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Least squares linear regression
Let’s be conservative. “Just fit a line”.

minimize the deviation from the actual observations; 
get analytical solution for the optimal weights. Can 
solve using numerical methods (matrix inversion). 

can do this also in a more generalized way by 
assuming a linear mix of basis functions

(in this class of methods are SVD, PCA)

What could possibly go wrong? ....



An 
entertaining 

example 
from Nature 

(2004)

brief communications
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Lung cancer

Intragenic ERBB2 kinase
mutations in tumours

The protein-kinase family is the most
frequently mutated gene family found
in human cancer and faulty kinase

enzymes are being investigated as promising
targets for the design of antitumour thera-
pies. We have sequenced the gene encoding
the transmembrane protein tyrosine kinase
ERBB2 (also known as HER2 or Neu) from
120 primary lung tumours and identified
4% that have mutations within the kinase
domain; in the adenocarcinoma subtype of
lung cancer, 10% of cases had mutations.
ERBB2 inhibitors, which have so far proved
to be ineffective in treating lung cancer,
should now be clinically re-evaluated in the
specific subset of patients with lung cancer
whose tumours carry ERBB2 mutations.

The successful treatment of chronic
myelogenous leukaemia with a drug (known
as imatinib, marketed as Gleevec) that
inhibits a mutant protein kinase has fostered
interest in the development of other kinase
inhibitors1. Gefitinib, an inhibitor of the 
epidermal growth-factor receptor (EGFR),
induces a marked response in a small subset
of lung cancers; activating mutations have
been found in the EGFR gene in tumours
that respond to gefitinib but are rare in those
that do not respond2,3. The response to gefi-
tinib as a treatment for lung cancer therefore
seems to be predicated upon the presence of
an EGFR mutation in the tumour.

Momentous sprint at the 2156 Olympics?
Women sprinters are closing the gap on men and may one day overtake them.
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Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regres-

sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and

women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projections inter-

sect just before the 2156 Olympics, when the winning women’s 100-metre sprint time of 8.079 s will be faster than the men’s at 8.098 s.

The 2004 Olympic women’s 100-metre
sprint champion, Yuliya Nesterenko, is
assured of fame and fortune. But we

show here that — if current trends continue
— it is the winner of the event in the 2156
Olympics whose name will be etched in
sporting history forever, because this may
be the first occasion on which the race is
won in a faster time than the men’s event.

The Athens Olympic Games could be
viewed as another giant experiment in
human athletic achievement. Are women
narrowing the gap with men, or falling 
further behind? Some argue that the gains
made by women in running events between
the 1930s and the 1980s are decreasing as the
women’s achievements plateau1.Others con-
tend that there is no evidence that athletes,
male or female, are reaching the limits of
their potential1,2.

In a limited test,we plot the winning times
of the men’s and women’s Olympic finals over
the past 100 years (ref. 3; for data set, see sup-
plementary information) against the compe-
tition date (Fig. 1). A range of curve-fitting
procedures were tested (for methods,see sup-
plementary information), but there was no
evidence that the addition of extra para-
meters improved the model fit significantly
from the simple linear relationships shown
here. The remarkably strong linear trends
that were first highlighted over ten years ago2

persist for the Olympic 100-metre sprints.
There is no indication that a plateau has been
reached by either male or female athletes in
the Olympic 100-metre sprint record.

Extrapolation of these trends to the 2008
Olympiad indicates that the women’s 100-
metre race could be won in a time of
10.57!0.232 seconds and the men’s event in
9.73!0.144 seconds. Should these trends
continue, the projections will intersect at the
2156 Olympics, when — for the first time
ever — the winning women’s 100-metre
sprint time of 8.079 seconds will be lower
than that of the men’s winning time of 8.098
seconds (Fig. 1). The 95% confidence inter-
vals, estimated through Markov chain Monte
Carlo simulation4 (see supplementary infor-
mation), indicate that this could occur as
early as the 2064 or as late as the 2788 Games.

This simple analysis overlooks numerous
confounding influences, such as timing 
accuracy,environmental variations,national
boycotts and the use of legal and illegal stim-
ulants. But it is also defended by the limited
amount of variance that remains unex-
plained by these linear relationships.

So will these trends continue and can
women really close the gap on men? Those
who contend that the gender gap is widening

say that drug use explains why women’s
times were improving faster than men’s,
particularly as that improvement slowed
after the introduction of drug testing1.How-
ever, no evidence for this is found here. By
contrast, those who maintain that there
could be a continuing decrease in gender
gap point out that only a minority of the
world’s female population has been given
the opportunity to compete (O. Anderson,
www.pponline.co.uk/encyc/0151.htm).

Whether these trends will continue at the
Beijing Olympics in 2008 remains to be seen.
Sports, biological and medical sciences
should enable athletes to continue to
improve on Olympic and world records, by
fair means or foul5. But only time will tell
whether in the 66th Olympiad the fastest
human on the planet will be female.
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English humor saves the day...



Another motivating 
example

Portfolio selection: how to invest your 
money?

Combination of N assets with different 
relative weights.

Question: How to spread the money across 
the different assets.

If you know their returns, then can you find 
an optimal portfolio?!



Too lazy to worry about it?
Give your money to the bank

Then they do this for you (not alone for you, 
but they collect all the money and then decide 
how to invest it)

So, you can’t really get away from the problem

We are interested the risk in the context of 
large portfolios (banks, insurances, etc.)



Mathematically
• Measure returns     for assets i=1, ...,N at 

k=1, ..., T time points.

• Portfolio is a linear combination        with 
weights     that fulfill the budget constraint 

• Given a risk functional  

• Portfolio weights are chosen such that the 
risk                                 is minimized.

• Simplify: to study risk, set return to zero.
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Example: Markowitz

• Risk = variance:

                              s.t.

• Optimal solution:

• with covariance

• In practice, have to use:

min
�w

�
1

2
(�w�x)2

⇥

p(�x)

�

i

wi = 1

w⇥
i =

�
j �

�1
ij�

j,k �
�1
kj

�ij = �xixj⇥

F =
1

2
(�w�x)2

�̂ij =
1

T

X

k

x(k)
i x(k)

j



Other risk measures
• Mean Absolute Deviation (MAD)

• Value at Risk (VaR): high quantile - threshold below 
which a given percentage of the weight of the profit-loss 
distribution resides. NOT CONVEX.

• Expected Shortfall (ES): the conditional average over a 
high quantile.

• Maximal Loss (ML): the extreme case of ES, the optimal 
combination of the worst outcomes. 

• Coherent risk measures: monotonic, sub-additive, 
positive homogeneous, and translationally invariant.

• ES and ML are coherent. 
VaR, ES, and ML are downside risk measures (not 
bounded from below).



Instability
• For large portfolios the weights are far from optimal. 

• Weights fluctuate due to sampling errors - have T samples to 
estimate risk functional.

• The resulting estimation error diverges 
at a critical value of the ratio N/T.
Measure:    =ratio of estimated vs true 

Figures courtesy of I. Kondor
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Instability persists

• Found across all tested risk measures

• Persists when linear constraints are added

Kondor and coworkers
2003-2008

Figure courtesy of I. Kondor



What went wrong?

We based our estimate of the risk that a 
portfolio of M assets has on the measurement of 
N data points.

We then minimized the empirical risk.

Problem: Small empirical risk guarantees small 
actual risk only in the limit in which 
N >> M. But we are not in that limit.

We are over-fitting the data!



How to fix the problem?
Statistical learning theory finds bounds on the 
difference between actual risk and empirical 
risk. Then minimizes the bound. Bound is 
monotonic in capacity.
=> limiting the capacity leads to better 
generalization. (= regularization)

Bayesian inference uses the prior to achieve 
regularization.

For the finance problem: Regularize portfolio 
optimization!



Regularized Portfolio 
Optimization

•  Yes! The divergence 
disappears

• (analytical calculation: 
gaussian returns; replica 
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• Does this change things?

Regularizing Portfolio Optimization, S. Still and I. Kondor, New Journal of Physics, 12, 075034, 2010 Optimal 
liquidation strategies regularize portfolio selection, F. Caccioli, S. Still, M. Marsili, and I. Kondor, The European 
Journal of Finance, DOI:10.1080/1351847X.2011.601661, 2011
Liquidity risk and instabilities in portfolio optimisation, F. Caccioli, I. Kondor, M. Marsili, and S. Still, International 
Journal of Theoretical and Applied Finance (2016)

no regularization

stronger 
regularization

regularization



Introduction to 
statistical learning 
theory and support 

vector machines



Support Vector Learning

VC dimension: A measure for the capacity of a 
learning machine

Structural Risk Minimization

Linear Classifiers

Feature Space and Kernel functions

Support Vector Machines

Noisy Data

Support Vector Regression

This lecture follows, and the figures are from:  Advances in Kernel Methods-Support Vector Learning (Chapter 
1) B. Schoelkopf, C. Burges, A. Smolla (eds.), MIT Press, Cambridge, MA1999



Recall: Binary Classification

given N inputs 

with 

and 

we are looking for a function f, 
which correctly classifies new 
inputs: 
i.e. 

{⌅xi, yi}i=1,...,N

⌅xi ⇥ Rd

yi ⇥ {�1; 1}

f(⌅x) = y

x(1)

x(2)



Recall: The Perceptron

Linear classifier

Limitations: 

are we finding the best separating decision 
boundary? (the one that gives best 
generalization)

how do we deal with data that is not       
linearly separable? 



Addressing the limitations:

Find best separating hyper plane using a large 
margin classifier.

Deal with non-linear data via a feature map; 
implicit in the kernel function.

Decide on the function class using structural 
risk minimization (SRM)



Capacity of a learning 
machine

Learning machine: implements a function class, or 
hypothesis class with a certain capacity, and learns 
the particular function out of that class that best 
fits the data.

Statistical learning theory: Measure the capacity via 
the Vapnik-Chervonenkis (VC)  dimension.



VC dimension
The largest number h of points that can be 
separated in all possible ways, using functions 
of the given class.

Allows one to find a bound on the generalization 
error.

Linear models: h = d+1
where d = dimension
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VC dimension
The largest number h of points that can be 
separated in all possible ways, using functions 
of the given class.

Allows one to find a bound on the generalization 
error.

Linear models: h = d+1
where d = dimension

Other alternative concepts for finding (tighter) 
error bounds: VC entropy, growth function, fat 
shattering dimension...



Generalization
Generalization error (“risk”): 

Can only measure the training error (“empirical 
risk”):

Those can differ. The generalization error can be 
larger than the training error: 

R[f ] = ⇥1
2

|f(⇧x) � y|⇤P (⇧x,y)

R[f ] = Remp[f ] + �

Remp[f ] =
1

2N

N�

i=1

|f(⌃xi)� yi|

confidence



Error Bound
With probability       : 

Empirical risk depends on the function that the 
learning machine learns and can be minimized by 
choosing the right function out of a set of 
functions = Hypothesis class

Confidence term depends on the complexity of 
the Hypothesis class

1� �

can minimize this!

R[f ]  Remp[f ] +

s
h(log 2N

h + 1)� log

⌘
4

N



consider N not large

note: confidence term increases monotonically with h

imagine we have training data that is labeled at 
random (there is no structure)

learn function with low training error

must have large VC dimension to reproduce the 
random labels -> large confidence term

thus we can not always expect small generalization 
error due to small training error

R[f ]  Remp[f ] +
1p
N

s

h

✓
log

2N

h
+ 1

◆
� log

⌘

4



Controlling Complexity: 
Structural risk minimization

Use a structure of nested subsets with 
increasing VC-dimension



Linear classifiers

Vapnik and Chervonenkis (1964)

separating hyperplane:

decision function: 

unique separating hyperplane exists with maximum 
margin of separation (distance to nearest example 
point)

the capacity decreases with increasing margin!

�w · �x + b = 0
f(�x) = sgn(�w · �x + b)



From:  Advances in Kernel Methods-Support Vector Learning (Chapter 1) B. Schoelkopf, C. Burges, A. Smolla (eds.), MIT Press, 
Cambridge, MA1999

re-scale: |wx + b| = 1 for the points closest to 
the hyper-plane. 

Then, the margin = 2 / ||w||



Learning algorithm

Make ||w|| small!

Use Lagrange multipliers:

minimize 1
2⌅⌃w⌅2

subject to yi(⌃w · ⌃xi + b) ⇥ 1 ⇤i

L =
1
2
⇤⌥w⇤2 �

⇤

i

�i

�
yi(⌥w · ⌥xi + b)� 1

⇥



has to be minimized w.r.t. primary variables w 
and b

has to be maximized w.r.t. dual variables 

Find “saddle point”.

For all constraints which are not met precisely, 
the    must be zero (Karush-Kuhn-Tucker (KKT) 
complementary conditions), because that 
maximizes the dual.
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Saddle point conditions:

imply that at the optimum:

=> The optimal separating hyperplane can be written solely 
in terms of those points for which        , i.e for which 

those are the points that lie on the margin! They are called 
“Support Vectors”

⇤
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Dual representation
maximize

�
i �i � 1

2

�
ij �i�jyiyj�xi · �xj

subject to �i ⇤ 0, i = 1, . . . , N, and
�

i �iyi = 0

Decision boundary
f( x) = sgn

�⇤

i

�iyi x ·  xi + b
⇥

calculate b from:

Never solve a problem that is harder than the one you 
need to solve (Vapnik) - Here: not modeling full 
distribution, just finding best separation line.

yi(�w · �xi + b) = 1



Physical interpretation
Assume that each support vector exerts a force 
on the hyperplane (imagine a movable sheet 
there) in the direction of   , and with a 
magnitude 

Solution <=> Mechanical Stability:

Forces sum to zero:

Torques sum to zero:

�

i
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i

�iyi⇧xi �
⇧w

⇥⇧w⇥ =
⇧w � ⇧w
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yi



Feature Space

Addresses the problem: Data is not linearly 
separable in input domain

Map data into a feature space via a nonlinear  
feature map, in which the data is linearly 
separable.  

Find separating hyperplane in feature space

Project onto input space -> decision boundary 



Feature Space



Feature Space
How to find the feature map   ? 

This is as hard as solving the original problem of 
separating nonlinear data

The cool thing:

optimal hyperplane and decision boundary 
require only the evaluation of dot products of 
point

That means, we never need to know      ,  only 
need 

�

�(⇥x)
�(⇤x) · �(⇤y)



Mercer Kernel

Can introduce a kernel function:

kernels of positive integral operators give rise to 
maps, such that

(Theorem, Mercer 1909) 

k(⇧x, ⇧y) = �(⇧x) · �(⇧y)

k(⇧x, ⇧y)



Kernels used (examples)

polynomial 

sigmoidal

radial-basis                               
(gaussian)

string kernel (for text and genes)

k(⇧x, ⇧y) = (⇧x · ⇧y)d

k(⌥x, ⌥y) = tanh(�⌥x · ⌥y + ⇥)

k(⌃x, ⌃y) = e(� ⇥⌅x�⌅y⇥2

2�2 )



Support Vector Machines
Compute optimal hyperplane in feature space 
substitute       for   , and mercer kernel for the 
dot product:

=> decision function becomes

quadratic optimization program

�(⇥xi) ⇥xi

k(⌅xi, ⌅xj) = �(⌅xi) · �(⌅xj)

f(↵x) = sgn
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�iyik(↵xi, ↵xj) + b
⇥

maximize
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2

�
ij �i�jyiyjk( xi,  xj)

subject to �i ⇥ 0, i = 1, . . . , N, and
�

i �iyi = 0



SVM Example

Radial-basis function 
kernel

Gray scale reflects 
argument of the decision 
function

k(⌃x, ⌃y) = e(�⇥⇤x�⇤y⇥2)

From: B. Schoelkopf, A. Smola, K.-R. Mueller (1996) Technical Report 44, Max Planck Institue for Biological Cybernetics, Tuebingen, Germany  



Noisy data

In practice, data sets are usually corrupted by 
noise. 

This may cause the classes to overlap 

=> no separating hyperplane exists

How do we deal with noise?



allow for the possibility that examples violate the 
constraints by introducing “slack variables” 

relax the constraints 

=> new objective function: control the capacity by 
maximizing the margin (as before, via minimization 
of ||w||), and minimize the margin error. C controls 
the trade-off.  

yi(⌃w · ⌃xi + b) ⇤ 1� �i

Soft Margin
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1
2
�⌅w�2 + C

�

i
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Support Vector 
Regression

Idea: construct the analog to the margin

  -insensitive loss:

To estimate a linear regression                     
with precision  , one minimizes:

�

�

|y � f(⇧x)|� = max{0; |y � f(⇧x)|� �}

1
2
⇤⌃w⇤2 + C
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i
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Fit a tube with radius   to the data.

Introduce slack variables as before, solve the 
program:

   and C are chosen a priori

Support Vector 
Regression

minimize
1
2
⇧ w⇧2 + C

�

i

(⇥i + ⇥�i )

subject to ( w ·  xi + b)� yi ⇤ � + ⇥i

yi � ( w ·  xi + b) ⇤ � + ⇥�i
⇥i, ⇥�i ⌅ 0
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Support Vector 
Regression

As before, use Lagrange multipliers, compute 
dual.

Deal with nonlinear regression by introducing a 
kernel function (analogous to classification)

Eventually, the regression function is given by:

f(⌥x) =
�

i

(��
i � �i)k(⌥xi, ⌥x) + b



Sketch of SVM Architecture
Application: Character recognition



Some Applications

OCR: Optical Character Recognition

Object recognition

Outlier detection (jet engines, email spam, ...)

Data and text classification

Bioinformatics



Other Kernel Machines

Kernel PCA (Principle Component Analysis)

Kernel CCA (Canonical Correlation Analysis)

Kernel K-means

Some methods are interpretable as kernel 
methods, such as ICA (Independent Component 
Analysis), Fisher discriminant, and several 
clustering algorithms, and more...


