
Artificial neural
networks

Susanne Still
University of Hawaii at Manoa

Part 1
Feed forward artificial neural networks

Feed forward artificial neural nets are most
often used to solve supervised learning
problems.

Recall: Supervised learning methods make
choices about:

error function

hypothesis class H

algorithm used for error minimization

Training Error vs.
Generalization Error

The goal of learning is to build a hypothesis
that generalizes well to data drawn from the
same process, which we have not seen yet.
I.e. to make good predictions! (drawing)

Error can be evaluated only on the given
training data set. (Training Error).

Want to minimize the generalization error,
but can not measure it.

How to deal with
overfitting / model
complexity control?

Absolutely crucial -> at the heart of machine
learning methods.

Recall: derive bounds on the generalization
error which depend only on things we can
measure, and use those bounds to minimize best
estimate of actual risk.

Cross-Validation

Empirical way to estimate out-of-sample
error

Versatile (finds use in many different
applications)

Has some problems (we won’t discuss today,
but keep that in mind!)

Cross-Validation

Split data into 3 sets:

Training set (used to train the algorithm, to
learn the model h)

Validation set (used for cross-validation)

Test set (used only to test the resulting
performance)

Cross-Validation

Decide on a hypothesis class H

Train algorithm on the Test set (Test error is
minimized) -> find best hypothesis h in the
class H.

Evaluate the error that h makes on the
validation set

Do this procedure for all possible splits of
the Data set (Training Set + Validation Set).

Cross-Validation

Can split in half or can do “leave-one-out”
cross-validation.

Compute the average error, averaged over all
possible splits.

Use this to decide between different
hypothesis classes.

Chose the one with lowest cross-validation
error

Recall

Artificial neuron = neuron gets approximated
mathematically by a threshold units

Example: Perceptron

Single artificial neuron implements linear
hypothesis class

“Linear classifier”

Non-linear data

Linear classifier not able to separate the
data.

Project data into a higher dimensional
feature space in which they are linearly
separable (-> Kernel trick...)

Use a non-linear hypothesis class.

Feed forward artificial
neural networks

7
1

3

4

5

6

2
w67

w 13

Input
Layer

Hidden
Layer

Output
Layer

Feed-forward ANN:
Architecture

Network can have one or more hidden layers
(indexed starting with the input layer, ending
with the output layer).

Each hidden layer has some number of neurons
called units. Often: sigmoidal units (sigmoidal
transfer function), because differentiable.

Neurons in the hidden layer are called “hidden
units”.

Usually one output neuron.

Architecture

Input
Layer

Hidden
Layer

Output
Layer

1

2

n

n-4

n-3

n-2

n-1

w n-1 n

w 13
3

4

5

6

...

Hidden
Layer

k=1 k=2 k=K-1 k=K

Feed-forward ANN:
Connections

Neurons are connected by weights

The connections are uni-directional

Weight on the connection from neuron i to
neuron j: w

All connections go from layer k to layer k+1.
There are no connections backwards.

There are no connections between units in
one layer.

Hence the name “feed-forward”

ij

Feed Forward Artificial
Neural Networks

Representational Power

Designing feed forward neural networks

Learning in feed forward neural networks

Gradient decent

Backpropagation algorithm

Feed-forward ANN;
Representational Power

A single artificial neuron can express the
boolean functions AND, OR, and NOT, but not
XOR. It can separate linearly separable data.
This is true for both choices of transfer
functions, step function or sigmoid alike.

A feed-forward artificial neural network with
one hidden layer can express any boolean
function. This might require a number of
hidden units exponential in the number of
inputs.

Feed-forward ANN;
Representational Power

A feed-forward artificial neural network with
one hidden layer that is large enough can
approximate any bounded continuous function to
arbitrary precision.

A feed-forward artificial neural network with
two hidden layers can approximate any function
to arbitrary accuracy

Reference: Cybenko 1988/9; Hornik et al. 1989

Some applications

Speech recognition

Speech synthesis (Nettalk)

Image classification

Digit recognition (LeNet)

Computer Vision

Finance

When to use FF ANNs?

Target function unknown

High-dimensional input; discrete or real valued

Noisy data

Training time is not too important

Interpretability of result is not important

Calculation of output from input has to be fast

Disadvantages

Poor generalization when the number of
examples is small (compared to the
dimensionality of the input space)

Overfitting has to be addressed; lots of
parameters -> sloppy resulting models

The gradient decent training method can get
trapped in an unfavorable local minimum

modern FFANNs have tricks to address these!

Designing FF ANNs
choosing the number of units:
too few -> concept can not be learned.
too many -> overfitting
for n binary inputs, log(n) units are a good heuristic.

choosing the number of layers:
always start with one layer; never go beyond two,
unless network architecture requires it (e.g.
convolutional nets). BUT (careful): functions that can
be compactly represented by a depth k architecture
might require an exponential number of
computational elements to be represented by a depth
k − 1 architecture !!!

See: http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209

http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209
http://www.iro.umontreal.ca/~lisa/publications/index.php?page=publication&kind=single&ID=209

Network design

destructive methods: start with a large
network, remove (prune) connections: put the
weight to 0 and look at the effect on the
error:

train network -> solution corresponds to local
minimum

approximate the impact of every unit on the
performance of the network (calculate Hessian)

take away the weakest unit

Network design

constructive methods:

1. dynamic node creation (Ash): (one hidden layer)

start with one hidden unit; train

if error is large, add another unit

repeat.

2. meiosis networks (Hanson)

Meiosis networks

start with one hidden unit; train

compute variance of each weight during
training

if a unit has at least one high variance weight,
replace unit by two new units, and perturb the
weights

-> create functionally different units

ANNs for time series
data

input is a function of time: x(t)

possible tasks include:

predicting a class label
(e.g. speech recognition)

predicting future data, time-series
prediction (e.g. in finance)

Time-delay NNs

Set a time frame T

take all inputs that occur between t and t+T
and feed them into the network

train using backprop

shift the window and repeat

on-line algorithm (in the extreme, we can take
one data point at a time)

(Waibel)

This is great. But how do we deal with
complexity control? (later...)

And how do we train a feed-forward ANN?

Gradient descent

Backpropagation algorithm

How do we train a FFANN?

Input
Layer

Hidden
Layer

Output
Layer

1

2
n

n-4

n-3

n-2

n-1

w n n-1

w 31
3

4

5

6

...

Hidden
Layer

k=1 k=2 k=K-1 k=K

w ij

How to
adjust?

Learning
Problem: Complex hypothesis, thus no direct
calculation of optimal weights possible.

Instead: adjust weights incrementally
(learning). How to adjust the weights?

Idea: Gradient decent.

Energy function

Calculate gradient w.r.t. the weights

Adjust weights proportional to gradient

Learning
Use sigmoidal units: Output of units is given
by (i = 1, ..., n):

Recall:

Derivative:

Input to neuron i

oi = �(�wi�xi)

�(u) =
1

1 + e�u

d�(u)
du

= �(u)
�
1� �(u)

⇥

gradient decent over all weights in network

Forward pass: compute outputs of all units
starting from the input layer, ending with the
output layer

Backward pass: compute the updates
starting from the output layer

update the weights according to

Backpropagation
algorithm

�i

wij � wij + �ij�ixij

pick training example -> update weights
(stochastic gradient decent)

loop through all samples -> update weights
(batch)

one pass through the data set is called an
epoch.

Backpropagation
algorithm

incremental (stochastic) gradient decent

initialize weights

repeat until convergence:

pic training example, use it as input to the
network and compute the outputs

for each unit i, compute

 update each network weight:

Backpropagation
algorithm

wij � wij + �ij�ixij

�i

guaranteed to converge to local minimum if
learning rates are small enough

local minimum can be much worse than global
minimum

there can be many local minima

Backpropagation
algorithm

Learning rate
The backpropagation algorithm is sensitive to
the size of the learning rate.

too small -> very slow

too large -> divergence

learning rate has effect on the ability to
escape local optima

each unit has its own optimal rate (one for
all is in general not optimal)

Learning rate

Adjusting learning rates: Heuristic method
Delta-bar-delta

Idea:

if the gradient direction does not change ->
increase learning rate

if gradient switches sign -> decrease

Break

Recurrent Neural
Networks

General Architecture
Hopfield NN (Intro)
Hebbian Learning

Architecture

connections within layers

there is no structure in the layers

network can be fully connected (all neurons
to all)

some connections could be missing

Architecture

http://www.oftnai.org/images/memory1.gif

http://www.oftnai.org/images/memory1.gif
http://www.oftnai.org/images/memory1.gif

Hopfield Neural Net

1982: John Hopfield, Physicist, working on spin-
systems, proposed fully connected ANN to solve
an associative memory task

models of physical systems can be used to solve
computational problems

Refer to as “HNN”.

J. Hopfield: Neural networks and physical systems with emergent collective
computational abilities. PNAS 79, 2554, 1982.

Problem
Store K patterns,
such that when presented with a new pattern,
the system associates this new pattern to the
most similar stored pattern.

i = 1, ...,N: number of sites/pixels
= number of units/neurons

 = 1, ..., K: number of different patterns

xµ
i ⇥ {�1; 1}

Xµ = {xµ
i }

µ

Associative memory

http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif

http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif
http://www.shef.ac.uk/psychology/gurney/notes/l5/Ts.gif

Applications

Information retrieval

Image recognition

Image reconstruction

Content-addressable memory (CAM)

Random access memory (RAM):

Input: memory address

Returns: data word stored at that address.

CAM:

Input: data word

Returns: List of storage addresses where
the data word was found

CAM much faster for search operations!

Hardware application: CAM
content-addressable memory

CAM applications

Computer networking devices: network switch

Network routers

CPU cache controllers

Database engines

Data compression hardware

How does it work?

1. The Ingredients:

Hopfield used the transfer function:
g = sgn (x).
Let us set the bias to zero.

Units (“neurons”):

Architecture: fully connected

si = sgn(
�

j

wijsj)

2. Learning

Hebbian learning

Synchronous update (requires clock)

Asynchronous update:

1. random update

2. each unit chooses to update with some
probability

Hypothesis by Hebb (‘49)
changes in synaptic strength proportional to the
correlation between the activity of pre- and post-
synaptic neuron.

“Neurons that fire together, wire together.”

Original quote: “When an axon of cell A is near
enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth
process or metabolic change takes place in one or
both cells such that A's efficiency, as one of the
cells firing B, is increased.”

Learning in the brain
models thereof

LTP (long term potentiation):

http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7

http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7
http://icwww.epfl.ch/~gerstner/SPNM/node71.html#Fig-ch2-7

Hopfield Neural Net

Storing one pattern
Storing many patterns

Dynamics
Stability

Storage capacity

One pattern
a pattern is stable when:

“Hebbian learning”: choose

choose

wij � xixj

sgn(
�

j

wijxj) = xi �i

wij =
1
N

xixj

� sgn(xi

N�

j=1

xjxj) = sgn(Nxi) = xi

= 1

Energy function

Hamiltonian (Lyaponov-/ cost-/ objective-
function)

function of the configuration: some
configurations have higher/lower energy

want the energy to be minimal when the
overlap is largest:

{si}

H = � 1
2N

(
N�

i=1

sixi)2

H = �1
2

�

ij

wijsisj

Many patterns: sum over them

HEBB RULE (generalized)

H = � 1
2N

K�

µ=1

(
N�

i=1

six
µ
i)2

= � 1
2N

K�

µ=1

(
N�

i=1

six
µ
i)(

N�

j=1

sjx
µ
j)

= �1
2

�

ij

(
1
N

K�

µ=1

xµ
i xµ

j)sisj

⇥ wij =
1
N

K�

µ=1

xµ
i xµ

j

make all patterns
local minima!

Energy

symmetric connections

dynamics or the network: the energy can only
go down!

=> network converges to a fixed point attractor

true for sequential updating, random updating,
almost holds for parallel updating

H = �1
2

�

ij

wijsisj

Dynamics

dynamics <=> motion of a particle on the energy surface
moving due to gravity

attractors = memorized patterns = local minima

http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif

http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif
http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Hopfield/Attractors.gif

Crosstalk term
= x�

i (1� C�
i)

with: h⇥
i =

�

j

wijx
⇥
j =

1
N

�

j

�

µ

xµ
i xµ

j x⇥
j

= x⇥
i +

1
N

�

j

�

µ�=⇥

xµ
i xµ

j x⇥
j

Stability of pattern x�
i

sgn(h�
i) = x�

iCondition:

If does no harm (same sign as)C�
i < 1� x�

i

Storage capacity

orthogonal patterns

random patterns

C⇥
i = �x⇥

i
1
N

�

j

�

µ�=⇥

xµ
i xµ

j x⇥
j

Need to worry about C�
i > 1

Consider:

consider orthogonal patterns:

no crosstalk

capacity:

because at most N mutually orthogonal bit
strings of length N can be stored.

�

j

xµ
j x⇥

j = 0

Kmax = N

consider random patterns with equal probability for all
bits (independent). Assume
large N and K. Then

Probability that a given bit is unstable:

Random patterns

�2

P (C�
i)

C�
i > 1

Perror = P (C�
i > 1) =

1⇥
2�⇥

� ⇥

1
dx e�

x2

2�2

=
1
2
(1� erf(

1⇥
2�⇥

))

p(xµ
i =1) = p(xµ

i =�1)

� =
�

K

N

is distributed according to a normal distribution.
C�

i

can choose a criterion on the error (e.g. make
the error probability smaller than 1%) and
from that get a condition on the maximum
number of patterns that can be stored.

“perfect” memory on all patterns: to get all N
bits of K patterns right with 99% accuracy, we
need

 use asymptotic expansion:

Perror < 0.01/NK

N �⇤⇥ K/N � 0

1� erf(x)⇥ e�x2

⇤
�x

x�⇥

take leading order terms for large N:

Capacity for large N:

log(Perror) ⇥ log 2� N

2K
� 1

2
log � � 1

2
log(

N

2K
)

< log(
0.01
NK

)!

N

2K
> log(NM) � log(N2) = 2 log(N)

Kmax =
N

4
log(N)

Similarities between patterns reduce capacity

Sparse patterns give better capacity

