

Luca Heltai
Director of the Joint SISSA-ICTP Master in High Performance Computing
Assistant Professor @ SISSA mathLab

Floating-Point Math

International School for Advanced Studies

Exponential Notation

• The following are equivalent representations of 1,234

123,400.0
$$\times$$
 10⁻²
12,340.0 \times 10⁻¹

1,234.0 \times 10⁰

123.4 \times 10¹

12.34 \times 10²

1.234 \times 10³

0.1234 \times 10⁴

The representations differ in that the decimal place – the "point" -- "floats" to the left or right (with the appropriate adjustment in the exponent).

Floating-Point Representation (I)

Floating-Point Representation (II)

- ❖ A floating-point number is represented by the triple
 - S is the Sign bit (0 is positive and 1 is negative)
 - Representation is called sign and magnitude
 - E is the Exponent field (signed)
 - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
 - F is the Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

S Exponent Fraction

Value of a floating-point number = $(-1)^{s} \times val(F) \times 2^{val(E)}$

IEEE 754 Floating-Point Standard

- Found in virtually every computer invented since 1980
 - Simplified porting of floating-point numbers
 - Unified the development of floating-point algorithms
 - Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
 - ♦ 1-bit sign + 8-bit exponent + 23-bit fraction

S Exponent ⁸	Fraction ²³
-------------------------	------------------------

- Double Precision Floating Point Numbers (64 bits)
 - 1-bit sign + 11-bit exponent + 52-bit fraction

S	Exponent ¹¹	Fraction ⁵²								
(continued)										

Number limits

- ❖ Single precision: $\sim \pm 1.2*10^{-38} < x < \sim \pm 3.4*10^{38}$
- ❖ actual precision: ~7 decimal digits
- In comparison: signed 32-bit integer numbers range only from -214783648 to 214783647 and the smallest positive number is 1

- ❖ Double precision: ~±2.2*10⁻³⁰⁸ < x < ~±1.8*10³⁰⁸
- ❖ actual precision: ~15 decimal digits

Floating-point Math Pitfalls

- Floating point math is commutative, but not associative! Example (single precision):
- $4 \cdot 1.0 + (1.5*10^{38} + (-1.5*10^{38})) = 1.0$
- $(1.0 + 1.5*10^{38}) + (-1.5*10^{38}) = 0.0$
 - the result of a summation depends on the order of how the numbers are summed up
 - results may change significantly, if a compiler changes the order of operations for optimisation
 - prefer adding numbers of same magnitude
 - avoid subtracting very similar numbers

Normalized Floating Point

❖ For a normalized floating point number (S, E, F)

S E
$$F = f_1 f_2 f_3 f_4 ...$$

- Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$
 - IEEE 754 assumes hidden 1. (not stored) for normalized numbers
 - Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{\text{val}(E)}$$

$$(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{\text{val}(E)}$$

$$(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{\text{val}(E)}$$

Biased Exponent Representation

- How to represent a signed exponent? Choices are ...
 - Sign + magnitude representation for the exponent
 - Two's complement representation
 - Biased representation
- ❖ IEEE 754 uses biased representation for the exponent
 - ♦ Value of exponent = val(E) = E Bias (Bias is a constant)
- Recall that exponent field is 8 bits for single precision
 - E can be in the range 0 to 255
 - \diamond E = 0 and E = 255 are reserved for special use (discussed later)
 - \diamond E = 1 to 254 are used for normalized floating point numbers
 - \diamond Bias = 127 (half of 254), val(E) = E 127
 - \diamond val(E=1) = -126, val(E=127) = 0, val(E=254) = 127

Biased Exponent – Cont'd

- ❖ For double precision, exponent field is 11 bits
 - ♦ E can be in the range 0 to 2047
 - \Rightarrow E = 0 and E = 2047 are reserved for special use
 - \diamond E = 1 to 2046 are used for normalized floating point numbers
 - \diamond Bias = 1023 (half of 2046), val(*E*) = *E* 1023
 - \diamond val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{E-Bias}$$

 $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{E-Bias}$
 $(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{E-Bias}$

Examples of Single Precision

What is the decimal value of this Single Precision float?

1011111000100000000000000000000000

Solution:

- ♦ Sign = 1 is negative
- \Rightarrow Exponent = $(01111100)_2 = 124$, E bias = 124 127 = -3
- \diamond Significand = $(1.0100 \dots 0)_2 = 1 + 2^{-2} = 1.25 (1. is implicit)$
- \diamond Value in decimal = -1.25 × 2⁻³ = -0.15625
- What is the decimal value of?
- ❖ Solution: implicit
 - \diamond Value in decimal = +(1.01001100 ... 0)₂ × 2^{130–127} =

Examples of Double Precision

❖ What is the decimal value of this Double Precision float ?

Solution:

- \diamond Value of exponent = $(10000000101)_2$ Bias = 1029 1023 = 6
- \diamond Value of double float = $(1.00101010 \dots 0)_2 \times 2^6 (1. \text{ is implicit}) = <math>(1001010.10 \dots 0)_2 = 74.5$
- What is the decimal value of?

• Do it yourself! (answer should be $-1.5 \times 2^{-7} = -0.01171875$)

Converting FP Decimal to Binary

❖ Convert –0.8125 to binary in single and double precision

Solution:

Fraction bits can be obtained using multiplication by 2

■
$$0.8125 \times 2 = 1.625$$

■ $0.625 \times 2 = 1.25$
■ $0.25 \times 2 = 0.5$
■ $0.5 \times 2 = 1.0$

- Stop when fractional part is 0
- \diamond Fraction = $(0.1101)_2$ = $(1.101)_2 \times 2^{-1}$ (Normalized)
- ♦ Exponent = (-1)+ Bias = 126 (single precision) and 1022 (double)

1	C	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	C	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Single Precision

Double Precision

Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

- \diamond Exponent bias = 254 127 = 127 (largest exponent for SP)
- \diamond Significand = $(1.111 ... 1)_2$ = almost 2
- ♦ Value in decimal ≈ 2 × 2¹²⁷ ≈ 2¹²⁸ ≈ 3.4028 ... × 10³⁸
- Solution for Double Precision:

- ♦ Value in decimal $\approx 2 \times 2^{1023} \approx 2^{1024} \approx 1.79769 \dots \times 10^{308}$
- Overflow: exponent is too large to fit in the exponent field

Density of Floating-point Numbers

- How can we represent so many more numbers in floating point than in integer? We don't!
 - The number of unique bit patterns has to be the same as with integers of the same "bitness"
 - There are 8,388,607 single precision numbers in 1.0< x <2.0, but only</p>
 - ♦ 8191 in 1023.0< x <1024.0</p>

- absolute precision depends on the magnitude
- some numbers have no exact representation
- approximated using rounding mode (nearest)

Smallest Normalized Float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:

 - \diamond Exponent bias = 1 127 = –126 (smallest exponent for SP)
 - \diamond Significand = $(1.000 ... 0)_2 = 1$
 - \diamond Value in decimal = 1 × 2⁻¹²⁶ = 1.17549 ... × 10⁻³⁸
- Solution for Double Precision:

- \diamond Value in decimal = 1 × 2⁻¹⁰²² = 2.22507 ... × 10⁻³⁰⁸
- Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

Zero

- +0 and –0 are possible according to sign bit S

Infinity

- Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum E = 255
 - For double precision with 11-bit exponent: maximum E = 2047
- Infinity can result from overflow or division by zero
- → and are possible according to sign bit S

NaN (Not a Number)

- ♦ NaN is a special value represented with maximum E and $F \neq 0$
- Result from exceptional situations, such as 0/0 or sqrt(negative)
- ♦ Operation on a NaN results is NaN: Op(X, NaN) = NaN

Denormalized Numbers

- IEEE standard uses denormalized numbers to ...
 - Fill the gap between 0 and the smallest normalized float
 - Provide gradual underflow to zero
- **Denormalized:** exponent field E is 0 and fraction $F \neq 0$
 - Implicit 1. before the fraction now becomes 0. (not normalized)
- ❖ Value of denormalized number (S, 0, F)

Single precision: $(-1)^S \times (0.F)_2 \times 2^{-126}$

Double precision: $(-1)^S \times (0.F)_2 \times 2^{-1022}$

Filling the Gaps...

hypothetical 6-bit floating point representation:

$$E = 3, F = 2$$

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value		
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$		
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$		
Zero	0	0	± 0		
Infinity	255	0	± 8		
NaN	255	nonzero	NaN		

Double-Precision	Exponent = 11	Fraction = 52	Value
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$
Zero	0	0	± 0
Infinity	2047	0	± ∞
NaN	2047	nonzero	NaN

Floating-Point Comparison

- ❖ IEEE 754 floating point numbers are ordered
 - Because exponent uses a biased representation ...
 - Exponent value and its binary representation have same ordering
 - Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction ⇒ larger magnitude

■
$$0 < (0.F)_2 \times 2^{E_{min}} < (1.F)_2 \times 2^{E_{-Bias}} < \infty (E_{min} = 1 - Bias)$$

- ♦ Because sign bit is most significant ⇒ quick test of signed <</p>
- Integer comparator can compare magnitudes

Floating Point Addition Example

- Consider Adding (Single-Precision Floating-Point):

 - $+ 1.1000000000000110000101_2 \times 2^2$
- Cannot add significands ... Why?
 - Because exponents are not equal
- How to make exponents equal?
 - Shift the significand of the lesser exponent right
 - \diamond Difference between the two exponents = 4 2 = 2
 - So, shift right second number by 2 bits and increment exponent
 - $1.1000000000000110000101_2 \times 2^2$
 - $= 0.0110000000000001100001 01_2 \times 2^4$

Floating-Point Addition — cont'd

- ❖ Now, ADD the Significands:
- $+ 1.1000000000000110000101 \times 2^{2}$
- $+ 0.0110000000000001100001 01 \times 2^{4}$ (shift right)
- $+10.0100010000000001100011 01 \times 24 (result)$
- Addition produces a carry bit, result is NOT normalized
- Normalize Result (shift right and increment exponent):
 - + 10.0100010000000001100011 01 \times 24
- $= + 1.0010001000000000110001 101 \times 2^{5}$

Rounding

- Single-precision requires only 23 fraction bits
- However, Normalized result can contain additional bits

1.0010001000000000110001 |
$$(1)(01) \times 2^5$$

Round Bit: $R = 1 - 1$ $ticky Bit: S = 1$

- Two extra bits are needed for rounding
 - Round bit: appears just after the normalized result
 - Sticky bit: appears after the round bit (OR of all additional bits)
- ❖ Since RS = 11, increment fraction to round to nearest

 $1.0010001000000000110010 \times 2^{5}$ (Rounded)

Rounding to Nearest Even

- Normalized result has the form: 1. f_1 f_2 ... f_l R S
 - The round bit R appears after the last fraction bit f₁
 - The sticky bit S is the OR of all remaining additional bits
- Round to Nearest Even: default rounding mode
- Four cases for RS:
 - ♦ RS = 00 → Result is Exact, no need for rounding
 - ♦ RS = 01 → Truncate result by discarding RS
 - ♦ RS = 11 → Increment result: ADD 1 to last fraction bit
 - - Check Last fraction bit f_1 (f_{23} for single-precision or f_{52} for double)
 - If f_i is 0 then truncate result to keep fraction even

Additional Rounding Modes

- ❖ IEEE 754 standard specifies four rounding modes:
- 1. Round to Nearest Even: described in previous slide
- Round toward +Infinity: result is rounded up
 Increment result if sign is positive and R or S = 1
- 3. Round toward -Infinity: result is rounded down Increment result if sign is negative and R or S = 1
- 4. Round toward 0: always truncate result
- Rounding or Incrementing result might generate a carry
 - This occurs when all fraction bits are 1
 - Re-Normalize after Rounding step is required only in this case

Example on Rounding

Round following result using IEEE 754 rounding modes:

- Round Bit _ LSticky Bit Round to Nearest Even:
 - Increment result since RS = 10 and f_{23} = 1

 - Renormalize and increment exponent (because of carry)
- Round towards -∞: Increment since negative and R = 1

Truncate always

Floating Point Addition /

Start

- Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent.
- 2. Add / Subtract the significands according to the sign bits.
- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Shift significand right by $d = |E_X - E_Y|$

Add significands when signs of X and Y are identical, Subtract when different X - Y becomes X + (-Y)

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Floating Point Adder Block

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - Integer comparator used to compare magnitude of FP numbers
- ❖ Includes special exceptional values: NaN and ±∞
 - Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞, and 1/∞ is 0
 - Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - \diamond Between smallest normalized number 1.0 × $2^{E_{min}}$ and zero
 - \diamond Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - Gradual underflow to zero

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - Extra bits to maintain precision: guard, round, and sticky
 - Four rounding modes
 - Division by zero yields Infinity
 - Zero divide by zero yields Not-a-Number
 - Other complexities
- Implementing the standard can be tricky
 - See text for description of 80x86 and Pentium bug!
- Not using the standard can be even worse

Accuracy can be a Big Problem

Value1	Value2	Value3	Value4	Sum
1.0E+30	-1.0E+30	9.5	-2.3	7.2
1.0E+30	9.5	-1.0E+30	-2.3	-2.3
1.0E+30	9.5	-2.3	-1.0E+30	0

- Adding double-precision floating-point numbers (Excel)
- Floating-Point addition is NOT associative
- Produces different sums for the same data values
- Rounding errors when the difference in exponent is large

