Brownian motion, evolving geometries and entropy formulas

Talk 4

Anton Thalmaier Université du Luxembourg

School on Algebraic, Geometric and Probabilistic Aspects of Dynamical Systems and Control Theory

> ICTP, Trieste July 4 to 15, 2016

Outline

- Stochastic Calculus on manifolds (stochastic flows)
- 2 Analysis of evolving manifolds
- 4 Heat equations under Ricci flow and functional inequalities
- 4 Geometric flows and entropy formulas

I. Entropy under Ricci flow

Consider positive solutions to

$$\begin{cases} \frac{\partial}{\partial t} u - \Delta_{g(t)} u = 0 \\ \frac{\partial}{\partial t} g_t = -2 \operatorname{Ric}_{g(t)} \end{cases}$$

It is convenient to let time run backwards in both equation.

 Then: Backward heat equation under backward Ricci flow Thus

$$\begin{cases} \frac{\partial}{\partial t}u + \Delta u = 0\\ \frac{\partial}{\partial t}g = 2\operatorname{Ric} \end{cases}$$

• Let $(X_t(x), t)$ the space-time Brownian motion starting at (x, 0). Then $X_t(x)$ is a g(t)-Brownian motion on M. For simplicity always start at time s = 0.

• Let $X_t(x)$ be a g(t)-Brownian motion on M. Consider the heat kernel measure

$$m_t(dy) := \mathbb{P}\left\{X_t(x) \in dy\right\}.$$

• We are interested in the entropy of

$$\mu_t := u(\cdot, t) dm_t \equiv u(X_t(x), t) d\mathbb{P}$$

The quantity

$$\int_{M} u(y,t) m_t(dy) = \mathbb{E}[u(X_t(x),t)]$$

stays constant along the flow, since $u(X_t(x), t)$ is a martingale.

$\mathsf{Theorem}$

Denote by

$$\mathcal{E}(t) = \mathbb{E}[(u \log u)(X_t(x), t)]$$
$$= \int_M (u \log u)(y, t) m_t(dy)$$

the entropy of $\mu_t = u(\cdot, t) dm_t \equiv u(X_t(x), t) d\mathbb{P}$.

The first two derivatives of $\mathcal{E}(t)$ are given by

$$\begin{split} \mathcal{E}'(t) &= \mathbb{E}\left[\frac{|\nabla u|^2}{u}(X_t(x), t)\right] \\ \mathcal{E}''(t) &= 2 \,\mathbb{E}\left[\left(u \,| \mathrm{Hess} \log u|^2\right)(X_t(x), t)\right]. \end{split}$$

Applications to the classification of ancient solutions to the heat equation. (Hongxin Guo, Robert Philipowski, A.Th. 2015)

- With the substitution $\tau := -t$, solutions to the backward equation above defined for all $t \geq 0$ correspond to ancient solutions of the (forward) heat equation, $\tau \leq 0$, under forward Ricci flow.
- Let

$$\theta := \lim_{t \to \infty} \mathcal{E}'(t) \in [0, +\infty].$$

Example Consider $u(t, y) = e^{y-t}$ on \mathbb{R} with the standard metric. Then

$$\mathcal{E}(t) = t$$
 and $\theta = 1$.

Proposition

Assume that $\frac{\partial g}{\partial t} = 2\text{Ric}$ (or $\frac{\partial g}{\partial t} \leq 2\text{Ric}$) and let u be a positive solution of the backward heat equation.

- Then u is constant if and only if $\theta = 0$.
- If the entropy $\mathcal{E}(t)$ grows sublinearly, i.e.

$$\lim_{t\to\infty}\mathcal{E}(t)/t=0,$$

then $\theta = 0$ and u is constant.

II. Ricci flow under conjugate backward heat equation

Consider

$$\begin{cases} \frac{\partial}{\partial t}g = -2\operatorname{Ric} \\ \frac{\partial}{\partial t}u + \Delta u = Ru. \end{cases}$$

Now

$$\mathbb{E}\left[\exp\left(-\int_0^t R(X_s(x),s)\,ds\right)\,u(X_t(x),t)\right]=u(x,0)\ \ \text{indep. of }t.$$

Take

$$\mathbb{P}_{\mathsf{x},t} := \exp\left(-\int_0^t R(\mathsf{X}_{\mathsf{s}}(\mathsf{x}),s)\,ds\right)d\mathbb{P}$$

as reference measure.

Consider the entropy of the measure

$$\mu_{\mathsf{x},t} := u(X_t(\mathsf{x}),t) \, d\mathbb{P}_{\mathsf{x},t}$$

defined as

$$\mathcal{E}(t) = \mathbb{E}_{x,t} \big[(u \log u)(X_t(x), t) \big]$$

where $\mathbb{E}_{x,t}$ denotes expectation w/r to $\mathbb{P}_{x,t}$.

• The derivative of $\mathcal{E}(t)$ is given by

$$\mathcal{E}'(t) = \mathbb{E}_{x,t} \left[\left((R + \left| \nabla \log u \right|^2) u \right) (X_t(x), t) \right].$$

Theorem

Consider the following entropy functional

$$\operatorname{Ent}(g, u, t) := \mathbb{E}_{x, t} \big[(u \log u)(X_t(x), t) \big] \\ - 2 \int_0^t \mathbb{E}_{x, s} \big[\Delta u(X_s(x), s) \big] ds.$$

Then

$$\frac{d}{dt}\operatorname{Ent}(g, u, t) = \mathbb{E}_{x, t}\left[\left(\frac{\left|\nabla u\right|^{2}}{u} - 2\Delta u + Ru\right)(X_{t}(x), t)\right],$$

$$\frac{d^{2}}{dt^{2}}\operatorname{Ent}(g, u, t) = 2\mathbb{E}_{x, t}\left[\left(\left|\operatorname{Ric} - \operatorname{Hess}\log u\right|^{2}u\right)(X_{t}(x), t)\right].$$

We observe that

$$\mathcal{F}(g,u,t) := \frac{d}{dt}\operatorname{Ent}(g,u,t)$$

is non-decreasing in time and monotonicity is strict unless

$$Ric + Hess f = 0$$
 (steady Ricci soliton)

where $f = \log u$.

III. Ricci solitons

A complete Riemannian manifold (M,g) is said to be a gradient Ricci soliton if there exists $f \in C^{\infty}(M;\mathbb{R})$ such that

$$Ric + Hess(f) = \rho g$$

for some $\rho \in \mathbb{R}$. The function f is called a potential function of the Ricci soliton.

- $\rho = 0$: steady soliton;
- $\rho > 0$: shrinking soliton;
- $\rho < 0$: expanding soliton.

Note that if f = const, then (M, g) is Einstein.

Ricci solitons are special solutions to the Ricci flow

• If (M, g) is Einstein with

$$Ric = \rho g$$
,

then

$$g(t) := (1 - 2\rho t) g$$

solves the Ricci flow equation.

• Likewise, if (M, g, f) is a gradient Ricci soliton with

$$\operatorname{Ric} + \operatorname{Hess}(f) = \rho g$$
,

then

$$g(t) := (1 - 2\rho t) \varphi_t^* g$$

solves the Ricci flow equation. Here φ_t is the 1-parameter family of diffeomorphisms generated by $\nabla f/(1-2\rho t)$.

IV. Perelman's W-entropy

Let M again be a compact manifold. To study shrinking solitons, Perelman introduced the so-called W-functional.

Instead of the \mathcal{F} -functional one considers

$$\mathcal{W}: \ \mathcal{M} \times C^{\infty}(M) \times \mathbb{R}_{+}^{*} \to \mathbb{R},$$

$$\mathcal{W}(g, f, \tau) := \int_{M} \left[\tau \left(R + |\nabla f|^{2} \right) + f - n \right] \frac{e^{-f}}{(4\pi\tau)^{n/2}} \, d\text{vol}_{g}$$

One studies the gradient flow of $\mathcal{W}(g, f, \tau)$. This leads to evolutions g(t), f(t) and $\tau(t)$ where τ is then a strictly positive smooth function $\tau(t)$.

Theorem (Perelman 2002)

Let g(t), f(t) and $\tau(t)$ develop according to

$$\begin{cases} \frac{\partial}{\partial t}g = -2\operatorname{Ric} \\ \frac{\partial}{\partial t}f = -\Delta f - R + |\nabla f|^2 + \frac{n}{2\tau} \\ \frac{\partial}{\partial t}\tau = -1. \end{cases}$$

Then

$$\frac{d}{dt}\mathcal{W}(g,f,\tau) = 2\tau \int_{M} \left| \operatorname{Ric} + \operatorname{Hess} f - \frac{g}{2\tau} \right|^{2} \frac{e^{-f}}{(4\pi\tau)^{n/2}} \, d\operatorname{vol}_{g}.$$

In particular, $W(g, f, \tau)$ is non-decreasing in time and monotonicity is strict unless (M, g) satisfies

$$\operatorname{Ric} + \operatorname{Hess} f = \frac{g}{2\tau}$$
 (shrinking Ricci soliton).

Let

$$u:=rac{e^{-f}}{(4\pi au)^{n/2}}\quad ext{or}\quad f=-\left(\log u+rac{n}{2}\log(4\pi au)
ight).$$

Then g(t), u(t) and $\tau(t)$ evolve according to

$$\begin{cases} \frac{\partial}{\partial t}g = -2\operatorname{Ric}, \\ \frac{\partial}{\partial t}u + \Delta u = Ru, \\ \frac{\partial}{\partial t}\tau = -1. \end{cases}$$

Let

$$\mathcal{W}(g, u, \tau) = \int_{M} \left[\tau \left(R + |\nabla \log u|^{2} \right) - \log u - \frac{n}{2} \log(4\pi\tau) - n \right] u \, d \operatorname{vol}_{g}.$$

Then

$$\frac{d}{dt}\mathcal{W}(g, u, \tau) = 2\tau \int_{M} \left| \text{Ric} - \text{Hess} \log u - \frac{g}{2\tau} \right|^{2} u \, d\text{vol}_{g}.$$

In particular, $\mathcal{W}(g,u,\tau)$ is non-decreasing in time and monotonicity is strict unless

$$\operatorname{Ric} - \operatorname{Hess} \log u = \frac{g}{2\tau}.$$

Entropy of the Gaussian measure on \mathbb{R}^n

Let

$$d\mu_t(y) = (4\pi t)^{-n/2} e^{-|y|^2/4t} dy =: \gamma_t(y) dy$$

be the standard Gaussian measure on \mathbb{R}^n .

ullet The Boltzmann-Shannon entropy of $\mu_{ au}$ is given as

$$\mathcal{E}_0(t) := \int_{\mathbb{R}^n} (\gamma_{ au} \log \gamma_{ au})(y) \, dy = -rac{n}{2} igl[1 + \log(4\pi au) igr].$$

Relative entropy

Let g(t), u(t) and $\tau(t)$ evolve according to

$$\begin{cases} \frac{\partial}{\partial t}g = -2 \operatorname{Ric}, \\ \frac{\partial}{\partial t}u + \Delta u = Ru, \\ \frac{\partial}{\partial t}\tau = -1. \end{cases}$$

We normalize μ such that

$$\int_{M} u(t) \, d \mathrm{vol}_{g(t)} \equiv 1.$$

Theorem (Relative entropy)

Let

$$H(g, u, t) := \mathcal{E}(t) - \mathcal{E}_0(t)$$

$$\equiv \int_{M} u \log u \, d \operatorname{vol}_g - \left(-\frac{n}{2} \left[1 + \log(4\pi\tau) \right] \right).$$

Then

$$\frac{d}{dt}H(g, u, t) = \int_{M} \left[R + |\nabla \log u|^{2} - \frac{n}{2\tau} \right] u \, d\text{vol}_{g}$$

and
$$\frac{d}{dt}\tau H(g, u, t) = \mathcal{W}(g, u, \tau).$$

Excursion Lei Ni's entropy formula for positive solutions of the heat equation on a static Riemannian manifold.

Lei Ni (2004) Let u > 0 be a positive solution of the heat equation

$$\left(\frac{\partial}{\partial t} - \Delta\right)u = 0$$

on a compact static Riemannian manifold (M,g). Let

$$H(u,t) := \int_{M} u \log u \, d \operatorname{vol} - \left(-\frac{n}{2} \left[1 + \log(4\pi t) \right] \right)$$

be the difference between the Boltzmann entropy of the measure $u(x)\operatorname{vol}(dx)$ on M (normalized to be a probability measure) and the Boltzmann entropy of the standard Gaussian measure $\mu(dy)$ on \mathbb{R}^n .

Then

$$\frac{d}{dt}H(u,t) = \int_{M} \left(\Delta \log u + \frac{n}{2t}\right) u \, d\text{vol}.$$

Observation Suppose that $Ric \ge 0$.

Then, by the differential Harnack inequality,

$$|\nabla \log u|^2 - \frac{\Delta u}{u} \le \frac{n}{2t},$$

equivalently

$$\Delta \log u + \frac{n}{2t} \geq 0.$$

In this case H(u, t) non-decreasing as function of t.

V. Relative entropies and W-functionals

Let g(t), u(t) and $\tau(t)$ evolve according to

$$\begin{cases} \frac{\partial}{\partial t}g = -2\operatorname{Ric} \\ \frac{\partial}{\partial t}u + \Delta u = Ru \\ \frac{\partial}{\partial t}\tau = -1. \end{cases}$$

For simplicity $\tau(t) = T - t$.

Consider again on M the entropy functional

$$\begin{split} \operatorname{Ent}(g,u,t) &:= \mathbb{E}_{t,x} \big[(u \log u)(t,X_t(x)) \big] \\ &- 2 \, \int_0^t \mathbb{E}_{s,x} \big[\Delta u(s,X_s(x)) \big] ds, \end{split}$$

and the corresponding expression on \mathbb{R}^n ,

$$\operatorname{Ent}_0(t) = \mathbb{E}\big[(\gamma_{ au(t)}\log\gamma_{ au(t)})(B_t)\big] - 2\int_0^t \mathbb{E}\left[\Delta\gamma_{ au(s)}(B_s)\right]ds$$

where γ_t is the standard Gaussian kernel and B_t standard Brownian motion on \mathbb{R}^n starting at 0.

Recall that the standard Gaussian measure on \mathbb{R}^n is given by

$$d\mu_t(y) = (4\pi t)^{-n/2} e^{-|y|^2/4t} dy =: \gamma_t(y) dy.$$

A straightforward manipulation shows (with $\tau(t) = T - t$)

$$\begin{aligned} \operatorname{Ent}_{0}(t) &= \int_{\mathbb{R}^{n}} \left(\gamma_{\tau}(y) \log \gamma_{\tau}(y) \right) \gamma_{t}(y) \, dy - 2 \, t \Delta \gamma_{T}(0) \\ &= -\frac{1}{2} \, \frac{n}{(4\pi \, T)^{n/2}} \left(\frac{t}{T} + \log(4\pi \tau) \right) + \frac{1}{2} \frac{n}{(4\pi \, T)^{n/2}} \, \frac{t}{T} \\ &= -\frac{1}{2} \, \frac{n}{(4\pi \, T)^{n/2}} \, \log(4\pi \tau). \end{aligned}$$

Normalize u such that

$$\mathbb{E}_{t,x}\big[u(t,X_t(x))\big] \equiv \frac{1}{(4\pi T)^{n/2}}$$

and consider the relative entropy

$$\mathbb{H}(g, u, t) := \operatorname{Ent}(g, u, t) - \operatorname{Ent}_0(t).$$

Theorem (Relative entropy; W-functional)

Let g(t), u(t) and $\tau(t)$ as above. Let

$$\mathbb{H}(t) \equiv \mathbb{H}(g,u,t) := \mathrm{Ent}(g,u,t) - \mathrm{Ent}_0(t)$$
 and $\mathbb{W}(t) \equiv \mathbb{W}(g,u,t) := (au\mathbb{H}(t))'$

Then

$$\frac{d}{dt}\mathbb{H}(t) = \mathbb{E}^* \left[\left(|\nabla \log u|^2 - 2 \frac{\Delta u}{u} + R - \frac{n}{2\tau} \right) (t, X_t(x)) \right],$$

$$\frac{d}{dt}\mathbb{W}(t) = 2\tau \, \mathbb{E}^* \left[\left| \text{Ric} - \text{Hess} \log u - \frac{g}{2\tau} \right|^2 (t, X_t(x)) \right].$$

Important observations

• The relative entropy $\mathbb{H}(t)$ is non-increasing in time. Indeed: The right-hand-side of $\frac{d}{dt}\mathbb{H}(t)$ is non-positive due to the Li-Yau inequality for solutions of the conjugate heat equation under Ricci flow: If R>0 then

$$|\nabla \log u|^2 - 2\frac{\Delta u}{u} + R - \frac{n}{2\tau} \le 0.$$

• The W-functional W(t) is non-decreasing in time and monotonicity is strict unless (M,g) satisfies

$$\operatorname{Ric} + \operatorname{Hess} f = \frac{g}{2\tau}$$
 (shrinking Ricci soliton)

where $f = \log u$.

VI. Surface entropy

The case of a surface $(\dim M = 2)$

• For a compact surface (M, g(t)) of positive curvature $R(t, \cdot)$ Hamilton's surface entropy (1988) is defined as

$$\mathsf{Ent}(t) := \int_M R(t,y) \log R(t,y) \operatorname{vol}_t(dy).$$

• He showed that $\operatorname{Ent}(t)$ is non-increasing along the normalized (forward) Ricci flow.

The case of a surface $(\dim M = 2)$

On a surface of positive curvature things simplify:

Instead of

$$\begin{cases} \frac{\partial}{\partial t}g = -2\operatorname{Ric} \\ \frac{\partial}{\partial t}u + \Delta u = Ru \end{cases}$$

we may consider

$$\begin{cases} \frac{\partial}{\partial t}g = -Rg\\ \left(\frac{\partial}{\partial t} - \Delta - R\right)R = 0. \end{cases}$$

Now R itself solves the conjugate heat equation.

VII. Possible applications

No breather theorems for non-compact manifolds

- A breather of a geometric flow is a periodic solution changing only by diffeomorphisms and rescaling.
- More precisely, a solution (M, g(t)) is a breather if there is a diffeomorphism $\varphi \colon M \to M$, a constant c > 0 and times $t_1 < t_2$ such that

$$g(t_2)=c\,\varphi^*g(t_1).$$

- According to c < 1, c = 1 or c > 1, the breather is called shrinking, steady or expanding, respectively.
- One wants to rule out non-trivial breathers, e.g. no steady or expanding breather theorems, like every steady breather is Ricci-flat, every expanding breather is a gradient soliton, etc
- The above formulas are suited to non-compact manifolds, since all measures are probability measures.

Guo, Hongxin; Philipowski, Robert and Thalmaier, Anton: An entropy formula for the heat equation on manifolds with time-dependent metric, application to ancient solutions. *Potential Analysis* **42** (2015), 483–497.

Guo, Hongxin; Philipowski, Robert and Thalmaier, Anton: Martingales on manifolds with time-dependent connection. *J. Theoret. Probab.* **28** (2015), 1038–1062.

Hamilton, Richard: The Harnack estimate for the Ricci flow. *J. Differential Geom.* **37** (1993) 225–243.

Haslhofer, Robert and Naber, Aaron: Characterizations of the Ricci flow. *J. Eur. Math. Soc.* (to appear).

Ni, Lei: The entropy formula for linear heat equation. J. Geom. Anal. 14 (2004), no. 1, 87-100. Addenda. J. Geom. Anal. 14 (2004), 369-374.

Perelman, Grisha: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1.