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I. Geometries evolving in time: Deformation of Riemannian
metrics g(t) under certain evolution equations

Eminent example Ricci flow (R. Hamilton, 1982)

Start with a given metric g0 on M and let it evolve under

∂

∂t
g(t) = −2Ricg(t), g(0) = g0

Idea behind Ricci flow: Ricci flow works as heat equation on
the space of Riemannian metrics.

For instance, in terms of local coordinates xi , if ∆xi = 0, then

Ricij = −1

2
∆gij + lower order terms.

The scalar curvature R := traceRic satisfies the
reaction-diffusion equation

∂

∂t
R = ∆R + 2|Ric|2.
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Depending on the sign ± in

∂

∂t
g(t) = ±2Ricg(t), g(0) = g0

we talk about backward/forward Ricci flow.
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Brownian motion with respect to a time varying metric

Let g(t) be a C 1 family of Riemannian metrics on M.

A continuous adapted process X is called Brownian motion
with respect to g(t) if

∀ f ∈ C∞c (M),

d(f (Xt))−∆g(t)f (Xt) dt = 0 (mod mart)

We call X shortly a g(t)-Brownian motion on M.
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Evolution equation for densities

Let Xt(x , s) be a g(t)-Brownian motion starting from x at time s.

Consider the smooth density

(x , s, y , t) 7→ p(x , s; y , t), 0 ≤ s < t, x , y ∈ M,

defined by

P{Xt(x , s) ∈ dy} = p(x , s; y , t) volt(dy), s < t ,

where volt(dy) is the Riemannian volume on (M, g(t)).

For pt := p(x , s; ·, t) we have
d

dt
pt +

1

2
(trace ġ(t)) pt = ∆g(t)pt ,

pt(y) volt(dy)→ δx in law as t ↓ s.
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Corollary

For t > s let
pt = p(x , s; ·, t).

For the forward Ricci flow, we have:

d

dt
pt = ∆g(t)pt + R(·, t) pt .

For the backward Ricci flow, we have:

d

dt
pt = ∆g(t)pt − R(·, t) pt .

Here R(y , t) := traceRicg(t)(y) denotes the scalar curvature at
the point y ∈ M for the metric g(t).
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Heat equation with respect to moving Riemannian metrics

Study the heat equation under Ricci flow

Consider positive solutions u to the heat equation:
∂

∂t
u −∆g(t)u = 0

∂

∂t
gt = −2Ricg(t)

or to the conjugate heat equation
∂

∂t
u + ∆g(t)u − R(t, ·)u = 0

∂

∂t
gt = −2Ricg(t)

Motivation comes from Perelman’s work
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II. Perelman’s modification of Hamilton’s Ricci flow

Perelman’s F-functional
Let M be a smooth compact manifold without boundary and
let M be the set of Riemannian metrics on M.
Consider

F : M× C∞(M)→ R,

F(g , f ) :=

∫
M

(R + |∇f |2) e−f dvol

where R = traceRic denotes the scalar curvature of (M, g).
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Gradient flow to Perelman’s F-functional

The gradient flow of F on M× C∞(M), under the constraint that

e−f dvol ≡ static measure,

is given by the Modified Ricci Flow

(MRF)


∂

∂t
g = −2 (Ric + Hess f ),

∂

∂t
f = −∆f − R.

If g and f evolve according to MRF, then

d

dt
F(g , f ) = 2

∫
M
|Ricg + Hessg f |2g e−f dvolg .
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MRF modulo time dependent diffeomorphisms

Modulo diffeomorphisms the evolution of the metric is Ricci flow.
More precisely, let φt be the flow generated by the
(time-dependent) vector field ∇f , and let

g∗(t) := φ∗t g(t), f ∗(t) := φ∗t f (t) ≡ f (t) ◦ φt .

Then 
∂

∂t
g∗ = −2Ricg∗

∂

∂t
f ∗ = −∆∗f ∗ − R∗ + |∇∗f ∗|2g

where R∗ and ∆∗ are taken with respect to the metric g(t).
Perelman’s F-functional is invariant under diffeomorphisms, hence

F(g(t), f (t)) = F(g∗(t), f ∗(t)).
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In other words If g and f evolve according to
∂

∂t
g = −2Ric,

∂

∂t
f = −∆f − R + |∇f |2,

then
d

dt
F(g , f ) = 2

∫
M
|Ric + Hess f |2 e−f dvolg .

In particular, F(g(t), f (t)) is non-decreasing in time and
monotonicity is strict unless

Ric + Hess f = 0 (steady Ricci soliton).
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Ricci flow under conjugate backward heat equation
Set

u := e−f .

Then g and u evolve according to
∂

∂t
g = −2Ric,

∂

∂t
u = −∆u + Ru.

For F(g , u) =

∫
M

(R + |∇ log u|2) u dvolg we have

d

dt
F(g , u) = 2

∫
M
|Ric−Hess log u|2 u dvolg .

The measure u(t, y) volg(t)(dy) stays constant under the flow.
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Theorem (Boltzmann-Shannon entropy) Let

µt(dy) := u(t, y) volg(t)(dy).

be the measure on M with density u(t, ·) with respect to the
volume measure to g(t) as reference measure.
Let E(t) be the Boltzmann-Shannon entropy of µt ,

E(t) =

∫
M

(u log u)(t, y) volg(t)(dy).

Then the first two derivatives of E(t) are given by

E ′(t) =

∫
M

(R + |∇ log u|2) u dvolg ≡ F(g , u)

E ′′(t) = 2

∫
M
|Ric−Hess log u|2 u dvolg
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III. Stochastic Analysis of evolving manifolds

Let (M, gt)t∈I be a smooth family of Riemannian manifolds,
indexed by I = [0,T ]. We call (M, gt)t∈I an evolving
manifold. Let M := M × I be space time and consider the
tangent bundle TM over M:

TM
π−−→M , π projection.

There is a natural space-time connection ∇ on TM,
considered as bundle over space-time M, defined by

∇XY = ∇gt
X Y and ∇∂t Y = ∂tY +

1

2
(∂tgt)(Y , ·)]gt

This connection is compatible with the metric, i.e.

d

dt
|Y |2gt = 2〈Y ,∇∂t Y 〉gt

The connection allows to define parallel transport along
curves, but curves in space-time.
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Typically, we consider curves in M of the form

γt = (xt , ρt), t ∈ [0,T ]

where ρt is a monotone differentiable transformation of [0,T ].

Our examples here are:

ρt = t and ρt = T − t.

Let G = O(n) and

F π−→M

the G -principal bundle of orthonormal frames with fibres

F(x ,t) = {u : Rn → (TxM, gt) | u isometry}
and

TF = V ⊕ H := ker dπ ⊕ h(π∗TM).

the induced splitting of TF .
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In terms of the horizontal lift of the G -connection,

hu : Tπ(u)M ∼−→ Hu, u ∈ F ,

we get to each αX + β∂t ∈ T(x ,t)M and each frame
u ∈ F(x ,t), a unique “horizontal lift” αX ∗ + βDt ∈ Hu of
αX + β∂t such that

π∗(αX ∗ + βDt) = αX + β∂t .

In terms of the standard-horizontal vector fields on FT,

Hi ∈ Γ(TF), Hi (u) = (uei )
∗ ≡ hu(uei ), i = 1, . . . , n,

we define Bochner’s horizontal Laplacian on F :

∆hor =
n∑

i=1

H2
i .
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Let (M, gt)t∈I where [0,T ] ⊂ I ⊂ R+. Recall that

π : F →M := M × I where π(u) = (x , t) if u ∈ F(x ,t).

Let ρt : [0,T ]→ [0,T ] be monotonic; here

ρt = t or ρt = T − t.

Finally let Dρ
t := ρ̇(t) Dt = ±Dt .

Consider the following Stratonovich SDE on F :

dU = ±Dt(U) dt +
n∑

i=1

Hi (U) ◦ dZ i , U0 = u,

where Z is a continuous semimartingale taking values in Rn .

If U solves the SDE then

π(Ut) = (Xt , ρt)

for some process X on M, the stochastic development of Z .
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Modulo choice of initial conditions each of the three processes
X ,U,Z determines the two others.

(1) We call (Xt , ρt) a (space-time) Brownian motion if Z is a
Brownian motion on Rn.

(2) We call (Xt , ρt) a (space-time) martingale if Z is a local
martingale on Rn.

Let

//r ,s := Us ◦ U−1r : (Txr M, gρr )→ (Txs M, gρs ), 0 ≤ r ≤ s ≤ T ,

be the parallel transport along Xt (which by construction
consists of isometries!). For the sake of brevity //s := //0,s .

In the special case ρt = t, resp. ρt = T − t, we call (Xt , t),
resp. (Xt ,T − t) a Brownian motion on M based at (x , 0),
resp. based at (x ,T ), if X0 = x . In the same way, we talk
about martingales on M based at (x , 0), resp. (x ,T ).

Anton Thalmaier Brownian motion, evolving geometries and entropy



III. An application: gradient-entropy estimate

Assume that all manifolds are (M, gt) are complete (t ∈ I ).
Let u : M→ R be a positive solution of the heat equation

∂u

∂t
= ∆g(t)u.

It is straight-forward to check:(
∆g(t) −

∂

∂t

)
(u log u) =

|∇u|2

u
,(

∆g(t) −
∂

∂t

)
|∇u|2

u
= u

(
2|∇∇ log u|2 +

(
2Ric +

∂g

∂t

)(∇u

u
,
∇u

u

))
Now assume that

∂g

∂t
≥ −2Ric,

i.e. (gt) is a supersolution to the Ricci flow.
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Then, if (Xt ,T − t) is a Brownian motion based at (x ,T ) where
T ∈ I , it is trivial to check that the process

Nt := (T − t)
|∇u|2

u
(Xt ,T − t) +

(
u log u

)
(Xt ,T − t), 0 ≤ t ≤ T ,

is a local submartingale. Hence assuming that Nt is a true
submartingale, we obtain that E[N0] ≤ E[NT ] which gives

T
|∇u|2

u
(x ,T ) +

(
u log u

)
(x ,T ) ≤ E

[(
u log u

)
(XT , 0)

]
.
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Theorem

Keeping assumptions as above. For each positive solution
u : [0,T ]×M → R+ to the time-dependent heat equation, we have∣∣∣∣∇u

u

∣∣∣∣2 (x ,T ) ≤ 1

T
E
[

u(XT , 0)

u(x ,T )
log

u(XT , 0)

u(x ,T )

]
.

In particular,

(1) Then, for any δ > 0,∣∣∣∣∇u

u

∣∣∣∣ (x ,T ) ≤ δ

2T
+

1

2δ
E
[

u(XT , 0)

u(x ,T )
log

u(XT , 0)

u(x ,T )

]
(2) (Hamilton’s gradient estimate in global form)

If mT := supM×[0,T ] u, then

|∇u|
u

(x ,T ) ≤ 1

T 1/2

√
log

mT

u(x ,T )
.
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