EXERCISES:
 GEOMETRIC STRUCTURES AND REPRESENTATIONS OF DISCRETE GROUPS

F. KASSEL

1. (G, X)-MAPS

Let G be a Lie group acting faithfully, transitively, and analytically on a manifold X.

Exercise 1. Let M be a connected (G, X)-manifold. Show that if $f_{1}, f_{2}: M \rightarrow X$ are two (G, X)-maps, then there exists $g \in G$ such that $f_{2}(m)=g \cdot f_{1}(m)$ for all $m \in M$.

Exercise 2. Let M be a connected manifold with universal covering $\pi: \tilde{M} \rightarrow M$. Show that any for (G, X)-structure on M there is a unique (G, X)-structure on \tilde{M} such that π is a (G, X)-map. Show that for this structure, for any $\gamma \in \pi_{1}\left(M, m_{0}\right)$ the deck transformation $\gamma: \tilde{M} \rightarrow \tilde{M}$ is a (G, X)-map.

2. Examples of geometric structures

Exercise 3. Let $(G, X)=\left(\mathrm{PGL}_{2}(\mathbb{R}), \mathbb{H}^{2}\right)$ (real hyperbolic geometry).
a) Draw an example of a developing map and holonomy representation for a (G, X)-structure on a closed surface of genus ≥ 2.
b) Show that a 2-dimensional torus does not admit any complete (G, X)structure.
In fact it does not admit any (G, X)-structure at all, since such a structure would need to be complete (as a consequence of the Hopf-Rinow theorem in Riemannian geometry).

Exercise 4. Let $(G, X)=\left(\mathrm{PGL}_{2}(\mathbb{C}), \mathbb{P}^{1}(\mathbb{C})\right)$ (complex projective geometry). Show that a closed surface of genus $g \geq 1$ does not admit any complete (G, X)-structure.

Exercise 5. Let $(G, X)=\left(\operatorname{PGL}_{3}(\mathbb{R}), \mathbb{P}^{2}(\mathbb{R})\right)$, let M be a 2-dimensional torus, and let $a, b \in \pi_{1}(M)$ be generators of $\pi_{1}(M) \simeq \mathbb{Z}^{2}$. Show that the homomorphism $h: \pi_{1}(M) \rightarrow G$ defined by

$$
h(a)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad h(b)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right)
$$

is the holonomy of an (incomplete) (G, X)-structure on M. Draw the de-

[^0]veloping map.
Exercise 6. For $p, q \in \mathbb{N}$ with $p+q \geq 2$, let
$$
\mathbb{H}^{p, q}:=\left\{[x] \in \mathbb{P}\left(\mathbb{R}^{p+q+1}\right) \mid x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q+1}^{2}<0\right\}
$$
a) Show that $G=\mathrm{SO}(p, q+1)$ acts transitively on $\mathbb{H}^{p, q}$. What is the stabilizer of a point?
b) Consider the double cover
$$
\hat{\mathbb{H}}^{p, q}:=\left\{x \in \mathbb{R}^{p+q+1} \mid x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q+1}^{2}=-1\right\}
$$
of $\mathbb{H}^{p, q}$. Check that, on any tangent space to $\hat{\mathbb{H}}^{p, q}$ in \mathbb{R}^{p+q+1}, the quadratic form $x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q+1}^{2}$ restricts to a quadratic form of signature (p, q).
This shows that $\hat{\mathbb{H}}^{p, q}$ has a G-invariant pseudo-Riemannian metric of signature (p, q) (i.e. on every tangent space there is a nondegenerate quadratic form of signature (p, q), and this family is G-invariant and smooth). As a consequence, $\mathbb{H}^{p, q}$ also has a G-invariant pseudo-Riemannian metric of signature (p, q). For $q=0$, this gives the usual hyperbolic metric on the hyperbolic space $\mathbb{H}^{p, 0}=\mathbb{H}^{p}$.
c) What is the topology of $\mathbb{H}^{p, q}$ and of its boundary in $\mathbb{P}\left(\mathbb{R}^{p+q+1}\right)$?
d) Show that the group $\mathrm{U}(n, 1)$ acts properly and transitively on $\mathbb{H}^{2 n, 1}$. Deduce the existence of compact (G, X)-manifolds for $(G, X)=\left(\operatorname{SO}(2 n, 2), \mathbb{H}^{2 n, 1}\right)$.
e) Use a similar idea to prove the existence of compact (G, X)-manifolds for $(G, X)=\left(\mathrm{SO}(4 n, 4), \mathbb{H}^{4 n, 3}\right)$ and for $(G, X)=\left(\mathrm{SO}(8,8), \mathbb{H}^{8,7}\right)$.
An open conjecture states that these are the only values of $p, q \neq 0$ for which compact ($\mathrm{SO}\left(p, q+1\right.$), $\left.\mathbb{H}^{p, q}\right)$-manifolds exist.

Exercise 7. Consider the space

$$
\mathbb{H}^{2,1}:=\left\{[x] \in \mathbb{P}\left(\mathbb{R}^{4}\right) \mid x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-\cdots-x_{4}^{2}<0\right\},
$$

which is also known as AdS^{3} or anti-de Sitter 3-space.
a) Draw a picture of $\mathbb{H}^{2,1}$ in an affine chart of $\mathbb{P}\left(\mathbb{R}^{4}\right)$.
b) Explicit a diffeomorphism $\varphi: \mathbb{H}^{2,1} \xrightarrow{\sim} \operatorname{PSL}_{2}(\mathbb{R})$ which conjugates the action of $\mathrm{SO}(2,2)_{0} /\{ \pm \mathrm{I}\}$ on $\mathbb{H}^{2,1}$ to the action of $\mathrm{PSL}_{2}(\mathbb{R}) \times \operatorname{PSL}_{2}(\mathbb{R})$ on $\mathrm{PSL}_{2}(\mathbb{R})$ by left and right multiplication: $\left(g_{1}, g_{2}\right) \cdot g=g_{1} g g_{2}^{-1}$.
c) Show that the diffeomorphism φ induces a diffeomorphism from the boundary $\partial \mathbb{H}^{2,1}$ of $\mathbb{H}^{2,1}$ in $\mathbb{P}\left(\mathbb{R}^{4}\right)$ to $\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}^{1}(\mathbb{R})$, which conjugates the action of $\mathrm{SO}(2,2)_{0} /\{ \pm \mathrm{I}\}$ on $\partial \mathbb{H}^{2,1}$ to the factor-by-factor action of $\mathrm{PSL}_{2}(\mathbb{R}) \times$ $\operatorname{PSL}_{2}(\mathbb{R})$ on $\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}^{1}(\mathbb{R})$.
d) On the picture of Question a), draw the sets $\mathbb{P}^{1}(\mathbb{R}) \times\{t\}$ and $\{t\} \times \mathbb{P}^{1}(\mathbb{R})$ for $t \in \mathbb{P}^{1}(\mathbb{R})$.

3. Convex projective geometry

Recall that the cross ratio of four distinct points $x, y, z, t \in \mathbb{P}^{1}(\mathbb{R})$ is defined by

$$
[x, y, z, t]:=\frac{(z-x)(t-y)}{(t-x)(z-y)} \in \mathbb{R}^{*}
$$

Exercise 8. Let Ω be a properly convex domain in $\mathbb{P}^{n}(\mathbb{R})$. For $x, y \in \Omega$, set

$$
d(x, y):=\frac{1}{2} \log [x, y, b, a]
$$

where a, b are the intersection points of $\partial \Omega$ with the projective line through x and y, with a, x, y, b in this order.
a) Show that the function $d: \Omega \times \Omega \rightarrow \mathbb{R}$ is a metric on Ω which is complete (i.e. Cauchy sequences converge) and proper (i.e. closed balls are compact). It is called the Hilbert metric. Check that it is invariant under the subgroup $\operatorname{Aut}(\Omega)$ of $\mathrm{PGL}_{n+1}(\mathbb{R})$ preserving Ω.
b) Show that straight lines are geodesics for d.
c) In which situation can there be more than one geodesic between two points of Ω ?

Exercise 9. a) Show that the Hilbert metric on

$$
\Omega=\mathbb{H}^{n}=\left\{[x] \in \mathbb{P}\left(\mathbb{R}^{n+1}\right) \mid x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}<0\right\}
$$

coincides with the usual hyperbolic metric.
b) Show that the interior of a triangle of $\mathbb{R}^{2} \subset \mathbb{P}\left(\mathbb{R}^{3}\right)$, endowed with its Hilbert metric, is isometric to \mathbb{R}^{2} endowed with a norm whose unit ball is a regular hexagon.

Exercise 10. Let Ω be a properly convex domain in $\mathbb{P}^{n}(\mathbb{R})$ and Γ a discrete subgroup of $\mathrm{PGL}_{n+1}(\mathbb{R})$ preserving Ω. Show that Γ acts properly discontinuously on Ω. In particular, if Γ is torsion-free, then $\Gamma \backslash \Omega$ is a (G, X)-manifold for $(G, X)=\left(\mathrm{PGL}_{n+1}(\mathbb{R}), \mathbb{P}^{n}(\mathbb{R})\right)$.

Exercise 11. a) For $d \geq 2$, show that the Riemannian symmetric space $\mathrm{SL}_{d}(\mathbb{R}) / \mathrm{SO}(d)$ can be realized as a convex domain in some projective space $\mathbb{P}^{n}(\mathbb{R})$ (specify the dimension n). Any discrete subgroup of $\mathrm{SL}_{d}(\mathbb{R})$ thus gives rise to a (G, X)-manifold with $(G, X)=\left(\mathrm{PGL}_{n+1}(\mathbb{R}), \mathbb{P}^{n}(\mathbb{R})\right)$.
b) Similar question for $\mathrm{SL}_{d}(\mathbb{C}) / \mathrm{SU}(d)$.

Exercise 12. Let Γ be a discrete subgroup of $G=\mathrm{PGL}_{n+1}(\mathbb{R})$ acting properly discontinuously and cocompactly on a properly convex domain Ω in $X=\mathbb{P}^{n}(\mathbb{R})$. Show that Γ is a hyperbolic group if and only if Ω is strictly convex. This was first proved by Benoist.

4. Cartan projection

Exercise 13. Recall that $G=\mathrm{SL}_{n}(\mathbb{R})$ admits the Cartan decomposition $G=K A^{+} K$ where $K=\mathrm{SO}(n)$ and

$$
A^{+}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in G \mid a_{1} \geq \cdots \geq a_{n}>0\right\}
$$

This means that any $g \in G$ may be written $g=k a k^{\prime}$ for some $k, k^{\prime} \in K$ and a unique $a \in A^{+}$. Setting $\mu(g):=\log (a)$ defines a map $\mu: G \rightarrow \mathfrak{a}^{+}:=\log \left(A^{+}\right)$ called the Cartan projection associated with the Cartan decomposition $G=$ $K A^{+} K$.
a) Show that $\mu: G \rightarrow \mathfrak{a}^{+}$is a continuous, proper, surjective map.
b) Let Γ and H be two closed subgroups of G. Show that Γ acts properly discontinuously on G / H if and only the set $\mu(\Gamma)$ "drifts away at infinity"
from the set $\mu(H)$, in the sense that for any compact subset \mathcal{C} of $\mathfrak{a}:=$ $\operatorname{span}\left(\mathfrak{a}^{+}\right)$, the set $\mu(\Gamma) \cap(\mu(H)+\mathcal{C})$ is compact. This was first proved by Benoist and Kobayashi (independently).
(You may use the following property: $\left\|\mu\left(g_{1} g g_{2}\right)-\mu(g)\right\| \leq\left\|\mu\left(g_{1}\right)\right\|+\left\|\mu\left(g_{2}\right)\right\|$ for any $g, g_{1}, g_{2} \in G$.)

Exercise 14. Let $G=\mathrm{SL}_{4}(\mathbb{R})$ with its Cartan projection

$$
\mu: G \longrightarrow \mathfrak{a}^{+} \simeq\left\{t \in \mathbb{R}^{4} \mid t_{1}+\cdots+t_{4}=0, t_{1} \geq \cdots \geq t_{4}\right\}
$$

Let $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be the standard basis of \mathbb{R}^{4}, let P_{1} be the stabilizer in G of the partial flag $\left(\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}, e_{3}\right\rangle \subset \mathbb{R}^{4}\right)$ and P_{2} the stabilizer in G of the partial flag $\left(\left\langle e_{1}, e_{2}\right\rangle \subset \mathbb{R}^{4}\right)$.
a) Compute $\mu\left(H_{1}\right)$ where H_{1} is the image of the diagonally embedding of $\mathrm{SL}_{2}(\mathbb{R})$ into $\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R}) \subset G$. Deduce (using the result mentioned in the lecture) that if $\rho: \Gamma \rightarrow G$ is a P_{1}-Anosov representation, then Γ acts properly discontinuously via ρ on G / H_{1}.
b) Compute $\mu\left(H_{2}\right)$ where $H_{2}=\mathrm{SO}(3,1) \subset G$. Deduce that if $\rho: \Gamma \rightarrow G$ is a P_{2}-Anosov representation, then Γ acts properly discontinuously via ρ on G / H_{2}.

[^0]: Advanced School on Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances, ICTP, Trieste, 23-27 May 2016.

