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General Thermodynamic Formalism.

M compact metric space. f ∈ Homeo(M).

Topological pressure:

Pf (M) := set of f -invariant Borel probability measures on M.

If ϕ : M → R is continuous (potential), define

Ptop(ϕ) = sup
ν∈Pf (M)

{hν(f ) +

∫
ϕdν}.
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Equilibrium States.

Definition
µ ∈ Pf (M) is an equilibrium state for the potential ϕ if
Ptop(ϕ) = hµ(f ) +

∫
ϕdµ (i.e. the supremum is attained).

We are interested in:

Existence of equilibrium states. General methods (Bowen).

Uniqueness of equilibrium states General (but more restrictive)
methods (Bowen, or more recently, Climenhaga-Thompson).

Properties/Description of equilibrium states. (Mixing. Bernoulli.
Decay of correlations.)
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A very important theorem in smooth ergodic theory.

Smooth Ergodic Theory: M is a manifold and f ∈ Diff r (M).

Theorem
Λ ⊂ M hyperbolic attractor for f (in particular, f |Λ is transitive).
Then for every Hölder potential ϕ : Λ→ R there exists a unique
equilibrium state µϕ for f |Λ.

Furthermore, is f |Λ is topologically mixing then the system (f , µϕ) is
metrically isomorphic to a Bernoulli shift.

Due to: Sinai-Ruelle-Bowen, Ornstein and Weiss.
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Then for every Hölder potential ϕ : Λ→ R there exists a unique
equilibrium state µϕ for f |Λ.

Furthermore, is f |Λ is topologically mixing then the system (f , µϕ) is
metrically isomorphic to a Bernoulli shift.

Due to: Sinai-Ruelle-Bowen,

Ornstein and Weiss.

P. Carrasco, ICMC-USP visiting ICTP Equilibrium States are determined by their unstable conditionals. 4/20



A very important theorem in smooth ergodic theory.

Smooth Ergodic Theory: M is a manifold and f ∈ Diff r (M).

Theorem
Λ ⊂ M hyperbolic attractor for f (in particular, f |Λ is transitive).
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Examples:

ϕ ≡ 0⇒ µ is the entropy maximizing measure.

ϕ(x) = − log |det df |E u
x | ⇒ µ is the SRB measure (need to assume

f is C 1+θ)
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Main idea and Generalizations.

Main idea of the proof: Using Markov partitions reduce to a subshift of
finite type and establish the theorem there. Then push everything back
to the manifold using the semi-conjugacy.

Several generalizations of the above theorem exists. Highlight: Anosov
flows.

Some hyperbolicity is usually required, either for f of for the potential
(see for example Y. Lima’s course next week).

We discuss now one important example where the available methods fail.
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Diagonal actions (on locally homogeneous spaces).

In the course of Mohammadi it’s been discussed diagonal actions on
quotients of SL(n,R).

G = Sl(3,R)

.
A = {diag(ea, eb, ec) : a + b + c = 0} < G

Γ < G co-compact torsion free lattice.

α : A y M = Sl(3,R)/Γ

is an Anosov action, meaning there exists an element f = α(g) having an
invariant splitting

TM = E s ⊕ E c ⊕ E u

such that (for some metric) df |E u expansion, df |E s contraction and E c

is tangent to the orbits of the action.
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Center isometries.

The metric in M can be chosen so that f acts as an isometry on the orbit
foliation. Hence, f is a center isometry (the definition is nearly evident).

Remark: no hyperbolicity whatsoever along the center.

For a center isometry all bundles
E s ,E u,E c ,E cs = E c ⊕ E s ,E cu = E c ⊕ E u are integrable to f -invariant
foliations W ∗.
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Main Theorems.

f : M → M center isometry of class C 2 s.t
W s ,W u are minimal.

ϕ : M → R Hölder potential.

Theorem A [P.C., F. Rodriguez-Hertz]
There exist µϕ ∈ Pf (M) and families of measures
µu = {µu

x}x∈M , µs = {µs
x}x∈M , µcu = {µcu

x }x∈M , µcs = {µcs
x }x∈M

satisfying the following.

1. The probability µϕ is an equilibrium state for the potential ϕ.

2. For every x ∈ M the measure µσ, σ ∈ {u, s, cu, cs} is a Radon
measure on W σ(x) which is positive on relatively open sets, and
y ∈W σ(x) implies µσx = µσy .
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Cont.

3. If ξ is a measurable partition that refines the partition by unstable
(stable) leaves then the conditionals (µϕ)ξx of µϕ are equivalent to
µu
x (resp. µs

x) for µϕ − a.e.(x).

4. For every ε > 0 sufficiently small, for every x ∈ M the measure
µϕ|D(x ; ε) has product structure with respect to the pair µu

x , µ
cs
x ,

i.e. its equivalent to µu
x × µcs

x .

5. Given ε > 0 there exist a(ε), b(ε) > 0 such that if

U(x , ε, n) = {y ∈W u(x , ε) : d(f jx , f jy) < ε, j = 0, . . . , n − 1}

then

a(ε) ≤ µu
x (U(x , ε, n)))

eSnϕ(x)−nPtop(ϕ)
≤ b(ε).
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Bernoulli property and uniqueness.

Theorem B [P.C., F. Rodriguez-Hertz]
Under certain technical conditions the system (f , µϕ) is metrically
isomorphic to a Bernoulli shift.

Theorem C [P.C., F. Rodriguez-Hertz]
If either

dimE s , dimE u = 1, or

f is an ergodic automorphisms of TN (no repeated eigenvalues),

the equilibrium state µϕ is unique.

Work in progress: Uniqueness also holds in the homogeneous examples
(Weyl Chambers’ flow).
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SRB measures.

In the general setting, an SRB measure is a invariant measure whose
unstable conditionals are absolutely continuous with respect to Lebesgue.
We keep working with center isometries.

• SRB measures exist (Sinai-Pesin).

• Ledrappier-Young: µ is an SRB if and only if

hµ(f ) =

∫
log Ju(x)dµ(x) Ju(x) = det(df |E u

x )

Implicit: Unstable manifolds coincide with Pesin’s unstable manifolds.
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Eq. states are determined by their unstable conditionals.

Theorem D [P.C., F. Rodriguez-Hertz]
If µ is an equilibrium state for ϕ then µ has conditionals along unstables
equivalent to µu.
Similarly it has conditionals along stables equivalent to µs .

Conversely if µ ∈ Pf (M) has unstable conditionals absolutely continuous
wrt µu, then µ is an equilibrium state for ϕ.

The families µu, µs provide the reference measures to which one can
compare.
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Sketch of the proof: Thm D.

Definition
We call a measurable partition ξ a SPLY partition if

f ξ < ξ.

ξ subordinated to Wu

µ-a.e. x the atom ξ(x) contains a neighbourhood of x inside W u(x).

SPLY partitions exist: (Sinai, Pesin - Ledrappier, Strelcyn).

We fix one SPLY partition and take m ∈ Pf (M) equilibrium state for ϕ;
denote mx = unstable conditional of m on ξ(x).
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’Change of variables’ for µu

Theorem
For every x ∈ M

1. µσfx = ePtop(ϕ)−ϕf∗µ
σ
x σ ∈ {u, cu}.

2. µσfx = eϕ−Ptop(ϕ)f∗µ
σ
x σ ∈ {s, cs}.
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Cont. proof

If mx << µu
x m − a.e.(x) we can write

dmx = ρdµu
x

where ρ is measurable on M. One can then show

x 7→ ρ(x)

ρ(f −1x)
eP−ϕ(f −1x)

is constant on the atoms of ξ. From here one deduces that

y ∈ ξ(x)⇒ ρ(y)

ρ(x)
=
∞∏
k=1

eϕ◦f
−k (y)

eϕ◦f −k (x)
= ∆x(y).
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Cont. proof

⇒ ρ (provided is defined) should have the form

ρ(y) =
∆x(y)

L(x)
, y ∈ ξ(x)

with L(x) =
∫
ξ(x)

∆x(y)dµu
x (y).

Define a measure ν by requiring ν = m on Bξ and such its conditionals
on ξ are given by dνx = ρdµx . We want to prove m = ν.

It is enough to show m = ν on every Bf −nξ, n ≥ 0. An induction
argument shows that after proving m = ν on Bf −1ξ we are done.
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Cont. proof

q(x) = νx(f −1ξ(x))⇒

q(x) =
1

L(x)

∫
f −1(ξ(fx))

∆x(f −1fy)
eP−ϕ(y)

eP−ϕ(f −1fy)
dµu

x

=
1

L(x)

∫
ξ(fx)

∆x(f −1z)eϕ(f
−1z)−Pdµu

fx(z) =
L(fx)

L(x)
eϕ(x)−P ≤ 1

L(fx)

L(x)
≤ eϕ(x)−P ∈ L1(M,m)

∫
log

L ◦ f

L
dm = 0⇒

∫
− log q(x)dm(x) = P −

∫
ϕdm.
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End of the proof.

⇒ P −
∫
ϕdm =

∫
− log νx(f −1ξ(x))dm(x).

Since ξ is a SPLY and m equilibrium state, Ledrappier, Young tell us that

⇒ P −
∫
ϕdm = hm(f ) = H(f −1ξ|ξ) =

∫
− log mx(f −1ξ(x))dm(x)

⇒
∫
− log

νx(f −1ξ(x))

mx(f −1ξ(x))
dm(x) = 0

Using strict convexity of the logarithm function plus working (carefully)
with the partitions f −1ξ(x))|ξ(x) we deduce

dν

dm

∣∣∣∣
f −1ξ

(x) = 1 m − a.e.x ∈ M.

and afterwards, mx = νx on ξ(x) for ALL atoms, as we wanted to show.
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Grazie!!!
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