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Outline

@ Stochastic Calculus on manifolds (stochastic flows)
© Analysis of evolving manifolds
© Heat equations under Ricci flow and functional inequalities

@ Geometric flows and entropy formulas
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I. Geometries evolving in time: Deformation of Riemannian
metrics g(t) under certain evolution equations

Eminent example Ricci flow (R. Hamilton, 1982)

@ Start with a given metric gg on M and let it evolve under

0 .

ag(t) = —2Ricgy), £(0) = go

@ ldea behind Ricci flow: Ricci flow works as heat equation on
the space of Riemannian metrics.

@ For instance, in terms of local coordinates x;, if Ax; = 0, then

1
Ricj = —5 Agjj + lower order terms.

@ The scalar curvature R := trace Ric satisfies the
reaction-diffusion equation

LATYNY + 2|Ric|?.
ot
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Depending on the sign & in

0 )
ag(f) = +2Ricgy), £(0) = go

we talk about backward /forward Ricci flow.
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Brownian motion with respect to a time varying metric

Let g(t) be a C! family of Riemannian metrics on M.

@ A continuous adapted process X is called Brownian motion
with respect to g(t) if

Ve (M),
d(f(Xe)) — Dgpyf (Xe)dt =0 (mod mart)

@ We call X shortly a g(t)-Brownian motion on M.
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Evolution equation for densities

Let Xi(x,s) be a g(t)-Brownian motion starting from x at time s.

@ Consider the smooth density

(x,5,y,t) = p(x,s;y,t), 0<s<t, x,yeM,

defined by

P{X:(x,s) € dy} = p(x,s; y, t) vol(dy),

s<t,

where vol;(dy) is the Riemannian volume on (M, g(t)).

e For p; := p(x,s; -, t) we have

d

1 .
JPe 5 (traceg(t)) pe = Bg(oypr,

pe(y) voli(dy) — 6x inlaw as t | s.
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Corollary
Fort > s let
Pt = p(XaS; "y t)

For the forward Ricci flow, we have:

d

P Agypt + R+, t) pr.

For the backward Ricci flow, we have:

d

Pt = Agrype — R(-, t) pt-

Here R(y, t) := trace Ricg(;)(y) denotes the scalar curvature at
the point y € M for the metric g(t).
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Heat equation with respect to moving Riemannian metrics

@ Study the heat equation under Ricci flow

@ Consider positive solutions u to the heat equation:

0
au - Ag(t)u =0
agt =2 Ricg(t)

or to the conjugate heat equation

0
au+ Agyu—R(t,-)u=0

0

agt =2 Ricg(t)

Motivation comes from Perelman’s work
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I1. Perelman’s modification of Hamilton’s Ricci flow

Perelman’s F-functional

Let M be a smooth compact manifold without boundary and
let M be the set of Riemannian metrics on M.

Consider

F: M x C®(M) =R,

Flg,f):= / (R+|VF*) e fdvol
M

where R = trace Ric denotes the scalar curvature of (M, g).
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Gradient flow to Perelman’s F-functional
The gradient flow of 7 on M x C°°(M), under the constraint that

e dvol = static measure,

is given by the Modified Ricci Flow

2g = —2(Ric + Hess f),
(MRF) o

9f— _Af—R.

ot

If g and f evolve according to MRF, then

iJ":(g, f)= 2/ [Ricg 4 Hessgf|2 e~ dvol,.
dt " g
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MRF modulo time dependent diffeomorphisms

Modulo diffeomorphisms the evolution of the metric is Ricci flow.
More precisely, let ¢ be the flow generated by the
(time-dependent) vector field V£, and let

g (t) = drg(t), £7(t) = ¢ f(t) = f(t) 0 .

Then
0

at®
8 * k k k ok
= A R+ |V
ot

* = —2Ricg=
2
&

where R* and A" are taken with respect to the metric g(t).
Perelman’s F-functional is invariant under diffeomorphisms, hence

F(g(t), £(1)) = F(g™(¢), £(t))-
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If g and f evolve according to

0
— o — —2Ri
8tg Ric,
O _AfF-R+ V|2,
ot
then J
—F(g,f) = 2/ |Ric 4 Hess f|? e~ dvol,.
dt M

In particular, F(g(t), f(t)) is non-decreasing in time and
monotonicity is strict unless

Ric + Hessf =0 (steady Ricci soliton).
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Ricci flow under conjugate backward heat equation
Set

u:= e_f.

Then g and u evolve according to

881”g = —2Ric,
au = —Au+ Ru.

For F(g,u) :/ (R + |Vlog u|?) udvol, we have
M

i]:(g, u) = 2/ [Ric — Hess log u|? u dvol,.
dt M

The measure u(t,y)volg(;)(dy) stays constant under the flow.
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Theorem (Boltzmann-Shannon entropy) Let

pe(dy) == u(t, y) volg(r)(dy).

be the measure on M with density u(t, -) with respect to the
volume measure to g(t) as reference measure.
Let £(t) be the Boltzmann-Shannon entropy of s,

E(t) = /M(ulog u)(t, y) volg(s(dy).

Then the first two derivatives of £(t) are given by

E'(t) = /M(R + |V log uf?) u dvolg = F(g, u)

. 2
S”(t):2/M]Rlc—Hesslogu] u dvolg
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I11. Stochastic Analysis of evolving manifolds

o Let (M, g¢)tcs be a smooth family of Riemannian manifolds,
indexed by | = [0, T]. We call (M, g¢)te an evolving
manifold. Let Ml := M x | be space time and consider the
tangent bundle TM over M:

TM =5 M, = projection.

@ There is a natural space-time connection V on TM,
considered as bundle over space-time M, defined by

1
VxY =V&Y and V,Y =0:Y + 5 (0ege)(Y )rer
@ This connection is compatible with the metric, i.e.
d 2
a | Y’gt = 2<Y7 v&t Y>gt

@ The connection allows to define parallel transport along
curves, but curves in space-time.
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Typically, we consider curves in M of the form

’Vt - (Xtapt)a te [O? T]
where p; is a monotone differentiable transformation of [0, T].
Our examples here are:

per=t and p;=T —t.

Let G = O(n) and
F5 M
the G-principal bundle of orthonormal frames with fibres

Fixe) = {u: R" = (TxM, g¢) | u isometry}

and
TF=V&H:=kerdr & h(r* TM).

the induced splitting of TF.
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@ In terms of the horizontal lift of the G-connection,
hy: TW(U)M% H,, ueF,

we get to each aX + $0: € T(, )M and each frame
u € F(x,p), a unique “horizontal lift" aX* + 3D, € H, of
aX + [0; such that

mT(aX® 4+ BDy) = aX + (0.
@ In terms of the standard-horizontal vector fields on FT,
H; e T(TF), Hi(u)=(ue)* = hy(ue)), i=1,...,n,

we define Bochner's horizontal Laplacian on F:

n
Apor = Y H?.
i=1
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o Let (M, g¢)tcs where [0, T] C | C R4. Recall that
m: F = M:=Mx | where 7(u) = (x,t) if u€ Fxy).
o Let p;: [0, T] — [0, T] be monotonic; here
pt=t or p=T-—t.

Finally let Df := p(t) Dy = +D;.

e Consider the following Stratonovich SDE on F:
dU = £+D,(U) dt + Z Hi(U)odZ', Uy =u,
i=1

where Z is a continuous semimartingale taking values in R" .

o If U solves the SDE then
m(Ut) = (Xe, pt)

for some process X on M, the stochastic development of Z.
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@ Modulo choice of initial conditions each of the three processes
X, U, Z determines the two others.
(1) We call (X;, p:) a (space-time) Brownian motion if Z is a
Brownian motion on R".
(2) We call (X;, p:) a (space-time) martingale if Z is a local
martingale on R".

o Let
//r,s = USO Ur_l: (TXrMagp,) — (TXsMagps)v O S r S S S T7

be the parallel transport along X; (which by construction
consists of isometries!). For the sake of brevity //; := //q .
@ In the special case p;: = t, resp. pr = T — t, we call (X, t),
resp. (Xt, T — t) a Brownian motion on M based at (x, 0),
resp. based at (x, T), if Xp = x. In the same way, we talk
about martingales on M based at (x, 0), resp. (x, T).
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I1l. An application: gradient-entropy estimate

@ Assume that all manifolds are (M, g¢) are complete (t € /).
Let u: M — R be a positive solution of the heat equation

ou

ot Ag(nyu.

@ It is straight-forward to check:

0 Vul?
<Ag(t) - at> (ulogu) = |u’

0 ‘vu‘z _ 2 . 8g Vu Vu
<Ag(t) - m)u =u <2VV log u|* + ( 2Ric + 5 (T T)

@ Now assume that

0
ai’; > _2Ric,
ie. (g¢)isa to the Ricci flow.
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Then, if (X, T — t) is a Brownian motion based at (x, T) where
T € 1, it is trivial to check that the process

[Vul?

Ny :=(T —t)—— y

(Xe, T—t)+ (ulogu)(Xe, T—1t), 0<t<T,

is a local submartingale. Hence assuming that N, is a true
submartingale, we obtain that E[Ng] < E[N7] which gives

7 V4 ) 4 (ulog ) (x, T) < B [(ulog ) (Xr, 0)].
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Theorem

Keeping assumptions as above. For each positive solution
u: [0, T] x M — R to the time-dependent heat equation, we have

vul?
u

(x, T)<E[

u(Xt,0) U(XT,O)]
= :

o, T) 8 u(x, T)

In particular,
(1) Then, for any § > 0,

Vu

(x, T) < —

u(Xr,0),  wu(Xt,0)
2T T 5 [U(X?—T) log u(x-,rT)]

(2) (Hamilton's gradient estimate in global form)
If my := supp o, 1) U, then

|V ul mT
u (7)< T1/2 log u(x, T)
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