured in a two-

dimensional plane, with J1−J2 in the x-axis and ∆ in the y-axis, as an ellipse wrapping around

the dangerous gapless point (J1− J2 = 0,∆ = 0). If the number of electrons is therefore half

the number of lattice sites — a situation commonly called as half-filling — then the system is

a band insulator, and the lower band of energy εk,−(t) is fully occupied. For electrons on the

continuum the associated |uk,−(t)〉 would be a function uk,−(x, t) periodic over the unit cell of

the crystal, but here we are working in tight-binding and |uk,−(t)〉 is simply a two-component

“spinor” telling us the amplitude for staying on the Wannier orbital centered on sublattice

A or B in the unit cell. This identification has already been used before. So, at half-filling

the spinors |uk,−〉 constitute a completely filled band, while |uk,+〉 is an empty band. Hence,

the charge pumped in a period becomes:

Q = −
∫ T

0
dt

∫ 2π
a

0

dk

2π
i
[
〈∂kuk,−|∂tuk,−〉 − 〈∂tuk,−|∂kuk,−〉

]
. (3.10)

The object we have obtained looks like an antisymmetric form closely reminiscent of a Berry

curvature integrated over the whole BZ and over time. We will see soon that indeed it is a

Berry curvature for a spin-1/2 problem, pulled back into (k, t)-space by the (periodic) map

(k, t)→ R(k, t) (more about this below).

The |uk,−〉 appearing in Eq. (3.10) must be viewed as a composite function |uk,−(t)〉 =

|u−(R(k, t))〉, where |u−(R)〉 is the “down spin” state when the magnetic field is in the

direction of R. Simple algebra of change of variables shows that:[
〈∂kuk,−|∂tuk,−〉 − 〈∂tuk,−|∂kuk,−〉

]
=
∑
ij

〈∂Riu−(R))|∂Rju−(R))〉
∣∣∣
R=R(k,t)

Jij(k, t) ,

where the Jacobian

Jij(k, t) = det

[
∂kRi ∂tRi
∂kRj ∂tRj

]
k,t

, (3.11)

appears. But Jij = −Jji and therefore you immediately deduce that:

i
[
〈∂kuk,−|∂tuk,−〉 − 〈∂tuk,−|∂kuk,−〉

]
=
∑
i<j

Bij(R(k, t)) Jij(k, t) ,

in terms of the Berry curvature of a spin-1/2 problem:

Bij(R) = i
[
〈∂Riu−(R)|∂Rju−(R)〉 − 〈∂Rju−(R)|∂Riu−(R)〉

]
= εijk

Rk
2|R|3

, (3.12)

where we have introduced the totally antisymmetric tensor εijk and adopted the convention

of summing over repeated indices. This in turn implies that the pumped charge for the

Rice-Mele model can be finally expressed as:

Q = −
∫ T

0
dt

∫ 2π
a

0

dk

2π

∑
i<j

Bij(R(k, t)) Jij(k, t)︸ ︷︷ ︸
c1

= −c1 . (3.13)
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Figure 3.1.: Parametric plot of R(k, t) when k spans the BZ and t the period [0, T ]. The

surface has the topology of a torus: on the right, a top view of such torus.

The quantity c1 appearing is known as first Chern number. It is simply the integral of the

Berry curvature of the whole surface spanned by R(k, t). You can explicitly write it as:

c1 =

∫ T

0
dt

∫ 2π
a

0

dk

2π

∑
i<j

Bij(R(k)) Jij(k) =

∫ T

0
dt

∫ 2π
a

0

dk

2π

R

|R|3
·
(
∂R

∂k
× ∂R

∂t

)
. (3.14)

Notice that
(
∂R
∂k ×

∂R
∂t

)
dkdt is nothing but the “element of area” in the surface integral.

What is really crucial is that this object is topological in nature, i.e., it must be an integer.

Let us try to guess the result, guided by Gauss’ law in electrostatic. Since the torus encloses

the singularity at R∗ = 0, see Fig. 3.1, then the solid angle through which the Berry flux

goes is 4π, but the monopole “charge” is 1/2, and there is an extra factor 1/(2π) in the

definition of c1: therefore you expect c1 = ±1. The sign that depends on how the surface

R(k, t) is oriented, which, as you know, is important in calculating fluxes. The orientation is

decided by
(
∂R
∂k ×

∂R
∂t

)
, and points outward or inward depending on the direction in which

we change the phase ϕ(t): taking ϕ(t) = −2πt/T would produce an opposite pumped charge.

It is perhaps worth summarizing the story, from the mathematical side, like this. You

have the k-BZ and time-periodicity of the system, which already gives as a torus where (k, t)

lives. Then you have a mapping (k, t)→ R(k, t) from the torus to R3, which defines a closed

two-dimensional surface R(k, t) in R3: there is nothing particularly special or tricky about

this mapping. But then, for each value of R(k, t) you have a spinor |u−(R)〉 leaving in the

two-dimensional Hilbert space C2: the spinor really wants to know about the direction R̂ of

the field R — a point on the two-dimensional spin Bloch sphere S2 parameterized by the

spherical angles θ and φ — and you know from the discussion on the Dirac monopole that

it is impossible to make a perfectly smooth choice of phase for |u−(R)〉 valid over the whole

sphere. So, the highly non-trivial issue is if the mapping

(k, t)→ R→ R̂ =
R

|R|

is such that the system is forced to visit the whole sphere, or only a portion of it. If R̂ visits



32 Thouless adiabatic pump: tight-binding approaches (Notes by G.E. Santoro)

the whole sphere as (k, t) runs over the BZ and the time-period, it must necessarily encounter

a vortex singularity of the phase, otherwise not.

3.3. The Rice-Mele model with open boundaries: edge states

Until now we have worked with PBC and calculated the pumped charge as a bulk property.

Let us see what happens if we imagine that the model is defined in a finite interval, i.e., open

boundary conditions (OBC) are used. The Hamiltonian for a single particle can be regarded

as a 2N × 2N matrix of the form:

H(t) =



∆ −J1 0 0 0 0 0 0

−J1 −∆ −J2 0 0 0 0 0

0 −J2 ∆ −J1 0 0 0 0

0 0 −J1 −∆ −J2 0 0 0

0 0 0 −J2 ∆ −J1 0 0

0 0 0 0 −J1 −∆ −J2 0

0 0 0 0 0 −J2 ∆ −J1

0 0 0 0 0 0 −J1 −∆


. (3.15)

Here we have shown it for N = 4, but the general form should be clear. Let us consider the

cases in which ∆ = 0. There are two markedly different situations which we can consider:

1) J1 > J2 or 2) J1 < J2. To make the calculation extra simple, let us consider the two

“extreme” representative cases 1) J2 = 0 and 2) J1 = 0. In the first case, the Hamiltonian is

block-diagonal with 2× 2 blocks of the form:(
0 −J1

−J1 0

)
whose eigenvalues are ±J1 with eigenfuntions being the two spinors of σ̂x: The ground state

can be pictured as forming double-well dimers inside the unit cell, with the wave-function

equally weighting the two orbitals in A and B. The spectrum is simple to picture: there are

N eigenvalues −J1 and N eigenvalues +J1. In the second case, with J1 = 0, the situation

is similar but the double-well dimers are formed across two unit cells, as the relevant 2 × 2

blocks (
0 −J2

−J2 0

)
are now shifted with respect to the natural unit cell. Notably, sites 1A and NB are totally

disconnected from those 2 × 2 blocks, hence there are two eigenvalues which are 0, sitting

exactly in the middle of the gap formed by the remaining N − 1 eigenvalues at −J2 and

N − 1 eigenvalues at +J2. The two 0-eigenvalues are associated to edge states: in the present

extreme case, the wavefunctions are simply (1, 0, · · · , 0) (i.e., purely on the left edge) and

(0, · · · , 0, 1) (i.e., purely on the right edge). If you consider a more realistic case where

J2 > J1 6= 0, then the two eigenvalues in the middle of the gap 2 persist, but the associated

wavefunctions develop an exponential tail inside the bulk of the chain.

2Strictly speaking, the two eigenvalues are now split at ±ε, where ε is a quantity which is exponentially small

in the length of the chain N .
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Figure 3.2.: Instantaneous eigenvalues for the Rice-Mele model with OBC. Here N = 32,

δ0 = J0/2 and ∆0 = J0.

Fig. 3.2 illustrates the result of calculation of the spectrum of H(t) as a function of t for

N = 32. Notice that two central eigenvalues (indicated by the red curves) which cross the

spectral gap as t increases from 0 to T . This situation is very commonly realized in topological

insulators.





4. Floquet systems

In this chapter I will explain the Floquet theorem for time-periodic Hamiltonians Ĥ(t) =

Ĥ(t + τ). This theorem generalizes a well-know fact of quantum mechanics: if Ĥ does not

depend on t, then you can find its eigenstates |φα〉 and the associated energies Eα and, in

terms of them, express the evolution operator as:

Û(t) = e−iĤt/~ =
∑
α

e−iEαt/~|φα〉〈φα| .

Floquet theorem guarantees that, if Ĥ(t+ τ) = Ĥ(t) with some period τ then:

Û(t, 0) =
∑
α

e−iµαt/~|φα(t)〉〈φα(0)| ,

where the states |φα(t)〉 are periodic, and form a complete set. Moreover, one establishes also

that Û(t+ nτ, 0) = Û(t, 0)Ûn(τ, 0).

Hystorically, the Floquet theorem was derived in a completely classical context: the study

of the stability of periodic orbits. If you want to know a bit more about the classical aspects

of the story, read Appendix A. Here, before entering in the proof of the Floquet theorem, I

want to start from a very simple classical problem that most of you have encountered before:

the periodically driven pendulum.

4.1. Periodically driven pendulum

To be definite, let us start considering a very familiar one-dimensional system: the simple

planar pendulum. If q = θ denotes the angle formed with the vertical, and pθ = ml2θ̇ the

associated momentum (indeed, an angular momentum), the Hamiltonian reads 1

H(θ, pθ) =
p2
θ

2ml2
+mgl(1− cos θ) .

Here the phase-space is n = 2-dimensional. Different phase-trajectories associated to different

E do not cross (uniqueness of the initial value problem in phase-space). 2 For E < 2mgl the

phase-trajectories are closed curves around the origin, while for E > 2mgl they are unbound.

E = 2mgl is a separatrix between bounded and unbound orbits. It is simple to show that every

bounded phase-trajectory for n = 2 must be associated to a periodic motion. This is very

1The Lagrangian is L(θ, θ̇) = ml2θ̇2/2−mgl(1− cos θ), with a choice of the lowest position of the pendulum

as a zero of potential energy. The associated momentum is therefore p = ∂L/∂θ̇ = ml2θ̇.
2Different trajctories obviously cross in configuration space, which shows why the use of phase-space is

advantageous.
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simple to understand: starting from a point in phase space, the system moves, as t increases,

along energy-countours (in a clockwise way) until, if the contour is a closed, returning (after

a certain time T ) to the initial point, and the motion repeats itself periodically. Indeed, you

can show that every one-dimensional system (i.e., n = 2) with a conserved energy E can be

fully integrated. 3

So, in order to have chaos we must either leave n = 2 and go to higher dimensions (for

instance a double pendulum, n = 4, or a non-Hamiltonian system with n = 3, there are many

such models), or else you need a driven one-dimensional system, where energy is no longer

conserved (time plays, in some way, the role of an effective extra dimension). Non-linearities

have to be retained, however. Indeed, at the level of a linear system (i.e, a general quadratic

Lagrangean/Hamiltonian) you know that you can always (at least in principle) diagonalize

the problem by reducing to a system of independent normal modes, i.e., one-dimensional

harmonic oscillators, each of which conserves its own energy, and can therefore be integrated.
4

But let us return to our simple pendulum. The simplest system displaying chaos is indeed a

periodically driven pendulum. Imagine you move the point of suspension O of the pendulum

3 Let us see this in the usual Newtonian framework. From the conservation of E = mẋ2/2 + V (x) we can

deduce:

ẋ = ±
√

2(E − V (x))/m ,

where the ± sign is associated to the two possible directions of velocity. This first-order differential equation

can be solved by separation of variables. If x− and x+ denote the two classical inversion points and we

consider the trajectory moving to the right, starting at x− at time t− and ending at x+ at time t+, we

have: ∫ x+

x−

dx
1√

2(E − V (x))/m
=

∫ t+

t−

dt = (t+ − t−) =
T

2
,

where T indicates the period (the time to go forth to x+ and back to x−). The problem is (implicitly)

solved “up to calculating integrals” (this is the meaning of “reducing to a quadrature”, often used). Indeed,

if you want x(t) for t in the first half-period you simply need to calculate:∫ x(t)

x−

dx
1√

2(E − V (x))/m
= t− t− .

4For an harmonic system you can write the potential as V = (1/2)ut ·K ·u, i.e., a positive definite quadratic

form (you can even allow for disorder in the spring constants). The equations of motions would then

be Mü = −K · u, with M = diag(M1, · · · ,ML). Rescaling by the square root of the masses brings the

equations in the form ẍ = −
(
M−1/2 ·K ·M−1/2

)
·x = −K̃ ·x, where M−1/2 = diag(M

−1/2
1 , · · · ,M−1/2

L ).

It is very simple, then, to show that K̃ = M−1/2 · K ·M−1/2 is also positive definite. Diagonalize the

matrix K̃ and define the normal modes (eigenvectors) in terms of which the Hamiltonian becomes a sum

of independent harmonic oscillators. There are special systems that remain integrable even for n > 2 in

presence of non-linearities: these systems, essentially, have n conserved quantities (integrals of motions, the

energy and n−1 other quantities) and can be reduced, by appropriate canonical transformations to simple

decoupled one-dimensional Hamiltonians (a bit like the normal modes of the harmonic oscillator, with the

only difference that the frequency ωα of the simple motion in each two-dimensional phase-space depends on

the value of the conserved quantity (energy, or better, action), while the ωα of the harmonic normal modes

is independent of the amplitude of the oscillations). A detailed account of these integrable Hamiltonian

systems in given in the book by José and Saletan [9]. Indeed, a remarkable (and quite complicated)

theorem in the theory of Hamiltonian systems states that even small perturbations around integrable

Hamiltonians do not immediately make the system chaotic (KAM theorem): the most incommensurate

integrable trajectories resist to perturbations for a while, and only a finite suitably large perturbation will

lead to a truly chaotic behaviour.
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in some periodic way, yO = A cos 2νt (the reason for putting the factor 2 in the frequency will

be clear in a moment). You can still use the Lagrangean formalism to derive the equation of

motion, but you can also use the equivalence principle: formulated with a slightly pre-Einstein

view-point, in the (non-intertial) frame in which the point of suspention is at rest, the system

is subject to an extra fictitious acceleration ÿO = −4ν2A cos (2νt), and effectively this modifies

the acceleration of gravity form g0 to a g(t) = g0− 4ν2A cos (2νt). The Hamilton’s equations

θ̇ = pθ/(ml
2) and ṗθ = −mlg(t) sin θ will then lead to

d2θ

dt2
= −

[
ω2 − 4ν2A

l
cos (2νt)

]
sin θ , (4.1)

where ω =
√
g0/l is the frequency of the unperturbed pendulum in the linear regime. This

time-dependent non-linear equation needs to be studied numerically, in general, and displays

chaos in certain regions of phase space. To proceed, one might think of exploring the region

of validity of the linear regime at small θ, by studying the stability of the linear-equation

solutions. Linearizing the equation, sin θ ≈ θ, we get:

d2θ

dt2
+

[
ω2 − 4ν2A

l
cos (2νt)

]
θ = 0 . (4.2)

Now, let us make the equation dimensionless by measuring time in units of 1/ν, i.e., defining

a dimensionless time t′ = νt. Omitting for simplicity the prime, the equation in dimensionless

form becomes:

θ̈ + [ε− 2h cos (2t)] θ = 0 . (4.3)

where we have introduced the parameter 2h = 4A/l, and ε = (ω/ν)2. In this form, it is

known as Mathieu’s equation. Mathieu’s

equation
This equation should have a familiar look: it closely reminds of a well-known condensed

matter textbook problem: the Schrödinger equation for particle in a one-dimensional periodic

crystal potential of the form V cos (2qx), where q = π/a is the Brillouin-zone (BZ) boundary

in one-dimension (a is the periodicity of the lattice). Indeed, the Schrödinger equation for

the stationary states of energy E will read:

d2ψ

dx2
+

[
2mE

~2
− 2mV

~2
cos (2qx)

]
ψ(x) = 0 . (4.4)

To pass to a dimensionless form, let us measure lengths in units of 1/q = a/π, i.e., define

x′ = qx. Again, omitting the prime we get:

ψ′′(x) +

[
2mE

(~q)2
− 2mV

(~q)2
cos (2x)

]
ψ(x) = 0 . (4.5)

which clearly resembles the Mathieu equation for the linearized driven pendulum with the

substitutions t → x, θ(t) → ψ(x), (ω/ν)2 → 2mE/(~q)2, and 2h → 2mV/(~q)2. One im-

portant aspect of this resemblance has to do with boundary conditions: the solutions to

such periodic linear differential equations are themselves not strictly periodic, but only peri-

odic “up-to-a-phase”. In the Schrödinger case, this amounts to the familiar Bloch theorem:

solutions ψk(x), with energy Ek, can be written as ψk(x) = eikxuk(x) where k is a quasi-

momentum and uk(x) is a periodic function: in the old dimensionful form, uk(x+a) = uk(x).

k can either run over all real axis (extended zone scheme) or be restricted to the first BZ,
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Figure 4.1.: Left: stability diagram for the Mathieu equation; in the y-axis you have (ω/ν)2,

in the x-axis the perturbation h. Shaded regions are (Lyapunov) unstable for

the linear equation, and the full non-linear equation has to be studied. Right:

Usual diagram for opening of gaps in the free-electron dispersion, taken from

Ashkroft & Mermin. In the Bloch case solutions inside the spectral gaps are

simply discarded because they are not associated to allowed wavefunctions.

at the price of introducing an extra band-index n, writing ψn,k(x) = eikxun,k(x), and En,k.

Notice that, for V 6= 0 the energies En,k show spectral gaps ∆n at the boundaries of the BZ,

k = ±π/a = ±q, and at the BZ center k = 0, and this happens for all the bands, although the

gaps rapidly decrease for increasing n. The lowest gap, obtained from degenerate first-order

perturbation theory between the two degenerate solutions e±iqx, coupled by the perturba-

tion, is linear in |V |, while higher gaps are smaller because they come from higher order

perturbations. The corresponding picture for the Mathieu’s equation is, clearly, identical.

By spanning the natural frequency ω2 one encounters spectral gaps around the unperturbed

boundary and Zone-center points, which happen to be at (ω/ν)2 = n2 with n = 1, 2, · · · .
Notice that ν is half the frequency of the perturbing field, and therefore the first instability

is actually a subharmonic instability. The solutions can be written as

θn,µ(t) = eiµtun,µ(t) , (4.6)

where n is a band index, µ ∈ [−ν, ν] is called Floquet quasi-energy, and un,µ(t) is a periodic

function, with period τ = 2π/(2ν) = π/ν. In this form, this results is known as Floquet

theorem. 5

5 A word of caution is in order here. You should not think that the Schrödinger problem in Eq. (4.4) is the
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4.2. Time-periodic Hamiltonians: The Floquet theorem

There are many proofs of Floquet theorem: the one I reproduce here mimicks, I believe,

the original Floquet-Lyapunov analysis of the stability of the linearized motion around a

periodic orbit solution (see for instance the book by Gantmakher, Theory of Matrices). We

take here, for convenience, ~ = 1 and abandon, for a while, the ket notation for quantum

states, in favor of a vector notation, for which we will make a bold use of boldface types.

The Schrödinger equation (SE) reads:

iψ̇(t) = H(t) ·ψ(t) , (4.9)

with a given initial condition at time t = 0: ψ(0) = ψ0. As well known from Quantum

Mechanics, one can formally solve the dynamics by introducting a propagator U(t, 0) such

that ψ(t) = U(t, 0)·ψ0 (this is a consequence of the linearity of the problem), where U(0, 0) =

1 to account for the initial value condition. 6 Take now, as initial value states, a complete

basis set of orthonormal states of the Hilbert state, and collect all such ψ0 as column vectors

of a “matrix” Ψ0 (in general this is an ∞-dimensional matrix) which is unitary since its

columns are orthonormal vectors. In the same spirit, collect all solutions of the SE Eq. (4.9)

starting from such a basis of initial values into a “matrix” Ψ(t) which will obviously satisfy:

iΨ̇(t) = H(t) ·Ψ(t) , (4.10)

with initial condition Ψ(0) = Ψ0. 7 The reason why one does that will be more clear in a

second. Since the propagator is unitary, it conserves scalar products between states, which

immediately implies that Ψ(t) is also unitary (its colums are orthonormal vectors at any time

t). In terms of the propagator we therefore have:

Ψ(t) = U(t, 0) ·Ψ0 , (4.11)

quantum problem that correspond to the classical Mathieu’s pendulum: they are just the same problem,

with different names for the variables. The classical-quantum correspondence is, at the level of the full

non-linear problems, that between the H(t) of the classical driven pendulum

HC driven pend.(θ, pθ, t) =
p2
θ

2ml2
+mlg(t)(1− cos θ) , (4.7)

where g(t) = g0 − 2hl cos (2νt), and the corresponding equation for the quantum operator Ĥ:

ĤQ driven pend.(t) =
p̂2
θ

2ml2
+mlg(t)(1− cos θ) , (4.8)

where now p̂θ is the quantum operator conjugate to θ, i.e., the angular momentum:

p̂θ = −i~ ∂
∂θ

,

The appropriate Hilbert space is that of normalizable periodic functions ψ(θ), such that ψ(θ+ 2π) = ψ(θ).

The eigenfunctions of angular momentum are φn(θ) = einθ/
√

2π, but the cosine term couples them. The

classical driven pendulum, being a non-linear dynamical system, must be dealt with an explicit integration

of the classical Hamilton’s equations. Quantum mechanically, on the contrary, we have a bonus: we can

study the time-evolution through a Floquet approach by studying the evolution operator over just one

period, but the price to pay is that we have an infinite-dimensional problem that we need to integrate over

a period: some form of discretization/truncation is essential.
6 The basic properties of U are that U is unitary (because H is Hermitean) and that U(t′′, t′) ·U(t′, t) =

U(t′′, t). Both properties are true quite generally even for time-dependent Hamiltonians.
7 In the classical Floquet-Lyapunov theory of first-order linear time-periodic systems, Ψ(t) is usually called

a matrix integral.
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where all the objects appearing are unitary. Until now we have not assumed periodicity of

the Hamiltonian. Assume now that H(t + τ) = H(t) with some period τ , and consider the

states Φ(t) = Ψ(t+ τ). It is a simple matter to prove that Φ(t) obeys exactly the same SE

in Eq. (4.10):

iΦ̇(t) = iΨ̇(t+ τ) = H(t+ τ) ·Ψ(t+ τ) = H(t) ·Ψ(t+ τ) = H(t) ·Φ(t) .

And here comes the usefulness of having worked with matrices that embody all possible

linearly independent solutions of the SE, and not just a single one. Indeed, if Φ(t) obeys

the same equation as Ψ(t), then there must exsist some other initial value Ψ′0 such that

Φ(t) = U(t, 0)·Ψ′0. This is so because all solutions of the SE in matrix form should necessarily

be of that form. Indeed, putting t = 0 and recalling that Φ(0) = Ψ(τ) and that U(0, 0) = 1
we immediately deduce that Ψ′0 = Ψ(τ). Therefore, we have just deduced that: Ψ(t+ τ) =

U(t, 0) · Ψ(τ) = U(t, 0) · U(τ, 0) · Ψ0, which, together with the always valid relationship

Ψ(t+ τ) = U(t+ τ, 0) ·Ψ0, implies the following identity:

U(t+ τ, 0) = U(t, 0) ·U(τ, 0) . (4.12)

Notice that, on general grounds, you would have split the propagation from 0 to t+ τ as

U(t+ τ, 0) = U(t+ τ, τ) ·U(τ, 0) .

Therefore, what we have just proved can be rephrased by saying that U(t + τ, τ) = U(t, 0):

in words, the propagation by t starting from time τ coincides with the same propagation

starting from time 0. 8 The proof now goes on along lines which you can easily anticipate.

Consider Φ(t) = Ψ(t+nτ) and again prove that is satisfies the same SE as Ψ(t), which almost

immediately leads you to write that U(t+ nτ, 0) = U(t, 0) ·U(nτ, 0). An easily constructed

induction-proof leads, finally, to the following important relationship:

U(t+ nτ, 0) = U(t, 0) · [U(τ, 0)]n . (4.13)

It is obvious that, although the previous equation is true for any value of t, you can restrict

t to t ∈ [0, τ ]: nτ is the multiple of the period which is closest to the final propagation time,

and t is the residual time within the (n + 1)-th period. The practical value of Eq. (4.13) is

immense: you can propagate a state up to an arbitrary large time t + nτ by just knowing

U(τ, 0) (which is applied n times) and U(t, 0) with t < τ . 9

This ends the first part of the story on the Floquet theorem. Now comes an equally useful

and important second part. First of all, the important actor in the game is evidently U(τ, 0),

the propagator over one period, sometimes called the Floquet operator. 10 If you know how to

integrate, for instance numerically, your SE for a time τ you can obtain U(τ, 0) as the time-

evolved state matrix Ψ(τ) with initial condition Ψ(0) = 1. Indeed: Ψ(τ) = U(τ, 0) ·Ψ(0) =

8 This should not induce you to believe that U(t′, t) depends on t′− t: it doesn’t. Neither you should believe

that, for instance, U(t+ τ, t) = U(τ, 0), which is wrong.
9 Notice, once again, that the order is important. It would be wrong to write something like U(t+ nτ, 0) =

[U(τ, 0)]n ·U(t, 0).
10In the derivation of Stöckmann, U(τ, 0) is just the unitary operator Tτ that performs a time-translation

by one period, and which can be diagonalized by the Floquet modes while still solving the Schrödinger

equation, see explicit proof below.
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U(τ, 0). Now, every unitary operator can be diagonalized by a unitary matrix. 11 Therefore,

there must exist a complete set of states φα such that

U(τ, 0) · φα = λαφα = e−iµατφα , (4.14)

where we have used the fact that the complex eigenvalues λα lie on the unit circle in the

complex plane, |λα| = 1, and we have introduced the phases µα by extracting (for later

convenience) a τ . Collecting all the µi in a diagonal matrix µ, and all the eigenvectors φα
as column vectors of a (unitary) matrix Φ we can rewrite the eigenvalue problem as:

U(τ, 0) ·Φ = Φ · e−iµτ =⇒ U(τ, 0) = Φ · e−iµτ ·Φ† . (4.15)

Notice that the matrix multiplication rules force you to write the diagonal term e−iµτ , in the

first expression, to the right of the eigenvector matrix Φ: if you put it to the left, it does

not work! The Φ and the µ just introduced, eigenvectors and phases of the unitary operator

U(τ, 0), are very important: they are called Floquet modes (the Φ) and Floquet quasi-energies

(the µ). And now comes the final piece of the story. Look again at the eigenvalue problem

defining Φ, U(τ, 0) ·Φ = Φ ·e−iµτ : it tells us that, by evolving over a full period τ , the states

Φ get multiplied by a phase factor e−iµτ . Consider now U(t, 0) ·Φ for t ≤ τ . By a seemingly

trivial manipulation, write it as:

U(t, 0) ·Φ = U(t, 0) ·Φ · e+iµt︸ ︷︷ ︸
Φ(t)

· e−iµt = Φ(t) · e−iµt , (4.16)

where the newly defined quantity

Φ(t)
def
= U(t, 0) ·Φ · e+iµt , (4.17)

is time-periodic because Φ(τ) = Φ(0) = Φ. Eq. (4.16) is the promised result: we have found

a complete set of states Φ, the Floquet modes, which evolve with a time-periodic part Φ(t)

times a phase factor e−iµt. Equivalently, we can rewrite Eq. (4.17) in the form:

U(t, 0) = Φ(t) · e−iµt ·Φ†(0) , (4.18)

which holds true for any t, and even adventure in proving (easy) that:

U(t, t′) = Φ(t) · e−iµ(t−t′) ·Φ†(t′) . (4.19)

Summarizing: 1) if we are able to construct U(t, 0) for all t ∈ [0, τ ], then we have all the

information we need to carry out an arbitrary long time-propagation; 2) the eigenstates Φ

of U(τ, 0), and the corresponding eigenvalues phases µ, give us states which propagate as a

periodic part Φ(t) times a phase factor e−iµt. 12 A totally equivalent way of reformulating

11Indeed, any normal operator, i.e., such that A†A = AA† can be diagonalized by a unitary operator V ,

writing A = V Diag[λα]V †. In particular, this implies that unitary operators and Hermitean operators can

be both be diagonalized by a unitary operator.
12 For those of you who cannot renounce to the Dirac notation, here is how Eq. (4.18) looks like with bras

and kets:

U(t, 0) =
∑
α

e−iµαt|φα(t)〉〈φα(0)| . (4.20)
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the previous findings is the following: We can construct a complete set of solutions of the

time-dependent SE

i
d

dt
ψα(t) = H(t) ·ψα(t) ,

which has the following form:

ψα(t) = e−iµαtφα(t) ,

where φα(t + τ) = φα(t) is periodic. Evidently, the various φα(t) are simply the “columns”

of the unitary Φ(t). In this last form, the similarity with Bloch theorem in solid state is quite

transparent.

4.3. Dynamical localization

4.3.1. The kicked pendulum

The solutions of the periodically driven pendulum outside the region of stability of the

linear Mathieu problem are evidently solutions that starts growing and likely display chaotic

behaviour, except that they loose any meaning as soon as θ starts growing: in reality, the

non-linearity of the sin θ term is crucial to describe such chaotic behaviour. If we want to

keep the non-linear term we have to pay some price and simplify the equation. To that

purpose, consider a rather peculiar driven pendulum in which g(t) is mostly 0 except at

periodic intervals of time, in which it is a δ-function:

g(t) = g δP (t/τ)
def
= g

∑
n

δ(t/τ − n) = gτ
∑
n

δ(t− nτ) , (4.21)

where the second expression comes from recalling that δ(t/τ−n) = τδ(t−nτ). This equation

defines the periodic delta-function δP (t/τ). Notice that here τ is the period between the kicks

but also serves as a coupling strength for the kicks. You might be worried by such a singular

shape, but you should be amply accustomed to such extreme (impulsive) forces since the

early days of your study of mechanics: a collision of a particle on a wall is usually thought

to have a neagligeably small duration ∆t, during which the (impulsive) force F (t) due to the

wall becomes very large in such a way that the integral
∫ t0+∆t
t0

dtF (t) = I remains finite: by

assuming ∆t → 0 we are in practice assuming that the F (t) has a singular delta-function

nature F (t) = Iδ(t−t0). Nothing really upsets us so much: the important thing is that we can

meaningfully calculate, from ṗ = F (t), the finite change in momentum ∆p = p(t0+ε)−p(t0) =

I. Here, as well, you can think of the g(t) giving sharp, large but finite kicks in a small time-

interval ∆t, with time-integral gτ , and then take ∆t→ 0 keeping τ finite. Having understood

that, let us write the Hamiltonian of the kicked pendulum as:

Hkp(θ, pθ, t) =
p2
θ

2ml2
−mlg δP (t/τ) cos θ . (4.22)

from which the following Hamilton’s equations follow immediately:

θ̇ =
pθ
ml2

ṗθ = −mlg δP (t/τ) sin θ . (4.23)
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So, pθ(t) is piece-wise constant in time, with jumps at time t = nτ from some value p(nτ−ε) =

p−n to a new value p(nτ+ε) = p+
n . θ(t) is piece-wise linear and continuous, with discontinuities

only in the slope. Defining θn = θ(nτ) and integrating the equations from t = nτ − ε to

t = (n+ 1)τ − ε we get:

θn+1 − θn =
p+
n

ml2
τ

p+
n − p−n = −mlgτ sin θn . (4.24)

Now define a dimensionless (angular) momentum as Ln = τp−n /(ml
2) = τpθ(nτ − ε)/(ml2)

and observe that Ln+1 is also related to the value of p+
n , which is conserved in the interval

[nτ + ε, (n+ 1)τ − ε]. Therefore, we can write the equations as: Standard map

θn+1 = θn + Ln+1

Ln+1 = Ln −K sin θn , (4.25)

where we have defined the dimensionless kick-strength K = gτ2/l = ω2
0τ

2. Notice also that

time is now measured in units of the period τ . Eq. (4.25) defines a discrete map in phase

space (θ, pθ), known as standard map, or Chirikov map. Formally, we have:

(θn+1, Ln+1) = ZK(θn, Ln) . (4.26)

Obviously, a similar equation might have been written for the periodically driven pendulum,

because the values of θ and pθ at time t = nτ univocally determine their values at time t =

(n+ 1)τ : the difficulty with a general periodically driven pendulum is that the map itself has

to be constructed numerically, in general, which makes the analysis of the chaotic behaviour

much more cumbersome. On the contrary, by trading the regular periodic driving with a

singular kicked driving we have been able to construct the discrete map ZK analytically, with

very little effort. Similar maps, generally known as Poincaré maps, are often constructed to

analyse continuous-time dynamical systems in a simplified way. 13 A few comments about the

relevant region in phase space are essential. First, notice that you can always restrict θ in a 2π

interval, for instance θ ∈ [−π, π), and write the first equation as θn+1 = (θn+Ln+1) mod(2π).

L in principle can assume any value, and increase without bounds. However, because of the

mod(2π) restriction in the equation for θ, we can always fold back whatever value we have of

Ln+1 into a [−π, π) region as well. Therefore, we can safely plot the map in the finite region

[−π, π) × [−π, π), although the actual dynamics of Ln has to be kept track of in analysing,

for instance, the evolution of the total kinetic energy L2
n at time nτ . We will discuss this

point later on, showing a crucial difference between classical and quantum dynamics in that

respect: quantum dynamics shows a phenomenon called dynamical localization, which is

absent in classical physics. Returning to the standard map, we plot iterations of the map for

different values of K in Fig. 4.2. To fix the ideas, suppose you have the non-interacting map

with K = 0 (no kicks): Z0. This simply gives:

θn+1 = θn + Ln+1

Ln+1 = Ln , (4.27)

13Often the Poincaré map is constructed not by a stroboscopic observation of the system at discrete times nτ ,

but rather by observing the points reached by the evolution on a certain 2-dimensional manifold in phase

space, known as Poincaré section.
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i.e., L is conserved by the map (in Hamiltonian mechanics of integrable systems you would

call it the action variable), while θn increases in a simple way: if L denotes the conserved value

of the momentum, then θn = θ0 + nL. So the θ (called the angle variable) increases linearly

with time at a rate controlled by L. Now you appreciate easily that if L is a rational multiple

of 2π, i.e., L = 2πn/k with n and k integers, then θk = θ0 + k(2πn/k) = θ0 + 2πn = θ0, i.e.,

the map periodically repeates itself after k steps, k being the denominator in the rational

L/(2π): by iterating the map from an initial point θ0 you will get only a finite numeber,

k, of points. On the contrary, if L/(2π) is irrational, then the θn fill uniformly the region

[−π, π] without ever returning to the same point: by iterating the map you will get a straight

segment densily filled with points: these are the irrational invariant Tori. Now, a theorem due

to Poincaré and Birkhoff shows that the rational values of L are very fragile to perturbations,

and adding even a small K breaks them into an alternation of hyperbolic and elliptic points

(see José&Saletan [9], for instance). On the contrary, the famous KAM theorem guarantees

that the most irrational Tori survive perturbation, until, when the last of them gives up upon

increasing K beyond some critical value Kc, full chaos develops. Without pretending having

explained KAM theorem, let us give a look at the results of iterating the Standard Map,

shown in Fig. 4.2 (in class I showed animations, due to Simone Ziraldo, which illustrate the

dynamics in a more clear way). In each plot, the initial values of L0 are 62 equispaced points

in the iterval [−π, π] (so, very rational multiples of 2π), while the corresponding initial values

of θ0, for each L0, are 62 randomly chosen points: then the map is let evolve for n = 1000

iterations, and all points obtained are drawn in the diagram (shifting, whenever necessary,

Ln by the appropriate multiple of 2π so that Ln is visualized in [−π, π]) Notice first, for

K = 0, the trajectories consisting of a finite number k of points, the k of the denominator

of L = 2πn/k. Next, Notice that for low values of K the “trajectories” followed by the

map are essentially gently curved almost horizontal lines (invariant Tori of the map), with a

few regions associated to closed orbits around some points (elliptic points) and saddle orbits

around other (hyperbolic points), which originate from breaking of the invariant Tori for

most rational values of L. A full discussion of this is given, for instance, in the book by

José and Saletan [9]. It suffices here to say that for values of K < Kc ≈ 0.9716 surviving

Tori exist (look at the K = 0.75 plot) which run horizontally although in a gently curved

way: due to a uniqueness-theorem for the map iteration, no trajectory can ever cross those

“highways”, which behave as impenetrable fences for the “sheeps” inside: therefore, the

values of L cannot go wildly large. For K > Kc the last surviving Torus has given up and L

can increase without bounds, in a kind of Brownian way (see below), leading to an increase

in kinetic energy roughly linear in n: the fences are gone and the “sheeps” diffuse away all

around.

Let us give here an argument showing that, for K � Kc one expects 〈L2〉n ∼ Dn with

a diffusion constant D = K2/2. Suppose you iterate the Standard Map by starting from

L0 = 0 but in the deeply chaotic regime K � Kc. Given some initial θ0 you will get:

L1 = −K sin θ0 −→ θ1 = θ0 + L1

L2 = −K sin θ0 −K sin θ1 −→ θ2 = θ1 + L2

· · ·
Ln = −K

∑n−1
j=0 sin θi

(4.28)

Due to the large value of the kick parameter K, one can easily appreciate that the various θj
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Figure 4.2.: Standard map iterations for increasing values of k (from top left to bottom right):

K = 0, 0.25, 0.75, 1, 1.5, 4. For each K, the initial values of L0 where 62 equis-

paced points in [−π, π), while the corresponding initial values of θ0 where selected

randomly in [π, π). The map has been iterated for n = 1000 steps for each of the

62 initial values of (θ0, L0).
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are largely uncorrelated one from the other! Therefore, if I evaluate the average L2
n I get:

〈L2
n〉 = 〈K2

n−1∑
j=0

n−1∑
j′=0

sin θj sin θj′〉 ≈ K2
n−1∑
j=0

〈sin2 θj〉 ≈
K2

2
n = Dn , (4.29)

where we have disregarded correlations 〈sin θj sin θj′ 6=j〉 ≈ 0, and assumed that all θj even-

tually cover uniformly the interval [−π, π], i.e., 〈sin2 θj〉 = 1/2. You should recognize here

the law of large numbers, leading, via the central limit theorem, to the expectation that the

distribution function of L at time n, fn(L), will be, for large n, a Gaussian with a second

moment increasing as Dn. Indeed, with the same assumptions used above, we can calculate

the distribution of angular momenta when one starts from L0 = 0:

fn(L) = 〈δ(L− Ln)〉 = 〈
∫ +∞

−∞

dt

2π
eit(L−Ln)〉 = 〈

∫ +∞

−∞

dt

2π
eitL

n−1∏
j=0

eiKt sin θj 〉

≈
∫ +∞

−∞

dt

2π
eitL

n−1∏
j=0

〈eiKt sin θj 〉 ≈
∫ +∞

−∞

dt

2π
eitL[J0(Kt)]n

≈
∫ +∞

−∞

dt

2π
eitLe−nK

2t2/4 =
1√
πK2n

e−L
2/(K2n) . (4.30)

In the derivation we have used that:

〈eiKt sin θj 〉 ≈
∫ 2π

0

dθ

2π
eiKt sin θ = J0(Kt) ,

and also that [J0(Kt)]n is dominated, for large n, from the region of small Kt where it is

legitimate to expand J0(Kt) = 1−K2t2/t. Writing [J0(Kt)]n ≈ en log(1−K2t2/4) and expanding

the log leads you to the goal.

4.3.2. The quantum kicked pendulum

Consider now the quantum version of the periodically kicked pendulum. Its Hamiltonian

reads:

Ĥkp(t) =
p̂2
θ

2ml2
−mlg δP (t/τ) cos θ , (4.31)

but now

p̂θ = −i~ ∂
∂θ

= ~L̂ ,

is an operator, which we have rewritten in terms of the dimensioness angular momentum.

This Hamiltonian is an example of a class of periodically-kicked problems that you might

write as:

Ĥp−kick(t) = T̂ + δP (t/τ) V̂ , (4.32)

where T̂ is the kinetic energy, and V̂ the potential energy. To define the evolution operator

over one period U(τ, 0) it is convenient to regularize the δ-function by taking δP (t/τ) to

be 0 in the interval [0, τ − ∆t] and τ/(∆t) in the interval [τ − ∆t, τ ]: the limit ∆t → 0

taken at the end. With this regularization the propagation is exactly expressed in terms of

time-independent evolution operators as follows:

U(τ, 0) = lim
∆t→0

e−
i
~(T̂+ τ

∆t
V̂ )∆te−

i
~ T̂ (τ−∆t) = e−

i
~ V̂ τe−

i
~ T̂ τ . (4.33)
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This holds quite generally for any T̂ and V̂ . In the kicked pendulum case T̂ = ~2L̂2/(2ml2)

and V̂ = −mgl cos θ, leading to:

U(τ, 0) = eik cos θe−iL̂
2q , (4.34)

where the two dimensionless parameters k and q have the following form:

k =
ml2ω2

0τ

~

q =
~τ

2ml2
. (4.35)

Notice that the product of k and q is a familiar object:

2kq = ω2
0τ

2 = K , (4.36)

i.e., the dimensionless kick-strength leading to chaos, in the classical case, when K > Kc ≈ 1.

Indeed, while ~ and the mass m explicitly appear in both k and q, they cancel in the product

2kq. Interestingly, k ∝ m/~ while q ∝ ~/m, which means that when m decreases q grows and

quantum effects are likely more important, for a fixed value of K = 2kq; viceversa, when m

increases classical physics should play a dominant role.

According to the Floquet analysis of the previous section, if |ψ(0)〉 denotes the initial state

of the system, the state at time t = nτ+ (the + reminds us that the δ-function has acted

already) is simply:

|ψ(nτ)〉 = Ûn|ψ(0)〉 . (4.37)

As it turns out, a very convenient basis set in which to perform calculations, especially when

the quantum kinetic term ∝ q is large, is that of angular momentum eigenstates L̂|m〉 = m|m〉
with m integers from −∞ to +∞:

〈θ|m〉 =
1√
2π
eimθ . (4.38)

Inserting identities in the form

1 =
+∞∑

m=−∞
|m〉〈m| ,

we easily arrive at:

ψ(n)
m =

+∞∑
m′=−∞

[Ûn]mm′ ψ
(0)
m′ , (4.39)

where ψ
(n)
m = 〈m|ψ(nτ)〉, and ψ

(0)
m′ = 〈m′|ψ(0)〉 are the wave-functions at time t = nτ and

t = 0 in the angular momentum basis, and [Ûn]mm′ = 〈m|Ûn|m′〉. A very useful quantity to

monitor is

Pn(m) = |ψ(n)
m |2 =

∣∣∣∣∣
+∞∑

m′=−∞
[Ûn]mm′ψ

(0)
m′

∣∣∣∣∣
2

, (4.40)

i.e., the probability of measuring a value of angular momentum equal to m at time nτ , in

terms of which the expectation value of L̂2, and hence of the total kinetic energy, at time

t = nτ is expressed as:

〈L̂2〉n = 〈ψ(nτ)|L̂2|ψ(nτ)〉 =

+∞∑
m=−∞

m2Pn(m) . (4.41)



48 Floquet systems (Notes by G.E. Santoro)

It is instructive to calculate the matrix [Û ]mm′ :

[Û ]mm′ = 〈m|eik cos θe−iL̂
2q|m′〉 = e−iq(m

′)2
im−m

′
Jm−m′(k) , (4.42)

where we have made use of the Bessel identity:∫ 2π

0

dθ

2π
eik cos θeimθ = imJm(k) . (4.43)

By looking at the modulus of |[Û ]mm′ |2 = J2
m−m′(k), one easily discovers that this is peaked

at values of |m −m′| ∼ k, and decreases very fast when |m −m′| � k: the matrix [Û ]mm′

is therefore banded, with values decreasing very fast past a certain width ∼ k away from the

main diagonal m = m′. Until now, we have used only the first part of the Floquet-theorem

story: the fact that the evolution at any time can be written in terms of a U(τ, 0).

To go a bit deeper into the struncture of the quantum probability Pn(m), let us express Û

in terms of its eigenstates, the Floquet modes |φi(0)〉 = |φi〉, and corresponding eigenphases

e−iµiτ :

Û(τ, 0) =
∑
i

e−iµiτ |φi〉〈φi| , (4.44)

with µiτ ∈ [−π, π]. Since the different Floquet modes are orthogonal and normalized, we can

immediately take the n-th power of Û :

Ûn =
∑
i

e−inµiτ |φi〉〈φi| , (4.45)

which is the great advantage of working with Floquet modes! Therefore, the matrix elements

we need [Ûn]mm′ are simply given by:

[Ûn]mm′ =
∑
i

e−inµiτ 〈m|φi〉〈φi|m′〉 =
∑
i

e−inµiτ [Φ]mi[Φ
†]im′ , (4.46)

where we have defined [Φ]mi = 〈m|φi〉 to be the matrix, in the angular momentum basis,

containing the different Floquet modes as column vectors. Let us now go back to Pn(m) =

|ψ(n)
m |2, and reexpress it as:

Pn(m) = |ψ(n)
m |2 =

∣∣∣∣∣∑
i

e−inµiτ
∑
m′

[Φ]mi[Φ
†]im′ψ

(0)
m′

∣∣∣∣∣
2

. (4.47)

Let us specialize our calculation to the important case where the initial state is the ground

state of the kinetic energy term, i.e., is it all centered at m = 0: ψ
(0)
m = δm,0 Then the sum

over m′ in Eq. 4.47 can be done easily, obtaining:

Pn(m) =

∣∣∣∣∣∑
i

e−inµiτ [Φ]mi[Φ
†]i0

∣∣∣∣∣
2

. (4.48)

It is a simple matter to verify that, indeed, Pn=0(m) = δm,0:

Pn=0(m) =

∣∣∣∣∣∑
i

[Φ]mi[Φ
†]i0

∣∣∣∣∣
2

=
∣∣∣[ΦΦ†]m0

∣∣∣2 = δm,0 , (4.49)
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since ΦΦ† = 1.

The question now is what happens when the time n increases. Will the Pn(m) keep

brodening, in the classically chaotic region of parameters, as the (Brownian motion) classical

diffusion would predict? We will see several surprises emerging! On general grounds, one

might write the |
∑

i zi|2 appearing above as a double sum, on i and j, and then split the

sum into one containing only diagonal (i = j) terms and one with off-diagonal (i 6= j) terms

as follows: ∣∣∣∣∣∑
i

zi

∣∣∣∣∣
2

=
∑
i,j

ziz
∗
j =

∑
i

|zi|2 +
∑
i 6=j

ziz
∗
j . (4.50)

In some sense, you could call the off-diagonal contributions interference terms. 14 If we apply

this simple idea to the expression in Eq. 4.48 we end up splitting it as follows:

Pn(m) =
∑
i

∣∣∣[Φ]mi[Φ
†]i0

∣∣∣2︸ ︷︷ ︸
PDiag(m)

+
∑
i 6=j

e−in(µi−µj)τ [Φ]mi[Φ
†]i0[Φ]∗mj [Φ

†]∗j0︸ ︷︷ ︸
P Interf
n (m)

. (4.51)

Notice that the time-index n completely disappears from the diagonal terms, i.e., PDiag(m)

does not depend on n, while it obviously survives in the interference part, indeed multipling

the difference of Floquet quasi-energies in the phase-factor e−in(µi−µj)τ . This oscillating

phase-factor, as you would guess, can lead to constructive or distructive interference effects.

Let us see what happens for m = 0, for instance. Here you simply find that:

PDiag(m = 0) =
∑
i

∣∣∣[Φ]0i[Φ
†]i0

∣∣∣2 =
∑
i

∣∣|[Φ]0i|2
∣∣2 =

∑
i

|[Φ]0i|4 ≤ 1 , (4.52)

i.e., we have found what is known as inverse participation ratio (IPR): it gives information

on roughly how many Floquet modes enter in the decomposition of the original |m = 0〉
states. So, in order to have Pn=0(m) = δm,0 we need, for n = 0, a constructive interference

contribution which increases PDiag(m = 0) < 1 to 1. For large time n → ∞, however, the

rapidly oscillating phase-factor e−in(µi−µj)τ tend to cancel out the interference terms, with

important exceptions, known as quantum resonances, which occur when the value of the

parameter q measuring quantum fluctuations is a rational multiple of 2π: we will see this

below in the particular case of q = 2π. When such resonances occur, the average 〈L̂2〉n ∼ n2,

i.e., the quantum dynamics is ballistic rather than diffusive.

Summarizing, for values of q which are irrational multiples of 2π we expect that:

Pn(m) = PDiag(m) + P Interf
n (m)

n→∞−→ PDiag(m) , (4.53)

which implies that the distribution does not broaden indefinitely, and the average kinetic en-

ergy saturates to a finite value. This saturation is often referred to as Dynamical localization.

14I mention here another simple n-independent bound that you can write by making use of the triangular

inequality |
∑
i zi| ≤

∑
i |zi|. By applying it to the Pn(m) in Eq. 4.48 you easily show that:

Pn(m) ≤
∣∣∣∑

i

∣∣∣[Φ]mi[Φ
†]i0

∣∣∣ ∣∣∣2 = P bound(m) .

One easily shows also that P bound(m = 0) = 1 but I have not been able to use it for other purposes.
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The limit should be intended with some care: it is not an ordinary limit, since a lot of time-

fluctuations generally persist. We will see in the next lecture its relationship with the more

conventional Anderson localization for disordered one-dimensional tight-binding models. The

resulting “limiting” distribution PDiag(m), moreover, shows a behaviour that is clearly non

Gaussian, but rather compatible with an exponentially localized “particle”:

PDiag(m) ∼ 1

ls
e−2|m|/ls , (4.54)

with a localization length ls which appears to be connected with the classical diffusion con-

stant D as ls = αD, with a numerical coefficient α ∼ 1/2.

Let us go back to the role of the parameter q multiplying the kinetic term. As mentioned

above, only K = 2kq enters in the classical dynamics, while q controls the quantum kinetic

term. One can show that if q is a rational multiple of 2π funny things happen and the

“particle” rather then localizing, moves in a ballistic way. I will now show this explicitly for

q = 2π. The problem is best tackled directly in reals space θ. We can write:

〈θ|Û |ψ(0)〉
∣∣∣
q=2π

= eik cos θei2πL̂
2
ψ(0)(θ) . (4.55)

Since L̂2 can have only integer eigenvalues of the form m2, it will give a phase factor ei2πm
2

= 1

and you can disregard it altogether, obtaining:

〈θ|Û |ψ(0)〉
∣∣∣
q=2π

= eik cos θψ(0)(θ) . (4.56)

This implies that Û is, for q = 2π, diagonal in the real space representation: 〈θ|Û |θ′〉
∣∣∣
q=2π

=

eik cos θδ(θ − θ′). Therefore:

ψ(n)(θ) = 〈θ|Ûn|ψ(0)〉
∣∣∣
q=2π

= eink cos θψ(0)(θ) , (4.57)

a remarkable result which immediately implies (using integration by parts) that:

〈L̂2〉n =

∫ 2π

0

∣∣∣∣ ∂∂θψ(n)(θ)

∣∣∣∣2 q=2π
=

∫ 2π

0

∣∣∣∣eik cos θ ∂

∂θ
ψ(0)(θ)− ink sin θeink cos θψ(0)(θ)

∣∣∣∣2
q=2π
= 〈L̂2〉0 + n2k2

∫ 2π

0
sin2 θ

∣∣∣ψ(0)(θ)
∣∣∣2 + O(n) , (4.58)

where you see a term increasing, ballistically, as n2, and originating from the derivative of

the phase-factor eikn cos θ. Similar phenomena occur for all q which are rational multiples of

2π. So, in order to see the “dynamical localization” you should in principle stay away from

such q and consider only q which are irrational multiples of 2π.



A. Sensitivity to initial conditions: Lyapunov

exponents

Let X(0)(t) = (x(0)(t),p(0)(t)) collectively denote the solution of a Newtonian (Hamiltonian

or dissipative, doesn’t matter) flow starting from some initial condition at time t0: X(0)(t0) =

X0. Consider now a different phase-trajectory X(t) starting at t = t0 from a nearby point

X0+w0, and define w(t) to be the deviation X(t)−X(0)(t) = w(t). In components, expanding

the flow equation around the starting trajectory we have:

Ẋi = Ẋ
(0)
i + ẇi = Fi(X

(0)(t) + w(t), t) = Fi(X
(0)(t), t) +

∑
j

∂Fi
∂Xj

(X(0)(t), t) wj(t) + · · · ,

(A.1)

where the · · · indicate higher order terms in w. Defining J(t) to be the Jacobian matrix

Jij(t) =
∂Fi
∂Xj

(X(0)(t), t) , (A.2)

and dropping higher order terms we end-up with the linearized equations:

ẇ(t) = J(t) ·w(t) . (A.3)

If J was independent of t, then the solution of the linearized problem would be an exponential

w(t) = eJ(t−t0) ·w0, and we would analize the stability in terms of eigenvalues of J (stability

is guaranteed if the real part of all eigenvalues is negative). Unfortunately, when J depends

on t, the solution can only be given in terms of a “time-ordered exponential”. Nevertheless,

the fact that w(t) must be linearly related to w(t0) is simple to grasp: the matrix connecting

the two is the propagator L(t, t0) in terms of which 1

w(t) = L(t, t0) ·w(t0) . (A.4)

1 Evidently, the propagator L(t, t0) satisfies an entirely similar linear equation:

d

dt
L(t, t0) = J(t) · L(t, t0) ,

whose (formal) solution is:

L(t, t0) = Texp[

∫ t

t0

dt′J(t′)]
def
=

∞∑
n=0

1

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT[J(t1) · · ·J(tn)] ,

where, by definition, T[· · · ] orders the operators with the prescription “later times to the left”. Among

the properties of the propagator, it is worth mentioning that

L(t, t0) = L(t, t1)L(t1, t0)
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The mathemathitians have been able to prove (within the theory of ergodic multiplicative

processes) that the following limit exists:

λL = lim
t→∞

1

2t
log
(

Tr[L†(t, t0)L(t, t0)]
)
. (A.5)

λL is called the (maximum) Lyapunov exponent. Notice that in the time-independent case,

this is just the maximum real part of the eigenvalues of J. Whenever λL > 0, the solution

X(0)(t) is unstable and small deviations w0 of the initial condition are (generally) amplified

in an exponential way. 2

The previous theory generalizes to the time-dependent case the “small oscillation” expan-

sion around equilibrium points which should be familiar to the reader.

Let us now consider the important case when the trajectory X(0)(t) is periodic in time,

X(0)(t + τ) = X(0)(t) (for instance, a “limiting cycle” in a dissipative system). Consider

also, for simplicitiy, the case in which F(X) does not depend on time explicitly. Then, the

linearized problem has a J(t) which is periodic: J(t + τ) = J(t). One should not think that

a solution of the linear problem in Eq. (A.3) with a periodic J(t) should be periodic as well.

If you are familiar with the elementary theory of electronic bands in a crystalline solid, recall

that the solutions (the Bloch states ψk(x)) of the problem are themselves not periodic, but,

as assured by Bloch’s theorem, can be written as the product of a periodic function uk(x)

times a phase factor eikx: ψk(x) = eikxuk(x). What we are going to show is, essentially, an

identical result for the solutions of the periodic linear problem in Eq. (A.3). Indeed, a theory

due to Floquet and Lyapunov (see for instance Gantmakher, Theory of Matrices) shows that

a basis of solutions can always be written as a product of a time-periodic part P(t) times a

pure “exponential term” Y(t) = etR:

W(t) = P(t) · etR .

Let us see how this comes about. First: a n-dimensional linear problem admits n linearly

independent solutions. We can think of the w appearing in Eq. (A.3) to be a n× n matrix,

by collecting together n linearly independent solutions as columns of a matrix W, which we

will refer to as a matrix integral. Second: if W(t) is a matrix integral of Eq. (A.3), then

W(t+ τ) is also a matrix integral, as one can readily verify:

d

dt
W(t+ τ) = J(t+ τ) ·W(t+ τ) = J(t) ·W(t+ τ) , (A.6)

by using the fact that J(t + τ) = J(t). Third: since W(t + τ) and W(t) are both matrix

integrals of the same equation, one must have that W(t) = L(t, 0) ·W(0) and W(t + τ) =

L(t, 0) · W̃(0) with the same propagator L(t, 0) but with different initial conditions W(0)

and W̃(0). As a a simple consequence, one then derives that

W(t+ τ) = W(t) ·W−1(0) · W̃(0) = W(t) · L , (A.7)

where L = W−1(0) · W̃(0) is a non-singular transformation (independent of t, this is the

crucial point) which shows that the W(t+ τ) are indeed linear combinations of the solutions

2Obviously, if the flow is Hamiltonian, since by Liouville’s theorem the phase-space volume must be conserved,

there must be “directions” that are exponentially shrinked, as e−λLt.
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W(t). To obtain L, it is enough to focus on the matrix solution with initial conditions at

time t = 0 given by the identity matrix: W(t = 0) = 1. Then, by Eq. (A.7)

L = W(τ) (A.8)

d

dt
W(t) = J(t) ·W(t)

W(t = 0) = 1 . (A.9)

In other words, L is simply the time-evolved, over one period, of the unit matrix, and therefore

coincides with the propagator from 0 to τ :

L = L(τ, 0) .

(This is the reason for using the same symbol for two quantities that, a priori, are not the

same object!) 3 Exploiting L, we can perform a Lyapunov transformation of the variables,

which transforms the time-dependent problem in Eq. (A.3) into a time-independent linear

problem. Indeed, let us extract a periodic part, by writing (in a slightly tautological way):

W(t) = W(t) · e−(t/τ) ln Le(t/τ) ln L = P(t) ·Y(t) (A.10)

where Y(t) = e(t/τ) ln L and

P(t) = W(t) · e−(t/τ) ln L . (A.11)

Evidently, P(t) is periodic, since P(0) = P(τ) = W(0). (Notice that, by being careful

with the order of the matrices, these relationships are true even if W(0) is not the identity.)

Therefore, the stability properties of the problem described by the W and that described by

the Y are identical! But, on the other hand, it is very simple to show that Y(t) verifies the

following time-independent linear problem:

d

dt
Y(t) =

1

τ
ln L ·Y(t) , (A.12)

whose solution, starting from the identity at t = 0, is indeed Y(t) = e(t/τ) ln L. Therefore, in

conclusion, all we have to do to study the stability of the problem in Eq. (A.3) is simply to

study the stability of the problem in Eq. (A.12), which is relatively easy. If we call νi the

(complex, in general) eigenvalues of L, then the relevant eigenvalues of the time-independent

linear problem in Eq. (A.12) are simply λi = τ−1 ln νi, and stability requires that all λi have

negative real parts, Reλi < 0. In terms of the eigenvalues of L, therefore, stability requires

that |νi| < 1.

3 One remark is in order: from the propagator view-point one would conclude that W(t+τ) = L(t+τ, t)W(t),

but one should not hurry up and deduce that L(t + τ, t) = L(τ, 0) = L, a relationship which is wrong: if

we want to relate the two matrix solutions by L, then we have to put it to the right of W(t), not to the

left. The reason is trivial: Wij(t+ τ) =
∑
kWik(τ)Lkj means that I obtain the (new) solution ‘j’ at point

‘i’ by making linear combinations of all the (old) solutions ‘k’ at the same point ‘i’, with coefficients given

by the matrix Lkj . What you can prove to be correct, instead, is that

L(t+ τ, τ) = L(t, 0)

while in general

L(t+ τ, t) = L(t+ τ, τ) · L(τ, 0) · L(0, t) = L(t, 0) · L(τ, 0) · L−1(t, 0) .
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