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I. Entropy under Ricci flow

Consider positive solutions to
∂

∂t
u −∆g(t)u = 0

∂

∂t
gt = −2Ricg(t)

It is convenient to let time run backwards in both equation.

Then: Backward heat equation under backward Ricci flow
Thus 

∂

∂t
u + ∆u = 0

∂

∂t
g = 2Ric

Let (Xt(x), t) the space-time Brownian motion starting at
(x , 0). Then Xt(x) is a g(t)-Brownian motion on M.
For simplicity always start at time s = 0.
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Let Xt(x) be a g(t)-Brownian motion on M. Consider the
heat kernel measure

mt(dy) := P {Xt(x) ∈ dy}.

We are interested in the entropy of

µt := u(·, t) dmt ≡ u(Xt(x), t) dP

The quantity ∫
M

u(y , t) mt(dy) = E[u(Xt(x), t)]

stays constant along the flow, since u(Xt(x), t) is a
martingale.
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Theorem

Denote by

E(t) = E[(u log u)(Xt(x), t)]

=

∫
M

(u log u)(y , t) mt(dy)

the entropy of µt = u(·, t) dmt ≡ u(Xt(x), t) dP.

The first two derivatives of E(t) are given by

E ′(t) = E
[
|∇u|2

u
(Xt(x), t)

]
E ′′(t) = 2E

[(
u |Hess log u|2

)
(Xt(x), t)

]
.
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Applications to the classification of ancient solutions to the heat
equation. (Hongxin Guo, Robert Philipowski, A.Th. 2015)

With the substitution τ := −t, solutions to the backward
equation above defined for all t ≥ 0 correspond to ancient
solutions of the (forward) heat equation, τ ≤ 0, under forward
Ricci flow.

Let
θ := lim

t→∞
E ′(t) ∈ [0,+∞].
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Example Consider u(t, y) = ey−t on R with the standard metric.
Then

E(t) = t and θ = 1.

Proposition

Assume that ∂g
∂t = 2Ric (or ∂g

∂t ≤ 2Ric) and let u be a positive
solution of the backward heat equation.

Then u is constant if and only if θ = 0.

If the entropy E(t) grows sublinearly, i.e.

lim
t→∞

E(t)/t = 0,

then θ = 0 and u is constant.
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II. Ricci flow under conjugate backward heat equation

Consider 
∂

∂t
g = −2Ric

∂

∂t
u + ∆u = Ru.

Now

E
[

exp

(
−
∫ t

0
R(Xs(x), s) ds

)
u(Xt(x), t)

]
= u(x , 0) indep. of t.

Take

Px ,t := exp

(
−
∫ t

0
R(Xs(x), s) ds

)
dP

as reference measure.
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Consider the entropy of the measure

µx ,t := u(Xt(x), t) dPx ,t

defined as

E(t) = Ex ,t

[
(u log u)(Xt(x), t)

]
where Ex ,t denotes expectation w/r to Px ,t .

The derivative of E(t) is given by

E ′(t) = Ex ,t

[(
(R +

∣∣∇ log u
∣∣2)u

)
(Xt(x), t)

]
.
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Theorem

Consider the following entropy functional

Ent(g , u, t) := Ex ,t

[
(u log u)(Xt(x), t)

]
− 2

∫ t

0
Ex ,s

[
∆u(Xs(x), s)

]
ds.

Then

d

dt
Ent(g , u, t) = Ex ,t

[(∣∣∇u
∣∣2

u
− 2∆u + Ru

)
(Xt(x), t)

]
,

d2

dt2
Ent(g , u, t) = 2Ex ,t

[(∣∣Ric−Hess log u
∣∣2 u
)

(Xt(x), t)
]
.
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We observe that

F(g , u, t) :=
d

dt
Ent(g , u, t)

is non-decreasing in time and monotonicity is strict unless

Ric + Hess f = 0 (steady Ricci soliton)

where f = log u.

Anton Thalmaier Brownian motion, evolving geometries and entropy



III. Ricci solitons

A complete Riemannian manifold (M, g) is said to be a
gradient Ricci soliton if there exists f ∈ C∞(M;R) such that

Ric + Hess(f ) = ρ g

for some ρ ∈ R. The function f is called a potential function of
the Ricci soliton.

ρ = 0: steady soliton;

ρ > 0: shrinking soliton;

ρ < 0: expanding soliton.

Note that if f = const, then (M, g) is Einstein.
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Ricci solitons are special solutions to the Ricci flow

If (M, g) is Einstein with

Ric = ρ g ,

then
g(t) := (1− 2ρt) g

solves the Ricci flow equation.

Likewise, if (M, g , f ) is a gradient Ricci soliton with

Ric + Hess(f ) = ρ g ,

then
g(t) := (1− 2ρt)ϕ∗t g

solves the Ricci flow equation. Here ϕt is the 1-parameter
family of diffeomorphisms generated by ∇f /(1− 2ρt).
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IV. Perelman’s W-entropy

Let M again be a compact manifold. To study shrinking solitons,
Perelman introduced the so-called W-functional.
Instead of the F-functional one considers

W : M×C∞(M)× R∗+ → R,

W(g , f , τ) : =

∫
M

[
τ (R + |∇f |2) + f − n

] e−f

(4πτ)n/2
dvolg

One studies the gradient flow of W(g , f , τ). This leads to
evolutions g(t), f (t) and τ(t) where τ is then a strictly positive
smooth function τ(t).
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Theorem (Perelman 2002)

Let g(t), f (t) and τ(t) develop according to

∂

∂t
g = −2Ric

∂

∂t
f = −∆f − R + |∇f |2 +

n

2τ
∂

∂t
τ = −1.

Then

d

dt
W(g , f , τ) = 2τ

∫
M

∣∣∣Ric + Hess f − g

2τ

∣∣∣2 e−f

(4πτ)n/2
dvolg .

In particular, W(g , f , τ) is non-decreasing in time and
monotonicity is strict unless (M, g) satisfies

Ric + Hess f =
g

2τ
(shrinking Ricci soliton).
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Let

u :=
e−f

(4πτ)n/2
or f = −

(
log u +

n

2
log(4πτ)

)
.

Then g(t), u(t) and τ(t) evolve according to

∂

∂t
g = −2Ric,

∂

∂t
u + ∆u = Ru,

∂

∂t
τ = −1.

Let

W(g , u, τ) =

∫
M

[
τ (R + |∇ log u|2)− log u − n

2
log(4πτ)− n

]
u dvolg .
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Then

d

dt
W(g , u, τ) = 2τ

∫
M

∣∣∣Ric−Hess log u − g

2τ

∣∣∣2 u dvolg .

In particular, W(g , u, τ) is non-decreasing in time and
monotonicity is strict unless

Ric−Hess log u =
g

2τ
.
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Entropy of the Gaussian measure on Rn

Let

dµt(y) = (4πt)−n/2 e−|y |
2/4t dy =: γt(y) dy

be the standard Gaussian measure on Rn.

The Boltzmann-Shannon entropy of µτ is given as

E0(t) :=

∫
Rn

(γτ log γτ )(y) dy = −n

2

[
1 + log(4πτ)

]
.
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Relative entropy

Let g(t), u(t) and τ(t) evolve according to

∂

∂t
g = −2Ric,

∂

∂t
u + ∆u = Ru,

∂

∂t
τ = −1.

We normalize u such that∫
M

u(t) dvolg(t) ≡ 1.
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Theorem (Relative entropy)

Let

H(g , u, t) : = E(t)− E0(t)

≡
∫

M
u log u dvolg −

(
−n

2

[
1 + log(4πτ)

])
.

Then

d

dt
H(g , u, t) =

∫
M

[
R + |∇ log u|2 − n

2τ

]
u dvolg

and
d

dt
τ H(g , u, t) =W(g , u, τ).
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Excursion Lei Ni’s entropy formula for positive solutions of the
heat equation on a static Riemannian manifold.

Lei Ni (2004) Let u > 0 be a positive solution of the heat
equation (

∂

∂t
−∆

)
u = 0

on a compact static Riemannian manifold (M, g). Let

H(u, t) :=

∫
M

u log u dvol−
(
−n

2

[
1 + log(4πt)

])
be the difference between the Boltzmann entropy of the measure
u(x) vol(dx) on M (normalized to be a probability measure) and
the Boltzmann entropy of the standard Gaussian measure µ(dy)
on Rn.
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Then

d

dt
H(u, t) =

∫
M

(
∆ log u +

n

2t

)
u dvol.

Observation Suppose that Ric ≥ 0.

Then, by the differential Harnack inequality,

|∇ log u|2 − ∆u

u
≤ n

2t
,

equivalently

∆ log u +
n

2t
≥ 0.

In this case H(u, t) non-decreasing as function of t.
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V. Relative entropies and W -functionals

Let g(t), u(t) and τ(t) evolve according to

∂

∂t
g = −2Ric

∂

∂t
u + ∆u = Ru

∂

∂t
τ = −1.

For simplicity τ(t) = T − t.
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Consider again on M the entropy functional

Ent(g , u, t) := Et,x

[
(u log u)(t,Xt(x))

]
− 2

∫ t

0
Es,x

[
∆u(s,Xs(x))

]
ds,

and the corresponding expression on Rn,

Ent0(t) = E
[
(γτ(t) log γτ(t))(Bt)

]
− 2

∫ t

0
E
[
∆γτ(s)(Bs)

]
ds

where γt is the standard Gaussian kernel and Bt standard
Brownian motion on Rn starting at 0.
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Recall that the standard Gaussian measure on Rn is given by

dµt(y) = (4πt)−n/2 e−|y |
2/4t dy =: γt(y) dy .

A straightforward manipulation shows (with τ(t) = T − t)

Ent0(t) =

∫
Rn

(
γτ (y) log γτ (y)

)
γt(y) dy − 2 t∆γT (0)

= −1

2

n

(4πT )n/2

( t

T
+ log(4πτ)

)
+

1

2

n

(4πT )n/2

t

T

= −1

2

n

(4πT )n/2
log(4πτ).

Normalize u such that

Et,x

[
u(t,Xt(x))

]
≡ 1

(4πT )n/2

and consider the relative entropy

H(g , u, t) := Ent(g , u, t)− Ent0(t).
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Theorem (Relative entropy; W -functional)

Let g(t), u(t) and τ(t) as above. Let

H(t) ≡ H(g , u, t) := Ent(g , u, t)− Ent0(t) and

W(t) ≡W(g , u, t) := (τH(t))′

Then

d

dt
H(t) = E∗

[(
|∇ log u|2 − 2

∆u

u
+ R − n

2τ

)
(t,Xt(x))

]
,

d

dt
W(t) = 2τ E∗

[∣∣∣Ric−Hess log u − g

2τ

∣∣∣2(t,Xt(x))

]
.
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Important observations

The relative entropy H(t) is non-increasing in time.

Indeed: The right-hand-side of d
dtH(t) is non-positive due to

the Li-Yau inequality for solutions of the conjugate heat
equation under Ricci flow:
If R ≥ 0 then

|∇ log u|2 − 2
∆u

u
+ R − n

2τ
≤ 0.

The W -functional W(t) is non-decreasing in time and
monotonicity is strict unless (M, g) satisfies

Ric + Hess f =
g

2τ
(shrinking Ricci soliton)

where f = log u.
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VI. Surface entropy

The case of a surface (dim M = 2)

For a compact surface (M, g(t)) of positive curvature R(t, ·)
Hamilton’s surface entropy (1988) is defined as

Ent(t) :=

∫
M

R(t, y) log R(t, y) volt(dy).

He showed that Ent(t) is non-increasing along the normalized
(forward) Ricci flow.
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The case of a surface (dim M = 2)

On a surface of positive curvature things simplify:

Instead of 
∂

∂t
g = −2Ric

∂

∂t
u + ∆u = Ru

we may consider 
∂

∂t
g = −R g(
∂

∂t
−∆− R

)
R = 0.

Now R itself solves the conjugate heat equation.
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VII. Possible applications

No breather theorems for non-compact manifolds

A breather of a geometric flow is a periodic solution changing
only by diffeomorphisms and rescaling.

More precisely, a solution (M, g(t)) is a breather if there is a
diffeomorphism ϕ : M → M, a constant c > 0 and times
t1 < t2 such that

g(t2) = c ϕ∗g(t1).

According to c < 1, c = 1 or c > 1, the breather is called
shrinking, steady or expanding, respectively.

One wants to rule out non-trivial breathers, e.g. no steady or
expanding breather theorems, like
every steady breather is Ricci-flat,
every expanding breather is a gradient soliton, etc

The above formulas are suited to non-compact manifolds,
since all measures are probability measures.
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