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Part 1
Feed forward artificial neural networks



Feed forward artificial neural nets are most 
often used to solve supervised learning 
problems.

Recall: Supervised learning methods make 
choices about:

error function

hypothesis class H

algorithm used for error minimization 



Training Error vs. 
Generalization Error

The goal of learning is to build a hypothesis 
that generalizes well to data drawn from the 
same process, which we have not seen yet. 
I.e. to make good predictions!     (drawing)

Error can be evaluated only on the given 
training data set. (Training Error).

Want to minimize the generalization error, 
but can not measure it.



How to deal with 
overfitting / model 
complexity control? 

Absolutely crucial -> at the heart of machine 
learning methods.

Recall: derive bounds on the generalization 
error which depend only on things we can 
measure, and use those bounds to minimize best 
estimate of actual risk. 



Cross-Validation

Empirical way to estimate out-of-sample 
error

Versatile (finds use in many different 
applications)

Has some problems (we won’t discuss today, 
but keep that in mind!)



Cross-Validation

Split data into 3 sets: 

Training set (used to train the algorithm, to 
learn the model h)

Validation set (used for cross-validation)

Test set (used only to test the resulting 
performance)



Cross-Validation

Decide on a hypothesis class H

Train algorithm on the Test set (Test error is 
minimized) -> find best hypothesis h in the 
class H.

Evaluate the error that h makes on the 
validation set

Do this procedure for all possible splits of 
the Data set (Training Set + Validation Set).



Cross-Validation

Can split in half or can do “leave-one-out” 
cross-validation.

Compute the average error, averaged over all  
possible splits.

Use this to decide between different 
hypothesis classes.

Chose the one with lowest cross-validation 
error



Recall

Artificial neuron = neuron gets approximated 
mathematically by a threshold units

Example: Perceptron

Single artificial neuron implements linear 
hypothesis class

“Linear classifier”



Non-linear data

Linear classifier not able to separate the 
data. 

Project data into a higher dimensional 
feature space in which they are linearly 
separable (-> Kernel trick...) 

Use a non-linear hypothesis class.



Feed forward artificial 
neural networks
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Feed-forward ANN: 
Architecture

Network can have one or more hidden layers 
(indexed starting with the input layer, ending 
with the output layer). 

Each hidden layer has some number of neurons 
called units. Often: sigmoidal units (sigmoidal 
transfer function), because differentiable.

Neurons in the hidden layer are called “hidden 
units”.

Usually one output neuron.
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Input 
Layer

Hidden 
Layer 

Output 
Layer

1

2

n

n-4

n-3

n-2

n-1

w n-1 n

w 13
3

4

5

6

...

Hidden 
Layer 

k=1 k=2 k=K-1 k=K



Feed-forward ANN: 
Connections

Neurons are connected by weights

The connections are uni-directional

Weight on the connection from neuron i to 
neuron j: w

All connections go from layer k to layer k+1. 
There are no connections backwards.

There are no connections between units in 
one layer.  

Hence the name “feed-forward”

ij



Feed Forward Artificial 
Neural Networks

Representational Power

Designing feed forward neural networks

Learning in feed forward neural networks

Gradient decent

Backpropagation algorithm



Feed-forward ANN;
Representational Power

A single artificial neuron can express the 
boolean functions AND, OR, and NOT, but not 
XOR. It can separate linearly separable data. 
This is true for both choices of transfer 
functions, step function or sigmoid alike.

A feed-forward artificial neural network with 
one hidden layer can express any boolean 
function. This might require a number of 
hidden units exponential in the number of 
inputs. 



Feed-forward ANN;
Representational Power

A feed-forward artificial neural network with 
one hidden layer that is large enough can 
approximate any bounded continuous function to 
arbitrary precision.

A feed-forward artificial neural network with 
two hidden layers can approximate any function 
to arbitrary accuracy

Reference: Cybenko 1988/9; Hornik et al. 1989 



Some applications

Speech recognition

Speech synthesis (Nettalk)

Image classification

Digit recognition (LeNet)

Computer Vision

Finance



When to use FF ANNs?

Target function unknown

High-dimensional input; discrete or real valued

Noisy data

Training time is not too important

Interpretability of result is not important

Calculation of output from input has to be fast



Disadvantages

Poor generalization when the number of 
examples is small (compared to the 
dimensionality of the input space)

Overfitting has to be addressed; lots of 
parameters -> sloppy resulting models

The gradient decent training method can get 
trapped in an unfavorable local minimum

modern FFANNs have tricks to address these!



Designing FF ANNs
choosing the number of units:                           
too few -> concept can not be learned.               
too many -> overfitting                                 
for n binary inputs, log(n) units are a good heuristic.

choosing the number of layers:                    
always start with one layer; never go beyond two, 
unless network architecture requires it (e.g. 
convolutional nets). BUT (careful): functions that can 
be compactly represented by a depth k architecture 
might require an exponential number of 
computational elements to be represented by a depth 
k − 1 architecture !!!

See: http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209

http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209
http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209


Network design

destructive methods: start with a large 
network, remove (prune) connections: put the 
weight to 0 and look at the effect on the 
error:

train network -> solution corresponds to local 
minimum

approximate the impact of every unit on the 
performance of the network (calculate Hessian)

take away the weakest unit



Network design

constructive methods:

1. dynamic node creation (Ash): (one hidden layer)

start with one hidden unit; train 

if error is large, add another unit

repeat.

2. meiosis networks (Hanson)



Meiosis networks

start with one hidden unit; train

compute variance of each weight during 
training 

if a unit has at least one high variance weight, 
replace unit by two new units, and perturb the 
weights 

-> create functionally different units



ANNs for time series 
data

input is a function of time: x(t)

possible tasks include:

predicting a class label                         
(e.g. speech recognition)

predicting future data, time-series 
prediction (e.g. in finance)



Time-delay NNs

Set a time frame T

take all inputs that occur between t and t+T 
and feed them into the network

train using backprop

shift the window and repeat

on-line algorithm (in the extreme, we can take 
one data point at a time)

(Waibel)



This is great. But how do we deal with 
complexity control? (later...)

And how do we train a feed-forward ANN?  

Gradient descent

Backpropagation algorithm



How do we train a FFANN?
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Learning
Problem: Complex hypothesis, thus no direct 
calculation of optimal weights possible. 

Instead: adjust weights incrementally 
(learning). How to adjust the weights?

Idea: Gradient decent.

Energy function

Calculate gradient w.r.t. the weights

Adjust weights proportional to gradient



Learning
Use sigmoidal units: Output of units is given 
by (i = 1, ..., n):

Recall:

Derivative:

Input to neuron i

oi = �(�wi�xi)

�(u) =
1

1 + e�u

d�(u)
du

= �(u)
�
1� �(u)

⇥



gradient decent over all weights in network

Forward pass: compute outputs of all units 
starting from the input layer, ending with the 
output layer

Backward pass: compute the updates     
starting from the output layer

update the weights according to 

Backpropagation 
algorithm

�i

wij � wij + �ij�ixij



pick training example -> update weights         
(stochastic gradient decent)

loop through all samples -> update weights 
(batch)

one pass through the data set is called an 
epoch.

Backpropagation 
algorithm



incremental (stochastic) gradient decent

initialize weights

repeat until convergence: 

pic training example, use it as input to the 
network and compute the outputs 

for each unit i, compute

 update each network weight:

Backpropagation 
algorithm

wij � wij + �ij�ixij

�i



guaranteed to converge to local minimum if 
learning rates are small enough

local minimum can be much worse than global 
minimum

there can be many local minima

Backpropagation 
algorithm



Learning rate
The backpropagation algorithm is sensitive to 
the size of the learning rate.

too small -> very slow

too large -> divergence

learning rate has effect on the ability to 
escape local optima

each unit has its own optimal rate (one for 
all is in general not optimal)



Learning rate

Adjusting learning rates: Heuristic method 
Delta-bar-delta

Idea: 

if the gradient direction does not change -> 
increase learning rate                

if gradient switches sign -> decrease



Break



Recurrent Neural 
Networks

General Architecture
Hopfield NN (Intro)
Hebbian Learning



Architecture

connections within layers

there is no structure in the layers

network can be fully connected (all neurons 
to all)

some connections could be missing



Architecture

http://www.oftnai.org/images/memory1.gif

http://www.oftnai.org/images/memory1.gif
http://www.oftnai.org/images/memory1.gif


Hopfield Neural Net

1982: John Hopfield, Physicist, working on spin-
systems, proposed fully connected ANN to solve 
an associative memory task

models of physical systems can be used to solve 
computational problems

Refer to as “HNN”.

J. Hopfield: Neural networks and physical systems with emergent collective 
computational abilities. PNAS 79, 2554, 1982.



Problem
Store K patterns,                                
such that when presented with a new pattern, 
the system associates this new pattern to the 
most similar stored pattern.

i = 1, ...,N: number of sites/pixels                  
= number of units/neurons

   = 1, ..., K: number of different patterns 

xµ
i ⇥ {�1; 1}

Xµ = {xµ
i }

µ



Associative memory

http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif

http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif
http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif


Applications

Information retrieval

Image recognition

Image reconstruction

Content-addressable memory (CAM)



Random access memory (RAM): 

Input: memory address

Returns: data word stored at that address.

CAM:

Input: data word

Returns: List of storage addresses where 
the data word was found

CAM much faster for search operations!

Hardware application: CAM 
content-addressable memory



CAM applications

Computer networking devices: network switch

Network routers 

CPU cache controllers

Database engines

Data compression hardware



How does it work?

1. The Ingredients:

Hopfield used the transfer function:
g = sgn (x). 
Let us set the bias to zero.

Units (“neurons”): 

Architecture: fully connected

si = sgn(
�

j

wijsj)



2. Learning

Hebbian learning

Synchronous update (requires clock)

Asynchronous update:                            

1. random update                                  

2. each unit chooses to update with some 
probability



Hypothesis by Hebb (‘49)
changes in synaptic strength proportional to the 
correlation between the activity of pre- and post-
synaptic neuron.

“Neurons that fire together, wire together.”

Original quote: “When an axon of cell A is near 
enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth 
process or metabolic change takes place in one or 
both cells such that A's efficiency, as one of the 
cells firing B, is increased.”



Learning in the brain 
models thereof

LTP (long term potentiation):

http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7

http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7
http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7


Hopfield Neural Net

Storing one pattern
Storing many patterns

Dynamics
Stability

Storage capacity



One pattern
a pattern is stable when: 

“Hebbian learning”: choose 

choose

wij � xixj

sgn(
�

j

wijxj) = xi �i

wij =
1
N

xixj

� sgn(xi

N�

j=1

xjxj) = sgn(Nxi) = xi

= 1



Energy function

Hamiltonian (Lyaponov-/ cost-/ objective- 
function)

function of the configuration:               some 
configurations have higher/lower energy

want the energy to be minimal when the 
overlap is largest:

{si}

H = � 1
2N

(
N�

i=1

sixi)2

H = �1
2

�

ij

wijsisj



Many patterns: sum over them

HEBB RULE (generalized) 

H = � 1
2N

K�

µ=1

(
N�

i=1

six
µ
i )2

= � 1
2N

K�

µ=1

(
N�

i=1

six
µ
i )(

N�

j=1

sjx
µ
j )

= �1
2

�

ij

(
1
N

K�

µ=1

xµ
i xµ

j )sisj

⇥ wij =
1
N

K�

µ=1

xµ
i xµ

j

make all patterns 
local minima!



Energy

symmetric connections

dynamics or the network: the energy can only 
go down!

=> network converges to a fixed point attractor

true for sequential updating, random updating, 
almost holds for parallel updating

H = �1
2

�

ij

wijsisj



Dynamics

dynamics <=> motion of a particle on the energy surface 
moving due to gravity 

attractors = memorized patterns = local minima

http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif

http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif
http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif


Crosstalk term
= x�

i (1� C�
i )

with: h⇥
i =

�

j

wijx
⇥
j =

1
N

�

j

�

µ

xµ
i xµ

j x⇥
j

= x⇥
i +

1
N

�

j

�

µ�=⇥

xµ
i xµ

j x⇥
j

Stability of pattern x�
i

sgn(h�
i ) = x�

iCondition:

If does no harm (same sign as    )C�
i < 1� x�

i



Storage capacity

orthogonal patterns

random patterns 

C⇥
i = �x⇥

i
1
N

�

j

�

µ�=⇥

xµ
i xµ

j x⇥
j

Need to worry about C�
i > 1

Consider:



consider orthogonal patterns: 

no crosstalk

capacity: 

because at most N mutually orthogonal bit 
strings of length N can be stored.

�

j

xµ
j x⇥

j = 0

Kmax = N



consider random patterns with equal probability for all 
bits (independent).                                      Assume 
large N and K. Then

Probability that a given bit is unstable:

Random patterns

�2

P (C�
i )

C�
i > 1

Perror = P (C�
i > 1) =

1⇥
2�⇥

� ⇥

1
dx e�

x2

2�2

=
1
2
(1� erf(

1⇥
2�⇥

))

p(xµ
i =1) = p(xµ

i =�1)

� =
�

K

N

is distributed according to a normal distribution.
C�

i



can choose a criterion on the error (e.g. make 
the error probability smaller than 1%) and 
from that get a condition on the maximum 
number of patterns that can be stored. 

“perfect” memory on all patterns: to get all N 
bits of K patterns right with 99% accuracy, we 
need  

 

 use asymptotic expansion:   

Perror < 0.01/NK

N �⇤⇥ K/N � 0

1� erf(x)⇥ e�x2

⇤
�x

x�⇥



take leading order terms for large N:

Capacity for large N:

log(Perror) ⇥ log 2� N

2K
� 1

2
log � � 1

2
log(

N

2K
)

< log(
0.01
NK

)!

N

2K
> log(NM) � log(N2) = 2 log(N)

Kmax =
N

4
log(N)

Similarities between patterns reduce capacity

Sparse patterns give better capacity


