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Learning and Adaptation
• Most intelligent systems show signs of learning.

• Most biological, “alive” systems utilize adaptation.

Challenges:

• Understand the principles of learning

• Build learning machines



• Machine learning is crucial in robotics and AI:

• Often easier to build a learning system than 
to hand-code a program that works. 

• Example: a walking robot on the moon. Many 
DOFs; changing environment.

• Typical tasks that require learning: 
• Speech
• Handwriting and object recognition 
• Intelligent user interfaces
• Motor behavior

• A true AI requires learning on many levels!



• Machine learning crucial for data analysis:

• Huge and very complex data sets too large to 
analyze by hand; for example:
- CERN
- data from complex systems, e.g. ecological

• High frequency task, too fast to analyze by hand; 
e.g. stock price prediction from trading data.

• Human can solve task, but can not explain how; 
e.g. character recognition.

• No human expert; e.g. DNA analysis.



Application Areas:

• Physics
• Bioinformatics
• Computer Vision
• Robotics
• Graphics
• Speech
• Financial analysis
• E-commerce
• Medicine
• Computer games
• Multimedia 

Examples:

➡ particle physics
➡ microarray data
➡ object recognition
➡ decision making
➡ realistic simulations
➡ recognition, identification
➡ option pricing
➡ data mining
➡ diagnostics, drug design
➡ adaptive opponents
➡ retrieval across databases

Machine learning is one of the 21 century’s 
core technologies.



Organizational items

• Ask questions! There is no such thing as a dumb question.

• Break long lectures into 2 parts to improve learning and 
retention of material. 

• Lectures are being recorded. 

• Reserve 10 minutes at the end for questions and informal 
discussion (cameras off).

• Homework problems, and exam at the end of the course.



Outline
1. Overview of some history and core ideas

• Physical limits to information processing

2. Equilibrium thermodynamics applied to information processing

3. Information processing far from thermodynamic equilibrium, a 
very brief introduction, selected topics.

4. From physical limits to information theory...

5. ...to unsupervised learning... 

6. ...and cluster analysis.

7. Supervised learning: neural nets (mostly feed-forward)

8. Introduction to main ideas in statistical learning theory; 
Support vector machines, Kernel trick.

9. Bayesian Inference

10. Brief overview of selected “fashionable” ML techniques.



Machine learning for physicists!
1. Overview of some history and core ideas

• Physical limits to information processing

2. Equilibrium thermodynamics applied to information processing

3. Information processing far from thermodynamic equilibrium, a 
very brief introduction, selected topics.

4. From physical limits to information theory...

5. ...to unsupervised learning... 

6. ...and cluster analysis.

7. Supervised learning: neural nets

8. Introduction to main ideas in statistical learning theory; 
Support vector machines, Kernel trick.

9. Bayesian Inference

10. Brief overview of selected “fashionable” ML techniques.



contact me

• don’t be shy, you can talk to me 
any time!

• email: sstill @ hawaii . edu

• my website needs updating, sorry
www2.hawaii.edu/~sstill/



Learning machines
An introduction and some historical context



Machines that learn?

• Animals learn - how?

• What is learning? 

• What is inference?

• What is a machine? 

• Machines that can think?

• Machines that can do math?



Machines that compute

• Mesopotamia (ca. 2700BC): 
Abacus. 
Pebbles (latin: calculi)

• South America (ca.2600BC): 
Quipu

• Predicting eclipses,
“Antikythera mechanism” 
(ca. 200BC, 30 gears), 
“analog computation”.

• Devices that help perform simple calculations go back to ancient 
civilizations!



Abacus vs pen and paper
a competition, 1503

“abacist vs algorist”

abacus faster, but no 
written record

(introduction of 
arabic numerals in 

Europe)



• People make mistakes, arithmetic is 
tedious, so, let’s build a machine! 

• Pascal (1642)

Adding machine



Analog computing machines
• Mechanical device for tide prediction based 

on Fourier analysis

• Lord Kelvin (1872)
10 components

• 62 components, 
Germany (1935)
(in use until 1968!)



“Modern” digital computer

• Based on 
boolean logic 
(George Boole 
1847)

• Implemented basically via switches

• Programmable

• Charles Babbage envisioned 
mechanical computers, but 
never completed one. (25,000
metal parts, 15 tons, precision 
issues.)

• Ada Lovelace wrote first 
“program” for his machine.



Probably the first built...
(Konrad Zuse 1938-41)

Z1-Z3, built in his parent’s apartment in Berlin...

Destroyed in 
1944 by WW2 

bombing

• 30,000 metal 
parts (reliability 
problems!)



... the Z4 (1950)

• 2500 electro-mechanical 
relays

• 256 byte memory 
(64 32-bit floating point 
words)

• one multiply every 3 
seconds (modern 
laptops billions of times 
faster)

First computer sold (that actually worked)
sold to ETH Zurich, Switzerland



• electronic (1000x faster than electromechanical; 356 
multiply/sec) 

• > 18,000 vacuum 
tubes

• programmed by 
plugboard and 
switches

Another historical example: american Electronic 
Numerical Integrator And Computer (ENIAC,1945)



UNIVAC
• first commercial 

computer produced in 
the US

• The first UNIVAC was 
accepted by the US 
Census Bureau on 
March 31, 1951

• 5,200 vacuum tubes, 29,000 
pounds (13 metric tons), 
consumed 125 kW

• about 1,900 operations 
per second

https://en.wikipedia.org/wiki/Vacuum_tube
https://en.wikipedia.org/wiki/Vacuum_tube


From vacuum tube computers, to transistor 
computers, integrated circuit computers, but...

ICs hundreds (1970s) ICs millions (1990s)

tubes (4 logic gates, 1950s) 8 logic gates (1960s)



... basically
all digital computers are the same

The Turing-Church thesis (very informal)
any “computable function” that one computer can do,

any other digital computer can also do;
they are all are equivalent to Turing’s machine.

(speeds may vary enormously)



Origins of “modern” 
computer science (1930s)

• Foundations were laid by some 
breakthroughs starting in the 1930s with 
the work of  Alan Turing,  Alonzo Church 
Kurt Goedel, John v. Neumann, Emil L. Post, 
and others.

• Alan Turing (1936) introduced 
abstract model of a general purpose 
computer.

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Emil_Leon_Post
https://en.wikipedia.org/wiki/Emil_Leon_Post


Ambition: understand how 
living systems think; 

understand intelligence!

• Motivation driving the great minds that started this 
“new discipline”, which is now Computer Science.

• Goes back to Alan Turing, John von Neumann, 
Norbert Wiener (cybernetics), and others, starting in 
the1930s

• Physicists and mathematicians working together with 
neuroscientists

• First models of neurons. (Pitts, McCulloch)
=> neural nets => machine learning



Cybernetics

• Information processing, control and (self-) 
regulation in the animal and the machine

• 10 Macy Conferences (1946-53); eclectic 
group of interdisciplinary participants.



• Control theory and Information theory 

• Computational neuroscience

• Neural networks (machine learning) 

• Neuromorphic engineering

• Theory of self-organization of living systems

Visionary field spun/influenced 
a many areas, for example:  



• Basis for communication (wired and wireless), 
e.g. transmitting TV signals, internet, phone.

• At the core lies the question: 

• Original intellectual motivation: move from an 
energy based description of the world to an 
information based one.

Information theory

What is information?
How to measure it?



Claude Shannon
• While Wiener attacked the hard problem of 

continuous information processing, 

• Shannon made progress by first considering discrete 
symbols, showed that to fulfill simple assumptions, 
information is best measured by log(1/p)

• Average
 
is directly related to Gibbs entropy (e.g. E.T. Jaynes)

• Measures uncertainty, and the maximum (average) 
amount of information that can be gained by 
measuring the outcome of the random variable x

�
X

x

p(x) log[p(x)]



• Information is uncertainty reduction

• Channel capacity is the maximally 
transmittable (rate of) information
maximum over all information sources 
(x is input, y is output of the information channel)

I[X,Y ] = H[X]�H[X|Y ]

H[X] = �
X

x

p(x) log[p(x)]

H[X|Y ] = �
X

x,y

p(x, y) log[p(x|y)]

max

p(x)
I[x, y]



• A continuous signal has infinite information rate.

• But infinite resolution is irrelevant for most applications, 
some level of distortion is tolerable.

• The achievable rate of a continuous information source, 
if transmitted to finite resolution, i.e. for fixed average 
distortion is:

• Represent original signal, x, by encoded signal, s. 
Given: distortion function d(s,x); information source p(x)

• (units: convert between information in bits per symbol, 
and rate in bits per second: multiply by a constant -  
symbols per second)

R(D) := min
p(s|x)

I[s, x]

s.t.hd(s, x)i
p(s,x) = D



• Computational neuroscience produces mathematical 
models of neurons of varying degree of complexity 

• One of the first was the McCulloch-Pitts model, 
pioneered by Pitts in the early 1940s

• Simple model leads to simplest “learning machine”, the 
“Perceptron” (F. Rosenblatt 1957)

• From perceptron to multi-layer neural nets to the 
“Neocognitron”, to “deep learning”...

...we will hear more about this after the break...

Computational neuroscience 
to neural networks



• Interesting observation (Mead, late 1980s)
Transistors in the sub-threshold regime: 
current depends approximately exponentially 
on gate voltage. Similar current-voltage curve 
in ion channels (building blocks of cell 
membranes and neurons in the brain).

• Allows for a biology-inspired approach to 
computing, adaptive and able to learn

• analog VLSI

Neuromorphic engineering



• Achievements include:

• Silicon retina 
(Mahowald 1988)

• Silicon cochlea 
(Lyon and Mead 1988)

• Silicon neuron (Mahowald 1991)

• Silicon synapse (Dorio et al 1996)

• Cognitive systems (Indiveri et al. 2013-present)

Neuromorphic engineering

• Applications include:

• Prosthetics

• Low power devices



More historical relics-electronic analog 
programmable computers

• used e.g. for research in Chaos theory in the 
1970s, e.g. Rössler (1976), Shaw (1978).



Lorenz attractor
• Mathematical model for unpredictability 

and Chaos, e.g. in weather (1963)
- originally run on digital computer
- took all afternoon to get a few orbits!

https://www.youtube.com/watch?v=mbJpRAVZZuU

analog was faster at the time

digital now:
real-time simulation run on this laptop

50,000 points at once!
(courtesy Rob Shaw)

https://www.youtube.com/watch?v=mbJpRAVZZuU
https://www.youtube.com/watch?v=mbJpRAVZZuU


Back to the main track...

• Origins of neural networks come 
from mathematical descriptions of neurons 
(brain cells)

• Physicists and mathematicians working 
together with neuroscientists

• From neuron models to neural nets to 
machine learning... 
...after (short) coffee break (10 min). 



Break (10 min)



From brains to learning machines

• separate entities (Ramon y 
Cajal, Nobel Price 1906)

• connected by synapses   
(Sherington and Adrian, 
Nobel Price, 1932)

• many different types of 
neurons with different 
functionality

• Neurons: central nervous system (CNS) has ca.10^11.  They are:

Optic tectum (sparrow), drawing by Cajal



• Information processing 
within a neuron: electrical. 
Action potential 
(“spike”).

• Information processing 
between neurons: (mostly) 
chemical (exception: gap 
junctions)

Neurons communicate

http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif

Evoked Post-
Synaptic Potential 

(EPSP)

http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG
http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Keith_Palchikoff/biological%20neuron.JPG
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif


• Pre-synaptic action potential depolarizes synaptic terminal

• Voltage-sensitive calcium ion channels open => calcium enters

• Release of neurotransmitter; diffusion through synaptic cleft.

• Neurotransmitter 
binds to post-
synaptic receptors

• Ions enter post-
synaptic cell 
=> EPSP

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif

Pre-
synaptic 
action 

Potential

Evoked Post-Synaptic 
Potential (EPSP)

http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif
http://www.brain.riken.go.jp/english/g_braaw/images/g5/synapse.gif


(Temporal Integration of EPSPs)



Spatial Integration of EPSPs



Mathematical simplification

• Inputs form n neurons:

• get multiplied by weights 
at “synapses”:

• then added

• if above threshold, then 
neuron is “on”.

• Neurons are either on or off: represented by binary value.

xi

xiwi

X

i

xiwi

X
w1

wi

wn

xn

xi

x1

y = f

 
X

i

xiwi

!

• Remark: add     to the input vector, in order to write the bias as
                  to get more compact form wx, rather than wx + b
b = x0w0

x0



Transfer function
• Step function: 

• Used by Pitts & 
McCulloch (1942), 
and in Rosenblatt’s 
Perceptron (1957)

• Sigmoid (used in many “modern” 
feed forward neural nets): 

• Sigmoidal function is differentiable 
(good for deriving gradient decent 
learning rule; Backpropagation 
algorithm, Werbos 1974)



Neural networks (1940s/50s)
• Pitts and McCulloch (1942/3): 

“Formal” (mathematical) 
neurons thought of as 
processing units

• Networks can emulate any 
logical function.

• D. Hebb: Connections 
between neurons can change.
“Learning rule”: strengthen 
proportional to correlation 
between activity of pre- and 
post synaptic neuron.



Perceptron

• Assume that the labels are binary, either -1 or +1. 
➡ Does binary classification.

(Rosenblatt, 1957)

• Probably the first “learning machine”. 
Artificial neuron that solved a 
classification task (supervised 
learning):

• Given: N input vectors x together 
with labels l (this is the “teaching” 
signal).

• Goal: for any given input, the output 
of the classifier should be the same 
as the label. 



• adjust weights according to the correctness of the output 
until all input data in training set are classified correctly.

• error measure: compare output of the neuron (y) to desired 
output (= label, l): both are either -1 or 1, so:

‣ y*l = 1: correct classification, then:      l - y = 0

‣ y*l = -1: incorrect classification, then:  l - y = 2l

• adjust weight vector w for each misclassified input x, by 
adding l*x. This turns w towards/away from x if l=1/-1

• can do         w          w +c(l-y)x      for all training examples x

• c: step size parameter called “learning rate”;  0 < c < 1

Perceptron learning



Representational power

• the decision boundary of the 
perceptron is a line:

wx + b

• the perceptron learning 
algorithm converges if input data 
are linearly separable. 

• Novikoff (1962): Perceptron Convergence Theorem;
first margin-based error bound (in a way the “dawn” of 
statistical learning theory)



• Perceptron algorithm 
can not classify input 
data which can not be 
separated by a line. 

• For example XOR

XOR problem



XOR problem
• Perceptron algorithm 

can not classify input 
data which can not be 
separated by a line. 

• For example XOR
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XOR problem
• Perceptron algorithm 

can not classify input 
data which can not be 
separated by a line. 

• For example XOR

• A single artificial neuron can express the boolean 
functions AND, OR, and NOT, but not XOR.  



Minsky and Papert (1969)

• Shortcomings of perceptron were 
pointed out in a fierce manner by 
proponents of symbolic AI in 
what became a very influential 
book: “Perceptrons”. 

• Their intuition was that neural 
nets would not be useful in 
practical applications.

• This put a stop to neural network 
funding, and research was 
significantly diminished.



Come-back of neural nets and 
beginnings of machine learning

• Backpropagation algorithm (Werbos, 1974). 

• Neocognitron (Fukushima, late1970s).

• Backprop re-discovered, used to train multi-layer networks 
in the 1980s: first big successes in pattern recognition.

➡ Training convolutional NNs, eventually “deep learning”. 

• 1960s-1980s:  Vapnik with Chervonenkis and others looked 
carefully at the classification problem and developed 
statistical learning theory, addressing the problem of model 
complexity control.  Foundation for: 
➡ Support Vector machines (SVM, 1963)
➡ Kernel machines (1990s)



Backpropagation

• Use differentiable transfer function

• Gradient descent over all units in 
network: use chain rule to compute gradient.

• Forward pass: compute outputs of all units starting from 
input layer, ending with output layer

• Backward pass: compute gradient starting from output layer.

• Update the weights.

• Stochastic gradient descent - helps with computational cost 
and thus speed.



Kunihiko Fukushima

• Built the first electronic retina out of 
discrete components (1970, with Y. 
Yamaguchi, M. Yasuda, S. Nagata)

• Neocognitron, the “grandfather” of 
convolutional neural nets (1979/80)



• Built the first silicon retina out of discrete 
components (19xx)

• Neocognitron, the “grandfather” of convolutional 
neural nets (1980)

Neocognitron



ca.1980s-mid 90s: 
Neural nets

• Recurrent NNs as Ising models (Hopfield)

• Boltzmann machine (Hinton, Sejnowski)

• Convolutional network trained by 
backprop alg. for hand written digit 
recognition (LeCun and others). 



1990s: SVMs, Kernels and Bayes
• Support vector machine alg. (Vapnik&Chervonenkis 1963) 

• Nonlinear classifiers via Kernel trick (Vladimir Vapnik with 
Isabelle Guyon, Bernard Moser, 1992) 

• Soft margin SVM implements empirical risk minimization 
(Vapnik and Corinna Cortes, 1995)

• More Kernel machines (Kernel PCA etc., Bernhard 
Schoelkopf, A. Smolla, and many others)

• Bayesian Inference and probabilistic foundations of ML 
(MacKay, Neal, Hinton, Bishop, Jordan,...)

• Increasing amount of information theory applied to machine 
learning, and to neuroscience (Bialek and others)



New Millenium
• Proliferation of ML methods!

• Many new application areas 

• “Big data”

• NNs big comeback in “deep learning”

• New hardware: 

• GPUs 

• Quantum computers... ?!



• This is just a selection... 

• NIPS conference proceedings 
(Neural Information 
Processing Systems)

• Journal of Machine learning 
research

• Other conferences, such as 
UAI (Uncertainty in Artificial 
Intelligence), ICML(Int. Conf. 
Machine Learning)

• Obscure “old” books

ML techniques

Image stolen from Chris Bishop’s lecture 
at MLSS 2013,  MPI Tuebingen 

http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence
http://academic.research.microsoft.com/Conference/427/uai-uncertainty-in-artificial-intelligence


Ack! Too much “stuff”
• Are there some simple principles? 

• Is there physics behind all of this?

‣ Presumably living systems are physical, so 
then, can we have physical principles guide us 
in the jungle of data processing and learning 
algorithms?

• Study physical limits of information processing... 

• Hope to get to building principles!



Biology - a mess? 
Are there physical principles?



Machine learning for physicists!
✓ Overview of some history and core ideas

• Physical limits to information processing

2. Equilibrium thermodynamics applied to information processing

3. Introduction to information processing far from thermodynamic 
equilibrium, selected topics.

4. From physical limits to information theory...

5. ...to unsupervised learning... 

6. ...and cluster analysis.

7. Supervised learning: neural nets

8. Introduction to main ideas in statistical learning theory; 
Support vector machines, Kernel trick.

9. Bayesian Inference

10. Brief overview of selected “fashionable” ML techniques.



Homework
• Implement perceptron learning algorithm: N Inputs x & labels l

‣ Initialize weight vector w 

‣ While there exist misclassified examples:

‣ Compute output y =  (wx ) 

‣ For each example, update the weights:  w += c(l -y )x

• Play around with the parameter (learning rate) and the input data, 
and verify for yourself what the Perceptron can and can not do

‣ Make a movie of Perceptron converging, and one of Perceptron 
failing on the XOR.

• What else do you notice?

‣ Is every solution the same? If not, are some “better” than others 
in some sense? 

j j

✓j j

j j j


