Equilibrium States are determined by their unstable conditionals.

Pablo D. Carrasco

(joint w/ Federico Rodriguez-Hertz)

ICMC-USP visiting ICTP

July of 2016

ICTP

Topological pressure:

Topological pressure:

 $\mathcal{P}_f(M) :=$ set of *f*-invariant Borel probability measures on *M*.

Topological pressure:

 $\mathcal{P}_f(M) :=$ set of *f*-invariant Borel probability measures on *M*.

If $\varphi: M \to \mathbb{R}$ is continuous (potential), define

Topological pressure:

 $\mathcal{P}_f(M) :=$ set of *f*-invariant Borel probability measures on *M*.

If $\varphi: M \to \mathbb{R}$ is continuous (potential), define

$$P_{top}(\varphi) = \sup_{\nu \in \mathcal{P}_{f}(M)} \{h_{\nu}(f) + \int \varphi d\nu\}.$$

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

We are interested in:

• Existence of equilibrium states.

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

We are interested in:

> Existence of equilibrium states. General methods (Bowen).

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

- > Existence of equilibrium states. General methods (Bowen).
- Uniqueness of equilibrium states

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

- Existence of equilibrium states. General methods (Bowen).
- Uniqueness of equilibrium states General (but more restrictive) methods

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

- Existence of equilibrium states. General methods (Bowen).
- Uniqueness of equilibrium states General (but more restrictive) methods (Bowen, or more recently, Climenhaga-Thompson).

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

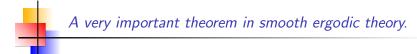
- Existence of equilibrium states. General methods (Bowen).
- Uniqueness of equilibrium states General (but more restrictive) methods (Bowen, or more recently, Climenhaga-Thompson).
- Properties/Description of equilibrium states.

Definition

 $\mu \in \mathcal{P}_f(M)$ is an equilibrium state for the potential φ if $P_{top}(\varphi) = h_{\mu}(f) + \int \varphi d\mu$ (i.e. the supremum is attained).

- Existence of equilibrium states. General methods (Bowen).
- Uniqueness of equilibrium states General (but more restrictive) methods (Bowen, or more recently, Climenhaga-Thompson).
- Properties/Description of equilibrium states. (Mixing. Bernoulli. Decay of correlations.)

A very important theorem in smooth ergodic theory.



Theorem

Theorem

 $\Lambda \subset M$ hyperbolic attractor for f (in particular, f| Λ is transitive).

Theorem

 $\Lambda \subset M$ hyperbolic attractor for f (in particular, $f | \Lambda$ is transitive). Then for every Hölder potential $\varphi : \Lambda \to \mathbb{R}$ there exists a unique equilibrium state μ_{φ} for $f | \Lambda$.

Theorem

 $\Lambda \subset M$ hyperbolic attractor for f (in particular, $f | \Lambda$ is transitive). Then for every Hölder potential $\varphi : \Lambda \to \mathbb{R}$ there exists a unique equilibrium state μ_{φ} for $f | \Lambda$.

Furthermore, is $f|\Lambda$ is topologically mixing then the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Theorem

 $\Lambda \subset M$ hyperbolic attractor for f (in particular, $f | \Lambda$ is transitive). Then for every Hölder potential $\varphi : \Lambda \to \mathbb{R}$ there exists a unique equilibrium state μ_{φ} for $f | \Lambda$.

Furthermore, is $f|\Lambda$ is topologically mixing then the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Due to: Sinai-Ruelle-Bowen,

Theorem

 $\Lambda \subset M$ hyperbolic attractor for f (in particular, $f | \Lambda$ is transitive). Then for every Hölder potential $\varphi : \Lambda \to \mathbb{R}$ there exists a unique equilibrium state μ_{φ} for $f | \Lambda$.

Furthermore, is $f|\Lambda$ is topologically mixing then the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Due to: Sinai-Ruelle-Bowen, Ornstein and Weiss.

• $\varphi \equiv \mathbf{0} \Rightarrow \mu$ is the entropy maximizing measure.

• $\varphi \equiv 0 \Rightarrow \mu$ is the entropy maximizing measure.

• $\varphi(x) = -\log |\det df| E_x^u| \Rightarrow \mu$ is the SRB measure (need to assume f is $C^{1+\theta}$)

Main idea of the proof:

Several generalizations of the above theorem exists.

Several generalizations of the above theorem exists. Highlight: Anosov flows.

Several generalizations of the above theorem exists. Highlight: Anosov flows.

Some hyperbolicity is usually required, either for f of for the potential (see for example Y. Lima's course next week).

Several generalizations of the above theorem exists. Highlight: Anosov flows.

Some hyperbolicity is usually required, either for f of for the potential (see for example Y. Lima's course next week).

We discuss now one important example where the available methods fail.

Diagonal actions (on locally homogeneous spaces).

In the course of Mohammadi it's been discussed diagonal actions on quotients of $SL(n, \mathbb{R})$.

In the course of Mohammadi it's been discussed diagonal actions on quotients of $SL(n, \mathbb{R})$.

$$G = SI(3, \mathbb{R})$$

In the course of Mohammadi it's been discussed diagonal actions on quotients of $SL(n, \mathbb{R})$.

$$G = SI(3, \mathbb{R})$$

$$A = \{ diag(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

In the course of Mohammadi it's been discussed diagonal actions on quotients of $SL(n, \mathbb{R})$.

$$G = SI(3, \mathbb{R})$$

$$A = \{ diag(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

 $\Gamma < G$ co-compact torsion free lattice.

$$G = SI(3, \mathbb{R})$$

$$A = \{ \textit{diag}(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

 $\Gamma < G$ co-compact torsion free lattice.

 $\alpha: A \curvearrowright M = SI(3, \mathbb{R})/\Gamma$

$$G = SI(3, \mathbb{R})$$

$$A = \{ diag(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

 $\Gamma < G$ co-compact torsion free lattice.

 $\alpha: A \curvearrowright M = SI(3, \mathbb{R})/\Gamma$

is an Anosov action

$$G = SI(3, \mathbb{R})$$

$$A = \{ diag(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

 $\Gamma < G$ co-compact torsion free lattice.

 $\alpha : A \curvearrowright M = SI(3, \mathbb{R})/\Gamma$

is an Anosov action, meaning there exists an element $f = \alpha(g)$ having an invariant splitting

$$TM = E^s \oplus E^c \oplus E^u$$

P. Carrasco, ICMC-USP visiting ICTP

$$G = SI(3, \mathbb{R})$$

$$A = \{ diag(e^a, e^b, e^c) : a + b + c = 0 \} < G$$

 $\Gamma < G$ co-compact torsion free lattice.

 $\alpha : A \curvearrowright M = SI(3, \mathbb{R})/\Gamma$

is an Anosov action, meaning there exists an element $f = \alpha(g)$ having an invariant splitting

$$TM = E^s \oplus E^c \oplus E^u$$

such that (for some metric) $df|E^u$ expansion, $df|E^s$ contraction and E^c is tangent to the orbits of the action. P. Carrasco, ICMC-USP visiting ICTP Equilibrium States are determined by their unstable conditionals.

The metric in M can be chosen so that f acts as an isometry on the orbit foliation.

The metric in M can be chosen so that f acts as an isometry on the orbit foliation. Hence, f is a center isometry (the definition is nearly evident).

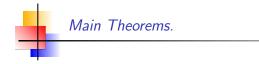
The metric in M can be chosen so that f acts as an isometry on the orbit foliation. Hence, f is a center isometry (the definition is nearly evident).

Remark: no hyperbolicity whatsoever along the center.

The metric in M can be chosen so that f acts as an isometry on the orbit foliation. Hence, f is a center isometry (the definition is nearly evident).

Remark: no hyperbolicity whatsoever along the center.

For a center isometry all bundles $E^s, E^u, E^c, E^{cs} = E^c \oplus E^s, E^{cu} = E^c \oplus E^u$ are integrable to *f*-invariant foliations W^* .



$f: M \to M$ center isometry of class C^2 s.t

 $\varphi: \mathcal{M} \to \mathbb{R}$ Hölder potential.

 $\varphi: \mathcal{M} \to \mathbb{R}$ Hölder potential.

Theorem A [P.C., F. Rodriguez-Hertz] There exist $\mu_{\varphi} \in \mathcal{P}_f(M)$ and families of measures $\mu^u = \{\mu_x^u\}_{x \in M}, \mu^s = \{\mu_x^s\}_{x \in M}, \mu^{cu} = \{\mu_x^{cu}\}_{x \in M}, \mu^{cs} = \{\mu_x^{cs}\}_{x \in M}$ satisfying the following.

 $\varphi: \mathcal{M} \to \mathbb{R}$ Hölder potential.

Theorem A [P.C., F. Rodriguez-Hertz]

There exist $\mu_{\varphi} \in \mathcal{P}_f(M)$ and families of measures $\mu^u = \{\mu_x^u\}_{x \in M}, \mu^s = \{\mu_x^s\}_{x \in M}, \mu^{cu} = \{\mu_x^{cu}\}_{x \in M}, \mu^{cs} = \{\mu_x^{cs}\}_{x \in M}$ satisfying the following.

1. The probability μ_{φ} is an equilibrium state for the potential φ .

 $\varphi: \mathcal{M} \to \mathbb{R}$ Hölder potential.

Theorem A [P.C., F. Rodriguez-Hertz]

There exist $\mu_{\varphi} \in \mathcal{P}_{f}(M)$ and families of measures $\mu^{u} = \{\mu_{x}^{u}\}_{x \in M}, \mu^{s} = \{\mu_{x}^{s}\}_{x \in M}, \mu^{cu} = \{\mu_{x}^{cu}\}_{x \in M}, \mu^{cs} = \{\mu_{x}^{cs}\}_{x \in M}$ satisfying the following.

- 1. The probability μ_{φ} is an equilibrium state for the potential φ .
- For every x ∈ M the measure μ^σ, σ ∈ {u, s, cu, cs} is a Radon measure on W^σ(x) which is positive on relatively open sets, and y ∈ W^σ(x) implies μ^σ_x = μ^σ_y.

3. If ξ is a measurable partition that refines the partition by unstable (stable) leaves then the conditionals $(\mu_{\varphi})_x^{\xi}$ of μ_{φ} are equivalent to μ_x^u (resp. μ_x^s) for $\mu_{\varphi} - a.e.(x)$.

- 3. If ξ is a measurable partition that refines the partition by unstable (stable) leaves then the conditionals $(\mu_{\varphi})_{x}^{\xi}$ of μ_{φ} are equivalent to μ_{x}^{u} (resp. μ_{x}^{s}) for $\mu_{\varphi} a.e.(x)$.
- 4. For every $\epsilon > 0$ sufficiently small, for every $x \in M$ the measure $\mu_{\varphi}|D(x;\epsilon)$ has product structure with respect to the pair μ_x^u, μ_x^{cs} , i.e. its equivalent to $\mu_x^u \times \mu_x^{cs}$.

- If ξ is a measurable partition that refines the partition by unstable (stable) leaves then the conditionals (μ_φ)^ξ_x of μ_φ are equivalent to μ^u_x (resp. μ^s_x) for μ_φ a.e.(x).
- 4. For every $\epsilon > 0$ sufficiently small, for every $x \in M$ the measure $\mu_{\varphi}|D(x;\epsilon)$ has product structure with respect to the pair μ_x^u, μ_x^{cs} , i.e. its equivalent to $\mu_x^u \times \mu_x^{cs}$.
- 5. Given $\epsilon > 0$ there exist $a(\epsilon), b(\epsilon) > 0$ such that if

$$U(x,\epsilon,n) = \{y \in W^u(x,\epsilon) : d(f^jx,f^jy) < \epsilon, j = 0, \ldots, n-1\}$$

then

$$a(\epsilon) \leq rac{\mu_x^u(U(x,\epsilon,n)))}{e^{S_n arphi(x) - n P_{top}(arphi)}} \leq b(\epsilon).$$

Under certain technical conditions the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Under certain technical conditions the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Theorem C [P.C., F. Rodriguez-Hertz]

If either

• $dimE^s$, $dimE^u = 1$, or

Under certain technical conditions the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Theorem C [P.C., F. Rodriguez-Hertz]

If either

- ▶ dimE^s, dimE^u = 1, or
- f is an ergodic automorphisms of \mathbb{T}^N (no repeated eigenvalues),

Under certain technical conditions the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Theorem C [P.C., F. Rodriguez-Hertz]

If either

• $dimE^s$, $dimE^u = 1$, or

• f is an ergodic automorphisms of \mathbb{T}^N (no repeated eigenvalues), the equilibrium state μ_{φ} is unique.

Under certain technical conditions the system (f, μ_{φ}) is metrically isomorphic to a Bernoulli shift.

Theorem C [P.C., F. Rodriguez-Hertz]

If either

• $dimE^s$, $dimE^u = 1$, or

• f is an ergodic automorphisms of \mathbb{T}^N (no repeated eigenvalues), the equilibrium state μ_{φ} is unique.

Work in progress: Uniqueness also holds in the homogeneous examples (Weyl Chambers' flow).

In the general setting, an SRB measure is a invariant measure whose unstable conditionals are absolutely continuous with respect to Lebesgue.

• SRB measures exist (Sinai-Pesin).

- SRB measures exist (Sinai-Pesin).
- \bullet Ledrappier-Young: μ is an SRB if and only if

$$h_{\mu}(f) = \int \log J^{u}(x) d\mu(x) \quad J^{u}(x) = det(df|E^{u}_{x})$$

- SRB measures exist (Sinai-Pesin).
- \bullet Ledrappier-Young: μ is an SRB if and only if

$$h_{\mu}(f) = \int \log J^{u}(x) d\mu(x) \quad J^{u}(x) = det(df|E^{u}_{x})$$

Implicit: Unstable manifolds coincide with Pesin's unstable manifolds.

Theorem D [P.C., F. Rodriguez-Hertz]

If μ is an equilibrium state for φ then μ has conditionals along unstables equivalent to μ^u .

Theorem D [P.C., F. Rodriguez-Hertz]

If μ is an equilibrium state for φ then μ has conditionals along unstables equivalent to $\mu^u.$

Similarly it has conditionals along stables equivalent to μ^{s} .

Theorem D [P.C., F. Rodriguez-Hertz]

If μ is an equilibrium state for φ then μ has conditionals along unstables equivalent to μ^{u} . Similarly it has conditionals along stables equivalent to μ^{s} .

Conversely if $\mu \in \mathcal{P}_f(M)$ has unstable conditionals absolutely continuous wrt μ^u , then μ is an equilibrium state for φ .

Theorem D [P.C., F. Rodriguez-Hertz]

If μ is an equilibrium state for φ then μ has conditionals along unstables equivalent to μ^{u} . Similarly it has conditionals along stables equivalent to μ^{s} .

Conversely if $\mu \in \mathcal{P}_f(M)$ has unstable conditionals absolutely continuous wrt μ^u , then μ is an equilibrium state for φ .

Theorem D [P.C., F. Rodriguez-Hertz]

If μ is an equilibrium state for φ then μ has conditionals along unstables equivalent to μ^{u} . Similarly it has conditionals along stables equivalent to μ^{s} .

Conversely if $\mu \in \mathcal{P}_f(M)$ has unstable conditionals absolutely continuous wrt μ^u , then μ is an equilibrium state for φ .

The families μ^{u},μ^{s} provide the reference measures to which one can compare.

Definition

We call a measurable partition $\boldsymbol{\xi}$ a SPLY partition if

Definition

We call a measurable partition $\boldsymbol{\xi}$ a SPLY partition if

- $f\xi < \xi$.
- ξ subordinated to \mathcal{W}^u
- μ -a.e. x the atom $\xi(x)$ contains a neighbourhood of x inside $W^u(x)$.

Definition

We call a measurable partition $\boldsymbol{\xi}$ a SPLY partition if

- $f\xi < \xi$.
- ξ subordinated to \mathcal{W}^u
- μ -a.e. x the atom $\xi(x)$ contains a neighbourhood of x inside $W^u(x)$.

SPLY partitions exist: (Sinai, Pesin - Ledrappier, Strelcyn).

Definition

We call a measurable partition $\boldsymbol{\xi}$ a SPLY partition if

- $f\xi < \xi$.
- ξ subordinated to \mathcal{W}^u
- μ -a.e. x the atom $\xi(x)$ contains a neighbourhood of x inside $W^u(x)$.

SPLY partitions exist: (Sinai, Pesin - Ledrappier, Strelcyn).

We fix one SPLY partition and take $m \in \mathcal{P}_f(M)$ equilibrium state for φ ;

Definition

We call a measurable partition $\boldsymbol{\xi}$ a SPLY partition if

- $f\xi < \xi$.
- ξ subordinated to \mathcal{W}^u
- μ -a.e. x the atom $\xi(x)$ contains a neighbourhood of x inside $W^u(x)$.

SPLY partitions exist: (Sinai, Pesin - Ledrappier, Strelcyn).

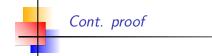
We fix one SPLY partition and take $m \in \mathcal{P}_f(M)$ equilibrium state for φ ; denote m_x = unstable conditional of m on $\xi(x)$.

Theorem

For every $x \in M$

1.
$$\mu_{f_X}^{\sigma} = e^{P_{top}(\varphi) - \varphi} f_* \mu_X^{\sigma} \quad \sigma \in \{u, cu\}.$$

2. $\mu_{f_X}^{\sigma} = e^{\varphi - P_{top}(\varphi)} f_* \mu_X^{\sigma} \quad \sigma \in \{s, cs\}.$



If $m_x << \mu^u_x \ m-a.e.(x)$ we can write

 $dm_x = \rho d\mu_x^u$

where ρ is measurable on M.



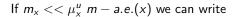
Cont. proof

$$dm_x = \rho d\mu_x^u$$

where ρ is measurable on *M*. One can then show

$$x\mapsto rac{
ho(x)}{
ho(f^{-1}x)}e^{P-arphi(f^{-1}x)}$$

is constant on the atoms of ξ .



Cont. proof

$$dm_x = \rho d\mu_x^u$$

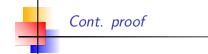
where ρ is measurable on *M*. One can then show

$$x\mapsto rac{
ho(x)}{
ho(f^{-1}x)}e^{P-arphi(f^{-1}x)}$$

is constant on the atoms of ξ . From here one deduces that

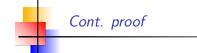
$$y \in \xi(x) \Rightarrow rac{
ho(y)}{
ho(x)} = \prod_{k=1}^{\infty} rac{e^{arphi \circ f^{-k}(y)}}{e^{arphi \circ f^{-k}(x)}} = \Delta_x(y).$$

P. Carrasco, ICMC-USP visiting ICTP



$$ho(y) = rac{\Delta_x(y)}{L(x)}, \quad y \in \xi(x)$$

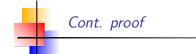
with $L(x) = \int_{\xi(x)} \Delta_x(y) d\mu_x^u(y)$.



$$\rho(y) = rac{\Delta_x(y)}{L(x)}, \quad y \in \xi(x)$$

with
$$L(x) = \int_{\xi(x)} \Delta_x(y) d\mu_x^u(y)$$
.

Define a measure ν by requiring $\nu = m$ on \mathcal{B}_{ξ} and such its conditionals on ξ are given by $d\nu_x = \rho d\mu_x$.



$$\rho(y) = rac{\Delta_x(y)}{L(x)}, \quad y \in \xi(x)$$

with
$$L(x) = \int_{\xi(x)} \Delta_x(y) d\mu_x^u(y)$$
.

Define a measure ν by requiring $\nu = m$ on \mathcal{B}_{ξ} and such its conditionals on ξ are given by $d\nu_x = \rho d\mu_x$. We want to prove $m = \nu$.

$$\rho(y) = \frac{\Delta_x(y)}{L(x)}, \quad y \in \xi(x)$$

with
$$L(x) = \int_{\xi(x)} \Delta_x(y) d\mu_x^u(y)$$
.

Define a measure ν by requiring $\nu = m$ on \mathcal{B}_{ξ} and such its conditionals on ξ are given by $d\nu_x = \rho d\mu_x$. We want to prove $m = \nu$.

It is enough to show $m = \nu$ on every $\mathcal{B}_{f^{-n}\xi}, n \ge 0$.

$$\rho(y) = \frac{\Delta_x(y)}{L(x)}, \quad y \in \xi(x)$$

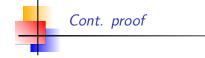
with
$$L(x) = \int_{\xi(x)} \Delta_x(y) d\mu_x^u(y)$$
.

Cont. proof

Define a measure ν by requiring $\nu = m$ on \mathcal{B}_{ξ} and such its conditionals on ξ are given by $d\nu_x = \rho d\mu_x$. We want to prove $m = \nu$.

It is enough to show $m = \nu$ on every $\mathcal{B}_{f^{-n}\xi}$, $n \ge 0$. An induction argument shows that after proving $m = \nu$ on $\mathcal{B}_{f^{-1}\xi}$ we are done.

P. Carrasco, ICMC-USP visiting ICTP



$$q(x) = \nu_x(f^{-1}\xi(x)) \Rightarrow$$

 $q(x) = \nu_x(f^{-1}\xi(x)) \Rightarrow$

Cont. proof

$$q(x) = \frac{1}{L(x)} \int_{f^{-1}(\xi(fx))} \Delta_x(f^{-1}fy) \frac{e^{P-\varphi(y)}}{e^{P-\varphi(f^{-1}fy)}} d\mu_x^u$$

= $\frac{1}{L(x)} \int_{\xi(fx)} \Delta_x(f^{-1}z) e^{\varphi(f^{-1}z)-P} d\mu_{fx}^u(z) = \frac{L(fx)}{L(x)} e^{\varphi(x)-P} \le 1$

 $q(x) = \nu_x(f^{-1}\xi(x)) \Rightarrow$

Cont. proof

$$\begin{aligned} q(x) &= \frac{1}{L(x)} \int_{f^{-1}(\xi(f_X))} \Delta_x(f^{-1} f_Y) \frac{e^{P - \varphi(y)}}{e^{P - \varphi(f^{-1} f_Y)}} d\mu_x^u \\ &= \frac{1}{L(x)} \int_{\xi(f_X)} \Delta_x(f^{-1} z) e^{\varphi(f^{-1} z) - P} d\mu_{f_X}^u(z) = \frac{L(f_X)}{L(x)} e^{\varphi(x) - P} \le 1 \end{aligned}$$

$$\frac{L(fx)}{L(x)} \leq e^{\varphi(x)-P} \in L^1(M,m)$$

P. Carrasco, ICMC-USP visiting ICTP

Equilibrium States are determined by their unstable conditionals.

 $q(x) = \nu_x(f^{-1}\xi(x)) \Rightarrow$

Cont. proof

$$\begin{aligned} q(x) &= \frac{1}{L(x)} \int_{f^{-1}(\xi(fx))} \Delta_x(f^{-1}fy) \frac{e^{P-\varphi(y)}}{e^{P-\varphi(f^{-1}fy)}} d\mu_x^u \\ &= \frac{1}{L(x)} \int_{\xi(fx)} \Delta_x(f^{-1}z) e^{\varphi(f^{-1}z) - P} d\mu_{fx}^u(z) = \frac{L(fx)}{L(x)} e^{\varphi(x) - P} \le 1 \end{aligned}$$

$$\frac{L(fx)}{L(x)} \le e^{\varphi(x)-P} \in L^1(M,m)$$
$$\int \log \frac{L \circ f}{L} dm = 0 \Rightarrow \int -\log q(x) dm(x) = P - \int \varphi dm.$$

P. Carrasco, ICMC-USP visiting ICTP

Equilibrium States are determined by their unstable conditionals.



Since ξ is a SPLY and *m* equilibrium state, Ledrappier, Young tell us that

$$\Rightarrow P - \int \varphi dm = h_m(f) = H(f^{-1}\xi|\xi) = \int -\log m_x(f^{-1}\xi(x))dm(x)$$

Since ξ is a SPLY and *m* equilibrium state, Ledrappier, Young tell us that

$$\Rightarrow P - \int \varphi dm = h_m(f) = H(f^{-1}\xi|\xi) = \int -\log m_x(f^{-1}\xi(x))dm(x)$$

$$\Rightarrow \int -\log \frac{\nu_x(f^{-1}\xi(x))}{m_x(f^{-1}\xi(x))} dm(x) = 0$$

P. Carrasco, ICMC-USP visiting ICTP

Since ξ is a SPLY and *m* equilibrium state, Ledrappier, Young tell us that

$$\Rightarrow P - \int \varphi dm = h_m(f) = H(f^{-1}\xi|\xi) = \int -\log m_x(f^{-1}\xi(x))dm(x)$$

$$\Rightarrow \int -\log \frac{\nu_x(f^{-1}\xi(x))}{m_x(f^{-1}\xi(x))} dm(x) = 0$$

Using strict convexity of the logarithm function plus working (carefully) with the partitions $f^{-1}\xi(x)|\xi(x)$ we deduce

$$\left.\frac{d\nu}{dm}\right|_{f^{-1}\xi}(x)=1 \quad m-a.e.x \in M.$$

P. Carrasco, ICMC-USP visiting ICTP

Since ξ is a SPLY and *m* equilibrium state, Ledrappier, Young tell us that

$$\Rightarrow P - \int \varphi dm = h_m(f) = H(f^{-1}\xi|\xi) = \int -\log m_x(f^{-1}\xi(x))dm(x)$$

$$\Rightarrow \int -\log \frac{\nu_x(f^{-1}\xi(x))}{m_x(f^{-1}\xi(x))} dm(x) = 0$$

Using strict convexity of the logarithm function plus working (carefully) with the partitions $f^{-1}\xi(x)|\xi(x)$ we deduce

$$\left.\frac{d\nu}{dm}\right|_{f^{-1}\xi}(x)=1 \quad m-a.e.x \in M.$$

and afterwards, $m_x = \nu_x$ on $\xi(x)$ for ALL atoms, as we wanted to show.

P. Carrasco, ICMC-USP visiting ICTP

Grazie!!!