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Outline

@ Stochastic Calculus on manifolds (stochastic flows)
@ Analysis of evolving manifolds
© Heat equations under Ricci flow and functional inequalities

@ Geometric flows and entropy formulas
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I. Entropy under Ricci flow

o Consider positive solutions to

0
T Dgpyu=0
agt =2 Ricg(t)

It is convenient to let time run backwards in both equation.

@ Then: Backward heat equation under backward Ricci flow
Thus

gtu—&—Au—O
aatg—ZRic

o Let (X:(x), t) the space-time Brownian motion starting at
(x,0). Then Xi(x) is a g(t)-Brownian motion on M.
For simplicity always start at time s = 0.
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o Let X:(x) be a g(t)-Brownian motion on M. Consider the
heat kernel measure

m¢(dy) =P {X¢(x) € dy}.
@ We are interested in the entropy of
pe = u(-,t)dmy = u(Xe(x), t) dP

@ The quantity
/ u(y, t) me(dy) = E[u(Xe(x). £)]
M

stays constant along the flow, since u(X:(x),t) is a
martingale.
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Theorem

Denote by
E(t) = E[(ulog u)(X:(x), t)]
= / (ulog u)(y, t) m(dy)
M

the entropy of p = u(-,t) dms = u(Xe(x),t) dP

The first two derivatives of £(t) are given by

[!VUP

£(t) = (Xe(x), )}

E"(t) =2E [(u |Hess log u| ) (Xe(x), t)} :
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Applications to the classification of ancient solutions to the heat
equation. (Hongxin Guo, Robert Philipowski, A.Th. 2015)

o With the substitution 7 := —t, solutions to the backward
equation above defined for all t > 0 correspond to ancient
solutions of the (forward) heat equation, 7 < 0, under forward
Ricci flow.

o Let
— i £
0:= lim & (t) € [0, +o0].
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Example Consider u(t,y) = ¢’ on R with the standard metric.

Then
E(t)y=t and 0 =1.

Proposition
Assume that % = 2Ric (or % < 2Ric) and let u be a positive
solution of the backward heat equation.
@ Then u is constant if and only if § = 0.
o If the entropy £(t) grows sublinearly, i.e.
lim E(t)/t =0,

t—o0

then 6§ = 0 and u is constant.
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Il. Ricci flow under conjugate backward heat equation

Consider 9
ag = —2Ric
aatu + Au = Ru.
Now

E [exp (— /O "ROX(x). 8) ds) u(Xt(X),t)] = u(x,0) indep. of t.

Take .
Py ¢ :=exp (—/ R(Xs(x),s) ds> dP
0

as reference measure.
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@ Consider the entropy of the measure
et = u(Xe(x), t) dPy ¢

defined as

E(t) = Ex,t[(ulog u)(Xe(x), t)]

where E, ; denotes expectation w/r to Py ;.

@ The derivative of £(t) is given by

E'(t) = By [((R +|Viog u}z)u) (Xe(x). t)} .
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Theorem

Consider the following entropy functional
Ent(g, u, t) = Ex,¢ [(ulog u)(Xe(x), 1)
t
-2 / Exs[Au(Xs(x), s)] ds.
0

Then

%Ent(g, u,t) =Ey ¢ [(Wj‘ —2Au+ Ru) (Xe(x), t)] ,

2

d
e Ent(g,u,t) =2E,; [(‘Ric — Hess log u’z u) (Xe(x), t)} .
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We observe that

d
F(g,u,t):= — Ent(g, u, t)
dt
is non-decreasing in time and monotonicity is strict unless

Ric +Hessf =0 (steady Ricci soliton)

where f = log u.
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Il. Ricci solitons
A complete Riemannian manifold (M, g) is said to be a
gradient Ricci soliton if there exists f € C*°(M; R) such that
Ric + Hess(f) =pg

for some p € R. The function f is called a potential function of
the Ricci soliton.

@ p = 0: steady soliton;

@ p > 0: shrinking soliton;

@ p < 0: expanding soliton.
Note that if f = const, then (M, g) is Einstein.
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Ricci solitons are special solutions to the Ricci flow
e If (M, g) is Einstein with
Ric=pg,

then
g(t) = (1—-2pt)g
solves the Ricci flow equation.

o Likewise, if (M, g, f) is a gradient Ricci soliton with
Ric + Hess(f) = p g,

then

g(t) :=(1—2pt) pig
solves the Ricci flow equation. Here ¢ is the 1-parameter
family of diffeomorphisms generated by V£ /(1 — 2pt).
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IV. Perelman’s WW-entropy

Let M again be a compact manifold. To study shrinking solitons,
Perelman introduced the so-called YV-functional.
Instead of the /-functional one considers

W: Mx C¥(M) xR} — R,

Wi(g,f,T): :/

M

—f

2 _a &
[T(R+|vﬂ )+ f—n (477)n/2

dvolg

One studies the gradient flow of W(g, f, 7). This leads to
evolutions g(t), f(t) and 7(t) where 7 is then a strictly positive
smooth function 7(t).
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Theorem (Perelman 2002)
Let g(t), f(t) and 7(t) develop according to

= —2Ric

f=—-Af — R+ |VF>+

ot
9
ot 2r
9
ot

=-1.
Then

d 2 e f
EW(g,f T) = 27'/ ‘RlC—i—HeSSf— Z deolg.
In particular, W(g, f,T) is non-decreasing in time and

monotonicity is strict unless (M, g) satisfies

Ric + Hess f = 25 (shrinking Ricci soliton).
T
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Let

e f

n
u .= W or f = — (|Og u-+ 5 |0g(47r7‘)) .

Then g(t), u(t) and 7(t) evolve according to

ag = —2Ric,
%quAu = Ru,
0

—7 =—1.

ot

Let

W(g,u,7) = / [T(R + |V log uf?) — log u — g log(4m7) — n| udvolg .
M
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Then

2
%W(g, u,T) =271 /M ‘Ric — Hesslog u — % udvolg.

In particular, W(g, u, 7) is non-decreasing in time and
monotonicity is strict unless

Ric — Hesslogu = é.
2T
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Entropy of the Gaussian measure on R”

o Let

due(y) = (4mt)~"2 e PP/At gy — 4, (y) dy

be the standard Gaussian measure on R”.

@ The Boltzmann-Shannon entropy of p. is given as

n

Eolt) = [ (1rlog1r)(y) dy = 3 [1-+ log(4m)].
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Relative entropy

Let g(t), u(t) and 7(t) evolve according to

ag = —2Ric,
0

au—l—Au = Ru,
0

—7 =—1.

o’

We normalize u such that

/ u(t) dvolgyy = 1.
M
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Theorem (Relative entropy)
Let

H(g,u,t):=E(t) — &o(t)

Il
= =2

u log u dvolg — (—g [1+ |og(47r7')]>.
Then

d n
—H R+ |Vlogul> — — 1
™ (g,u,t) = /M [ + |V log u| 27] u dvolg

d
and e H(g,u,t) =W(g,u,T).
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Excursion Lei Ni's entropy formula for positive solutions of the
heat equation on a static Riemannian manifold.

Lei Ni (2004) Let u > 0 be a positive solution of the heat

equation
0

on a compact static Riemannian manifold (M, g). Let

H(u,t) = /M ulog u dvol — (—g [1 + |Og(47Tt)]>

be the difference between the Boltzmann entropy of the measure
u(x)vol(dx) on M (normalized to be a probability measure) and
the Boltzmann entropy of the standard Gaussian measure y(dy)
on R".
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Then
9 t)—/ (alogu+ ) udvol
dt 7y YT o '

Observation Suppose that Ric > 0.
Then, by the differential Harnack inequality,

equivalently
n
Al — > 0.
ogu -+ 51 2

In this case H(u, t) non-decreasing as function of t.
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V. Relative entropies and W-functionals

Let g(t), u(t) and 7(t) evolve according to

0

8tg Ric
0

— Au=R
8tu+ u u
0

P

For simplicity 7(t) = T — t.
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Consider again on M the entropy functional
Ent(g, u, t) := E¢ x [(ulog u)(t, X¢(x))]

t
~2 [ Bex[Au(s X()] o
0
and the corresponding expression on R”,
t
Ento() = E[(1re log 7 (o)) (B0)] — 2 /0 E [Ary,o)(Ba)] ds

where v; is the standard Gaussian kernel and B; standard
Brownian motion on R" starting at 0.
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Recall that the standard Gaussian measure on R" is given by

due(y) = (4mt)~"2 e P4 gy — 4, (y) dy.

A straightforward manipulation shows (with 7(t) = T —t)

Buto(6) = [ (31108 (1) 11(3) dy ~ 26877(0)

1 n t 1 n t
S (L - nt

2 (4r T)/2 (7 +1oglam)) + 5 (4rT)2 T
ol g(ann)
2 (4nT)n/2 SRS

Normalize u such that
1
Eex [u(t, Xe(x))] = (axT)2

and consider the relative entropy

H(g, u, t) := Ent(g, u, t) — Ento(t).
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Theorem (Relative entropy; W-functional)

Let g(t), u(t

)
H(t) = H(g, u, t) := Ent(g, u, t) — Ento(t) and
W(t) = W(g, u, t) := (rH(t))’

and 7(t) as above. Let

Then

%H(t) =E* [(v log u[? — 2 % +R— 2’;) (t,Xt(X))],

d N ) 8 2
EW(L‘) =27E “RJC — Hesslog u 27_’ (t,Xt(X))].
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Important observations

@ The relative entropy H(t) is non-increasing in time.

Indeed: The right-hand-side of %H(t) is non-positive due to
the Li-Yau inequality for solutions of the conjugate heat
equation under Ricci flow:

If R > 0 then

A
|Vlogu|2—2—u+R—i§0.
u 2T

e The W-functional W(t) is non-decreasing in time and
monotonicity is strict unless (M, g) satisfies

Ric + Hess f = 2£ (shrinking Ricci soliton)
T

where f = log u.
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VI. Surface entropy

The case of a surface (dim M = 2)

e For a compact surface (M, g(t)) of positive curvature R(t, -)
Hamilton's surface entropy (1988) is defined as

Ent(t) := /M R(t,y)log R(t,y)vol:(dy).

@ He showed that Ent(t) is non-increasing along the normalized
(forward) Ricci flow.
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The case of a surface (dim M = 2)

On a surface of positive curvature things simplify:

Instead of P
ag = —2Ric
88tu + Au= Ru
we may consider
0
“s=_R
atg &

0
9 _A-R)R=0.
(at ) 0

Now R itself solves the conjugate heat equation.
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VIIl. Possible applications

No breather theorems for non-compact manifolds

@ A breather of a geometric flow is a periodic solution changing
only by diffeomorphisms and rescaling.

@ More precisely, a solution (M, g(t)) is a breather if there is a
diffeomorphism ¢: M — M, a constant ¢ > 0 and times
t1 < to such that

g(t2) = cp*g(t1).

@ Accordingto c <1, c =1 or ¢ > 1, the breather is called
shrinking, steady or expanding, respectively.

@ One wants to rule out non-trivial breathers, e.g. no steady or
expanding breather theorems, like
every steady breather is Ricci-flat,
every expanding breather is a gradient soliton, etc

@ The above formulas are suited to non-compact manifolds,
since all measures are probability measures.
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