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I. Stochastic flows

M differentiable manifold, dim M = n and

TM
π−→ M

its tangent bundle. The space of vector fields on M is denoted by

Γ(TM) = {A : M → TM smooth | π ◦ A = idM}
= {A : M → TM smooth | A(x) ∈ TxM for all x ∈ M}

Identify Γ(TM) and R-derivations on C∞(M),

Γ(TM) ≡
{

A : C∞(M)→ C∞(M) R-linear | A(fg) = fA(g) + gA(f )
}
,

via
A(f )(x) := dfx A(x) ∈ R, x ∈ M.
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Flow to a vector field

To A ∈ Γ(TM) consider the smooth curve t 7→ x(t) ∈ M s.th.

x(0) = x and ẋ(t) = A(x(t)).

Write φt(x) := x(t). In this way, we get the flow to A:{
d
dtφt = A(φt),

φ0 = idM .

This means, for any f ∈ C∞c (M):

d
dt (f ◦ φt) = A(f ) ◦ φt , f ◦ φ0 = f ,

or in integrated form,

f (φt(x))− f (x)−
∫ t

0
A(f )(φs(x)) ds = 0, t ≥ 0, x ∈ M.

The curve φ.(x) : t 7→ φt(x) is the flow curve (or integral curve)
to A starting at x . Let Pt f := f ◦ φt , then d

dt Pt f = Pt(A(f )), and

d
dt

∣∣
t=0

Pt f = A(f ).
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Flow to a second order differential operator

Let L be a second order PDO on M, e.g.

L = A0 +
r∑

i=1

A2
i ,

where A0,A1, . . . ,Ar ∈ Γ(TM) for some r ∈ N.

Question Is there a notion of a flow to L?

Anton Thalmaier Brownian motion, evolving geometries and entropy



Definition Let (Ω,F ,P; (Ft)t≥0) be a filtered probability space.
An adapted continuous M-valued process

X.(x) ≡ (Xt(x))t≥0

is called flow process to L (or L-diffusion) with starting point x if
X0(x) = x and if, for all f ∈ C∞c (M), the process

N f
t (x) :=f (Xt(x))− f (x)−

∫ t

0
(Lf )(Xs(x)) ds, t ≥ 0,

is a martingale, i.e.

EFs

[
f (Xt(x))− f (Xs(x))−

∫ t

s
(Lf )(Xr (x)) dr

]
︸ ︷︷ ︸

= N f
t (x)− N f

s (x)

= 0, for all s ≤ t.
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Since N f
0 (x) = 0, the martingale property implies

E
[
N f
t (x)

]
= E

[
N f
0 (x)

]
= 0.

Hence, defining Pt f (x) := E [f (Xt(x))], we observe that

Pt f (x) = f (x) +

∫ t

0
E [(Lf )(Xs(x))] ds,

and thus

d

dt
Pt f (x) = E [(Lf )(Xt(x))] = Pt(Lf )(x), and

d

dt

∣∣∣
t=0

E [f (Xt(x))] ≡ d

dt

∣∣∣
t=0

Pt f (x) = Lf (x).

The last formula shows that as for deterministic flows we can
recover the operator L from its stochastic flow process.

Remark As for deterministic flows, stochastic flows may explode
in finite times. Then X.(x)|[0, ζ(x)[ with a stopping times ζ(x).
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Example (Euclidean Brownian motion)

Let M = Rn and L = ∆ where ∆ is the Laplacian on Rn. Let Xt

be standard Brownian motion on Rn (speeded up by the factor 2).
By Itô’s formula, for f ∈ C∞(Rn),

d(f ◦ Xt) =
n∑

i=1

∂i f (Xt) dX i
t +

n∑
i ,j=1

∂i∂j f (Xt) dX i
t dX j

t

= 〈(∇f )(Xt), dXt〉+ (∆f )(Xt) dt.

Thus,

f (Xt)− f (X0)−
∫ t

0
(∆f )(Xs) ds, t ≥ 0,

is a martingale. This means that

Xt(x) := x + Xt

is an L-diffusion to ∆.
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What are L-diffusions good for?

a. (Dirichlet problem)
Let ∅ 6= D ( M open, connected, rel. compact, ϕ ∈ C (∂D).

Dirichlet problem (DP): Find u ∈ C (D̄) ∩ C 2(D) s.th.

(DP)

{
Lu = 0 on D

u|∂D = ϕ.

Assume existence of a stochastic flow (Xt(x))t≥0 to L. Choose a

sequence of open domains Dn ↑ D such that D̄n ⊂ D, and let

τn(x) = inf{t ≥ 0, Xt(x) /∈ Dn}.

Then
τn(x) ↑ τ(x) = inf{t ≥ 0, Xt(x) /∈ D}

where τ(x) is the first exit time of D when starting at x .
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Given a solution u to (DP), choose un ∈ C∞c (M) such that
un|Dn = u|Dn and supp un ⊂ D. Then

un(Xt(x))− un(x)−
∫ t

0
(Lun)(Xr (x)) dr

is a martingale, as well as

un(Xt∧τn(x)(x))− un(x)−
∫ t∧τn(x)

0
(Lun)(Xr (x))︸ ︷︷ ︸

=0

dr .

Thus, if x ∈ Dn, we obtain

u(x) = E
[
u(Xt∧τn(x)(x))

]
,

and by dominated convergence,

u(x) = lim
n↑∞

E
[
u(Xt∧τn(x)(x))

]
= E

[
u(Xt∧τ(x)(x))

]
.

Hypothesis τ(x) <∞ a.s. (the process exits D in finite time).

Then

u(x) = E
[

lim
t→∞

u(Xt∧τ(x)(x))
]

= E
[
u(Xτ(x)(x))

]
= E

[
ϕ(Xτ(x)(x))

]
.
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In other words,

u(x) = E
[
ϕ(Xτ(x)(x))

]
=

∫
∂D
ϕ(z)µx(dz),

where the exit measure is given by

µx(A) = P
{

Xτ(x)(x) ∈ A
}
, A ⊂ ∂D measurable.
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Moral:

(i) (Uniqueness) Under the hypothesis

(A) τ(x) <∞ a.s. for all x ∈ D

uniqueness of solutions to the Dirichlet problem (DP) holds.
Hypothesis (A) concerns non-degeneracy of the operator L.

(ii) (Existence) Under the hypothesis

(B) τ(x)→ 0 in probability if D 3 x → a ∈ ∂D

we have

E
[
ϕ(Xτ(x)(x))

]
→ ϕ(a), if D 3 x → a ∈ ∂D.

Hypothesis (B) concerns regularity of the boundary ∂D.
Then one may define u(x) := E

[
ϕ(Xτ(x)(x))

]
.
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b. (Heat equation)

Let L be a 2nd order PDO on M and f ∈ C (M). Want to find
u = u(t, x) defined on R+ ×M s.th.

(HE)


∂u

∂t
= Lu on ]0,∞[×M,

u|t=0 = f .

Fix T > 0. Then if Xt is a L-diffusion, the “time-space process”
(Xt(x),T − t) will be a diffusion on M × [0,T ] for the parabolic
operator

L− ∂

∂t

with starting point (x ,T ).
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Hypothesis ζ(x) = +∞ a.s. for all x ∈ M (non-explosion)

Let u be a bounded solution of (HE). Then, for 0 ≤ t < T ,

u(Xt(x),T − t)− u(x ,T )−
∫ t

0
[(L− ∂t) u(·,T − r)] (Xr (x)) dr ,

is a martingale.

As a consequence, we obtain

u(x ,T ) = E [u(Xt(x),T − t)]→ E [u(XT (x), 0)] = E [f (XT (x))]

where for the limit t ↑ T we used dominated convergence (u is
bounded).

Conclusion. Under the hypothesis ζ(x) = +∞ for x ∈ M, we
have uniqueness of (bounded) solutions to the heat equation (HE).
Solutions are necessarily of the form

u(x , t) = E [f (Xt(x))].
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II. How to construct stochastic flows?

Stochastic differential equations (SDEs) on manifolds

Definition

Let M be a differentiable manifold, π : TM → M its tangent
bundle and E a finite dimensional vector space (e.g. E = Rr ).

An SDE on M is a pair (A,Z ) where

(1) Z is a semimartingale taking values in E ;

(2) A : M × E → TM a homomorphism of vector bundles/M, i.e.

(x , e) 7−→ A(x)e := A(x , e)

M × E TM

M M

pr1

A

id

π
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Formally A ∈ Γ(E ∗ ⊗ TM). In particular,{
∀x ∈ M fixed, A(x) ∈ Hom(E ,TxM),

∀e ∈ E fixed, A(·)e ∈ Γ(TM).

For the SDE (A,Z ) we also write

dX = A(X ) ◦ dZ

or

dX =
r∑

i=1
Ai (X ) ◦ dZ i

where Ai = A(·)ei ∈ Γ(TM) and e1, . . . , er is a basis of E.
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Definition

Let (A,Z ) be an SDE on M. A continuous semimartingale Xt

taking values in M, is called solution to the SDE

dX = A(X ) ◦ dZ

with initial condition X0 = x0, if for all f ∈ C∞c (M):

f (Xt) = f (x0) +

∫ t

0
(df )Xs A(Xs) ◦ dZs .

Here:

E
A(x)−−−→ TxM

(df )x−−−→ R, x ∈ M.
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Example

Let E = Rr+1 and Z = (t,Z 1, . . . ,Z r ) where Z = (Z 1, . . . ,Z r ) is
a Brownian motion on Rr . Denote the standard basis of Rr+1 by
(e0, e1, . . . , er ). To the homomorphism of vector bundles

A : M × E → TM

over M associate the vector fields

Ai := A(·)ei ∈ Γ(TM), i = 0, 1, . . . , r .

Then the SDE
dX = A(X ) ◦ dZ

writes as

dX = A0(X ) dt +
r∑

i=1
Ai (X ) ◦ dZ i

.
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For f ∈ C∞c (M), we find

d(f ◦ X ) =
r∑

i=0

(Ai f )(X ) ◦ dZ i

= (A0f )(X ) dt +
r∑

i=1

(Ai f )(X ) ◦ dZ i

= (A0f )(X ) dt +
r∑

i=1

(A2
i f )(X ) dt +

r∑
i=1

(Ai f )(X ) dZ i

= (Lf )(X ) dt +
r∑

i=1

(Ai f )(X ) dZ i .

Thus,

f (Xt)− f (X0)−
∫ t

0
(Lf )(Xs) ds, t ≥ 0,

is a martingale where

L = A0 +
r∑

i=1

A2
i .
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Corollary

Let Z be a Brownian motion on Rr . Then solutions X to the SDE

dX = A0(X ) dt +
r∑

i=1
Ai (X ) ◦ dZ i

are L-diffusions to the operator

L = A0 +
r∑

i=1

A2
i .
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Theorem (SDE: Existence and uniqueness of solutions)

Let (A,Z ) be an SDE on M and let x0 be an F0-measurable
random variable taking values in M. There exists a unique
maximal solution X |[0, ζ[ (where ζ > 0 a.s.) of the SDE

dX = A(X ) ◦ dZ

with initial condition X0 = x0. Uniqueness holds in the sense that
if Y |[0, ξ[ is another solution with Y0 = x0, then

ξ ≤ ζ a.s. and X |[0, ξ[ = Y a.s.
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Brownian motions and moving frames

Brownian motions on M are L-diffusions (stochastic flows) to the
Laplace-Beltrami operator ∆ on M.

Good news. We have a method to construct Brownian motions.

Bad news. There is no canonical way to write ∆ in Hörmander
form as a sum of squares.

Definition

Let π : P → M be the G -principal bundle of orthonormal frames
with G = O(n;R). The fibre Px consists of the linear isometries
u : Rn → TxM where u ∈ Px is identified with the R-basis

(u1, . . . , un) := (ue1, . . . , uen).
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The Levi-Civita connection in TM induces canonically a
G -connection in P given as a G -invariant differentiable splitting h
of the following exact sequence of vector over P:

0 ker dπ TP π∗TM 0.
dπ

h

The splitting gives a decomposition of TP:

TP = V ⊕ H := ker dπ ⊕ h(π∗TM).

For u ∈ P, we call Hu the horizontal space at u and
Vu = {v ∈ TuP : (dπ)v = 0} the vertical space at u.

The bundle isomorphism

h : π∗TM ∼−→ H ↪→ TP

is called horizontal lift of the G -connection; fibrewise it reads as

hu : Tπ(u)M ∼−→ Hu.
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The orthonormal frame bundle P = O(TM), considered as a
manifold, is parallelizable.

The horizontal subbundle H is trivialized by the standard-
horizontal vector fields H1, . . . ,Hn in Γ(TP) defined by

Hi (u) := hu(uei ).

The canonical second order partial differential operator
on O(TM),

∆hor :=
n∑

i=1

H2
i ,

is called Bochner’s horizontal Laplacian.
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(a) Let Z be a semimartingale on Rn. Solve the following SDE on
the frame bundle P = O(TM):

dU =
n∑

i=1

Hi (U) ◦ dZ i , U0 = u0.

(b) Project U onto the manifold M:

X = π ◦ U

(c) From X we can recover again Z via Z =
∫
U ϑ where U is the

unique horizontal lift of X to P with U0 = u0 and

ϑ ∈ Γ(T ∗P ⊗ Rn), ϑu(Xu) := u−1(dπXu), u ∈ P,

the canonical 1-form.

We call X on M stochastic development of Z . The frame U moves
along X by stochastic parallel transport.
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Theorem (Stochastic development)

The following three conditions are equivalent:

Z is a Brownian motion on Rn (diffusion with generator ∆Rn).

U is an L-diffusion on P = O(TM) to

L = ∆hor =
n∑

i=1

H2
i .

X is a Brownian motion M (diffusion with generator the
Laplace-Beltrami operator ∆ on M).

Indeed: Observe that

∆hor(f ◦ π) = (∆f ) ◦ π
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Definition (Parallel transport along a semimartingale)

For 0 ≤ s ≤ t, consider

TXs M TXt M

Rn

∼

Us Ut

The isometries

//s,t := Ut ◦ U−1s : TXs M → TXt M

are called stochastic parallel transport along X .
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