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Outline

@ Stochastic Calculus on manifolds (stochastic flows)
@ Analysis of evolving manifolds
© Heat equations under Ricci flow and functional inequalities

@ Geometric flows and entropy formulas
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I. Heat equation on a Riemannian manifold
Harnack inequalities and gradient estimates

@ Let u be a positive solution of the heat equation on a
Riemannian manifold (M, g):

0
EU—AU

o (Gradient estimate) What can be said about

\%
|Vu| or [Vl ?
u

e (Harnack inequalities) For s < t, how to compare
u(x,s) and u(y,t)?

@ Gradient estimates = infinitesimal versions of Harnack inequalities;
Harnack inequalities = integrated versions of gradient estimates
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Stationary solutions = harmonic functions

Let v be harmonic on some domain D in a Riemannian manifold:

Au=0

@ Cheng-Yau
Let M be complete and D C M be an open, relatively
compact domain. Let v be harmonic on D and strictly
positive. Then

M(x) < ¢(n) [\/R + 1]

u r(x)

if Ric|D > —K, K>0 (where r(x) = dist(x,0D) and
n = dim M).

For a probabilistic proof see Arnaudon, Driver, Th. (2007).
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By integrating Cheng-Yau along geodesic curves we obtain as
Corollary:

Elliptic Harnack inequality
Let u be harmonic on Bg(x) C M where M is complete. Then

sup u< C(n,R,K) inf wu
Bg/2(x) Br2(x)
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Back to the parabolic case

@ Let M be a complete Riem. manifold and u be a solution of

0
au:Au on M xR,

@ There is an exact formula for (Vu)(:, t)x in terms of Brownian
motion X; starting from x:

Xe = Xi(x)

@ Recall: A Brownian motion X; on M is characterized by the
property that for each f € C*(M),

d(f(Xt)) — Af(X¢)dt =0 (mod differentials of loc mart.)
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@ For x € M define a linear transformation
Q: TM—TM
as solution to the pathwise ODE
dQ; = —Ric//t Q, dt
{ Qo =idrm

where
Ric), = //;' o Ricx, o //; € End(TM)

and //¢: T,M — Ty M is parallel transport along X; = X:(x):

TM -—-—-— T(M
I{IC//r

//th ‘//t1

TxM == TxM

By convention Ric,(v) = Ric(v, - ) for v € T, M.
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Let M be stochastically complete (BM has infinite lifetime). Let u
be the solution to the heat equation

0
Fri Au, ul=o =f € Cp(M).

@ Writing u(x, t) = (P:f)(x) we have
(Pef)(x) = E[f(Xe(x)],  f € Co(M).
Indeed: For fixed t > 0,
ns = (Pe—sf) (Xs(x)), 0<s<t,
is a martingale starting at P:f(x); thus P:f(x) = E[n].
@ In terms of the Aut(T,M)-valued process Q; from above,
(dPeF), =B |Qi//7 (dF)x]» F e CE(M)
Indeed: It is enough to check that
Q://sH (dPe—sf)x iy, 0<s<t,
is a martingale in T} M, starting at (dP:f)x.
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Remark It is straight-forward to derive from the representation
(dPef), =B | Qi /[t  (df)x, (|, f € CE(M)

functional inequalities:
For instance, let K € R. Assume that

Ric > K.

Then
|VPf| < e KEP|VF|, t>0.
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Theorem (Gradient formula)

Fixing x € M, let D be a relatively compact neighbourhood of x
and let Tp(x) be the first exit time of X¢(x) from D.

Let u be a bounded solution of the heat equation

9 o0
prihe Au, ul;g="f € C(M).

Then, for each v € T, M,
(Vu(-, )y v) = —E [f(xf(x)) JRCxA dzs>]
0

o T=1p(x)At

where

@ Z is a Brownian motion in T,M

@ /s is any adapted process in TyM with absolutely continuous
paths such that (some e > 0)

by = v, {-=0 and (/ ‘25‘2 dS)1/2 S L1+E.
0
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Il. Heat equation with respect to moving Riemannian
metrics

@ Study the heat equation under Ricci flow

@ Consider positive solutions u to the heat equation:

0
T Dgpyu=0
agt =2 Ricg(t)

o Later we shall deal with the conjugate heat equation

0
au+ Agyu—R(t,-)u=0

agt =2 Ricg(t)
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Let M := M x | be space-time and let
(Xr, T —r)

be Brownian motion on M based at (x, T). Thus time runs
backwards. By construction, X, is a g_(r)-Brownian motion
with g_(r) := g(T —r).

Let (M, g¢)tes be a smooth family of Riemannian metrics. We
consider the heat equation on (M, g¢)¢e;:

E?atu =Agu, ul—g="rFeC(M).

If uis a bounded solution, then
u(Xp(x,0), T—r), 0<r<T-—s,

is a martingale, and by taking expectations we get the formula

u(x, T) = E[u(X7_(x,0),s)] = E[F(XXY], 0<s< Tinl.
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@ There is also a stochastic representation of (Vu)(-, T)x.

@ For x € M the linear transformation
Q: TM— T M

needs to be redefined as solution to the pathwise ODE

dQ; = —//;1 <Rng— iatg> //t Qt dt

(Xe, T—t)
Qo = id7 m-

o We see that ); = id if and only if the metric evolves by
forward Ricci flow.

@ This explains why Riemannian manifolds evolving under Ricci
flow share many properties of Ricci flat static manifolds.
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I1l. Characterization of Ricci flow by functional inequalities
Recall first again the case of a static Riemannian manifold.

@ Let M be a complete and stochastically complete and K € R.
Denote by

u(x, t) = (Pef)(x)

the solution to the heat equation

a [e.9]
5i¢ = Au, ul—g =1~ e CZ(M).

o Characterisation of “Ricci bounded below”
The following conditions are well-known to be equivalent:
e Ric > K;
o |VP:f| <e~
° |VPtf|2 <e
P(f2log %) — (Pif?) log(P:f?) < < 0= p,yf;
P,(2) — (Pif)? < 1=2 2% p,|Vf[2,
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o Now let (M, g¢)tes be a smooth family of Riemannian metrics
and consider the heat equation on (M, g¢)¢cs:

0
au =Ngu, ul—g=Fec Cp(M).

Denote
u(x, T) = (Ps7f)(x), 0<s<Tinl.

@ Analogous to the case of a static manifold we can characterize
supersolutions to the Ricci flow by functional equations.
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Characterization of supersolutions to the Ricci flow

For a smooth family (M, g(t)):c; of Riemannian metrics are
equivalent:

e (M, g(t))tes is a supersolution to the Ricci flow, i.e.

0 :
ag(t) > =2 RICg(t).

e For each f € C2°(M) the heat flow on (M, g(t))¢c; satisfies
‘VP57Tf‘g(T) S PS,T‘Vf’g(S)'
@ For each f € C°(M) the heat flow on (M, g(t)):c; satisfies

‘VPS,Tf‘é—(T) S PS,T‘Vf@—(S)
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Denote by P(,,7yM the space of continuous paths
e = (% T —1t)

based at (x, T) and P(, 1) the probability measure on
P(x,7)M induced by the space-time BM (X, T — t).

Foro =(0<o01 <... <ok < T) consider the evaluation
map

e (1) = (Xoys - - - s Xo)-
Let F: P(x,7yM — R be a cylindrical function, i.e.

F=uoe,

where u: MK — R is smooth and of compact support.
Consider the “parallel gradient™:

VPIF = e (Z//a, o(T—o) >
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Characterization of solutions to the Ricci flow:

For a smooth family (M, g(t)):c, of Riemannian metrics are

equivalent (R. Haslhofer and A. Naber):

@ (M, g(t))tes is a solution to the Ricci flow, i.e.

0 .
ag(t) =-2 Rlcg(t).

e For each cylindrical function F: P r)M — R,
IVxE(, ) F| < E(x, 1) [VPF.
e For each cylindrical function F: P, )M — R,

IViEx, 1) FI> < Eg, 1y [ VP FI2.
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