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Exponential Notation

* The following are equivalent
representations of|1,234

123,400.0 x 10-2
- 4 ™
12,340 0 x 107 The representations differ
1,234.0 x 100 in that the decimal place —
123.4 x 102 the “point” -- “floats” to
, . 102 the left or right (with the
1 3 B g appropriate adjustment in
1.234 x 10°  the exponent). |
0.1234 x 10°
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Floating-Point Representation (I)

Exponent

-0.9876 x 1033
| Sign of

Sign of Location of , exponent
. : : Mantissa
mantissa | |[decimal point

Base
é/ lntemaﬂonol Centre
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Floating-Point Representation (ll)

» A floating-point number is represented by the triple

o Sis the Sign bit (0 is positive and 1 is negative)
= Representation is called sign and magnitude

& E'is the Exponent field (signed)
= Very large numbers have large positive exponents
» Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values

<& Fis the Fraction field (fraction after binary point)
= More bits in fraction field improves the precision of FP numbers

S| Exponent Fraction

Value of a floating-point number = (-1)° x val(f) x 2valE)

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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IEEE 754 Floating-Point Standard

% Found in virtually every computer invented since 1980
& Simplified porting of floating-point numbers
¢ Unified the development of floating-point algorithms
¢ Increased the accuracy of floating-point numbers

% Single Precision Floating Point Numbers (32 bits)

<& 1-bit sign + 8-bit exponent + 23-bit fraction

S| Exponent8 Fraction?3

“* Double Precision Floating Point Numbers (64 bits)

<& 1-bit sign + 11-bit exponent + 52-bit fraction

S| Exponent Fraction®2
P (continued) o
ey International Centr
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Number limits

% Single precision: ~+1.2*1038 < x < ~£3.4*10°8
¢ actual precision: ~7 decimal digits

“* In comparison: signed 32-bit integer numbers range only
from -214783648 to 214783647 and the smallest positive
number is 1

% Double precision: ~+2.2*10-308 < x < ~+1.8*10308

¢ actual precision: ~15 decimal digits

The ADOUs Salom
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Floating-point Math Pitfalls

* Floating point math is commutative, but not associative!
Example (single precision):

% 1.0 + (1.5*10%8 + (- 1.5*10%8)) = 1.0
% (1.0 + 1.5%10%8) + (- 1.5*1038) = 0.0

¢ the result of a summation depends on the order of how
the numbers are summed up

<& results may change significantly, if a compiler changes the
order of operations for optimisation

¢ prefer adding numbers of same magnitude

<& avoid subtracting very similar numbers

q,«?"f“ﬂm"fa o o ABO.A Skom
¢ \ylgt International Centre
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Normalized Floating Point

¢ For a normalized floating point number (S, E, F)

S E F=fff,f,...

< Significand is equal to (1.F), = (1.f,f,f51,...),
& |EEE 754 assumes hidden 1. (not stored) for normalized numbers
¢ Significand is 1 bit longer than fraction

< Value of a Normalized Floating Point Number is

(—1)S % (1.F), x 2val(E)

(=1)S x (1.F,L,f:f, ...), x 2val(E)

(—1)S x (1 + £, x271 + f,x2:2 + {,x2-3 + f,;x2-4 ), x 2valE)

TN S
International Centre
(m/ (:CTP> for Theoretical Physics
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Biased Exponent Representation

*» How to represent a signed exponent? Choices are ...

¢ Sign + magnitude representation for the exponent
& Two’s complement representation

¢ Biased representation

* |[EEE 754 uses biased representation for the exponent
¢ Value of exponent = val(E) = E — Bias (Bias is a constant)

¢ Recall that exponent field is 8 bits for single precision

¢ E can be in the range 0 to 255
E =0 and E = 255 are reserved for special use (discussed later)
E =1 to 254 are used for normalized floating point numbers
Bias = 127 (half of 254), val(E) = E - 127
val(E=1) = -126, val(E=127) =0, val(E=254) = 127

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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Biased Exponent — Cont'd

*» For double precision, exponent field is 11 bits
& E can be in the range 0 to 2047
o E=0and E = 2047 are reserved for special use
& E =110 2046 are used for normalized floating point numbers
¢ Bias = 1023 (half of 2046), val(E) = E — 1023
& val(E=1) =-1022, val(E=1023) = 0, val(E=2046) = 1023

 Value of a Normalized Floating Point Number is

(=1)S x (1.F), x 2E-Bias
(_1 )S X (1.f1f2f3f4 )2 x P2E—Bias
(=1)S x (1 + £,x2-1 + £,x22 + [,x23 + f,x24 ), x 2E-Bias

/ e ADOus Salom
International Centre
(@ &el’rheoreﬂcolghysm
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Examples of Single Precision

** What is the decimal value of this Single Precision float?

110

1

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

“ Solution:
& Sign = 1 is negative
o Exponent = (01111100), = 124, E — bias = 124 — 127 = -3
o Significand = (1.0100 ... 0),= 1+ 22 =1.25 (1. is implicit)
¢ Value in decimal = -1.25 x 2-3 = -0.15625
» What is the decimal value of?

0|1

0

0

0

0

0

1

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

» Solution:

e virute g
o Vrate ¢ o

AT

{

—>
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¢ Value in decimal = +({.O10011OO ... 0), x 2130-127 =
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Examples of Double Precision

< What is the decimal value of this Double Precision float ?

0/1/0|0(0(0|0|0}0[1]0]1/0/0{1|0{1|0|1|0]0|0(0(0(0|0|0|0|0|0|0|0
0/0|0|0(0(0|0|0}0}0]0]0/0|0|0(0[0|0|0|0|0|0[0[0(0|0|0|0|0j0j0|0

¢ Solution:
¢ Value of exponent = (10000000101), — Bias = 1029 — 1023 =6
o Value of double float = (1.00101010 ... 0), x 26 (1. is implicit) =

(1001010.10 ... 0), = 74.5
< What is the decimal value of ?

1(0({1{1]1{1{1{1{1]0|0(0{1|0]0/0(0|0]0]|0|0|0]0]0|0(0{0|0]0|0(0|0
0/0/0/0|0]0|0|0/0]0}0|0(0|0|0|0|0|0]0}0]0|0(0|0|0|0|0(0}0|0]0|0

% Do it yourself! (answer should be —1.5 x 2-7 = -0.01171875)

(S \\ (CTP i;t:‘n:tmlonal Centre
\\élgsﬁ/// for Theoretical Physics
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Converting FP Decimal to Binary

% Convert —0.8125 to binary in single and double precision
% Solution:

¢ Fraction bits can be obtained using multiplication by 2
= 0.8125x2 =1.625 )

0.625x2 =1.25

025x2 =0.5

0.5%x2 =1.0

Stop when fractional part is O

o Fraction = (0.1101), = (1.101), x 22" (Normalized)

-

~| 0.8125=(0.1101),= % + Y4 + 1/16 = 13/16

—————
_____________________

1(0{1{1{1|1{1{10|1/0{1|0/0|0|0|0]0]0|0|0|0}0}0|0|0|0]|0|0|0[0(0| Single Precision

110/1(1|1|1/1[1|1/1}1]0|1/0[1|0|0|0[0|0]0|0|0|0]0[0]0]0|0[0|0|O Double
ololo|o|ojo|o|o|ololololo[ojo|ojojojololojolojojojojojojojojolo|  Frecision

/ § (b %%?\ e ADOus Salom
\gfﬁ 2, (CTP) International Centre

for Theoretical Physics
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Largest Normalized Float

** What is the Largest normalized float?

% Solution for Single Precision:
o[t (1| 1| 1{1jo(1]1(1|1[1{1|1{1[1[1|1{1]1{1]1[1|{1|1]1|1]1]1]1

& Exponent — bias = 254 — 127 = 127 (largest exponent for SP)
o Significand = (1.111 ... 1), = almost 2

¢ Value in decimal = 2 x 2127 = 2128 = 3 4028 ... x 1038

¢ Solution for Double Precision:

o111 0111111111111 11111
111111 1111111141

& Value in decimal = 2 x 21023 = 21024 = 1, 79769 ... x 10308

The ADOUs Salom

International Centre
(CTP for Theoretical Physics

_-.» Overflow: exponent is too large to fit in the expangnt field
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Density of Floating-point Numbers

*» How can we represent so many more numbers in floating
point than in integer? We don't!

¢ The number of unique bit patterns has to be the same as
with integers of the same “bitness”

& There are 8,388,607 single precision numbers in
1.0< x <2.0, but only

¢ 81911in 1023.0< x <1024.0

¢ absolute precision depends on the magnitude
¢ some numbers have no exact representation

» approximated using rounding mode (nearest)

I£ :/‘ ’QTM\%%,\ Tho ABO.A Saiom
\s=2t ) ({CTP) International Centre

“SISSA for Theoretical Physics
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Smallest Normalized Float

“* What is the smallest (in absolute value) normalized float?

“ Solution for Single Precision:
0/0/0(0|0/0|0|0}1|0|0[0|0|0|0]0[0|0|0]0|0(0|00[0|0(0|0]0j0|0|0

& Exponent — bias =1 - 127 = -126 (smallest exponent for SP)
o Significand = (1.000 ... 0), =1

¢ Value in decimal = 1 x 2-126 =1 17549 ... x 1038
*»» Solution for Double Precision:

0]/0]0|0]0]0|0]0]0]0]0]1]|0]0|0]0]0|0]0]0|0]|0|0|0]0|0]0|0|0]0(0]0
0/0]0|0]0]0|0]0]0|0]0]0|0]0|0]0]0|0]0]0|0]0|0]0]0|0]0|0]0]00]0

& Value in decimal = 1 x 2-1022 = 2 22507 ... x 10-308

% Underflow: exponent is too small to fit in exponent field

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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Zero, Infinity, and NaN

s Zero
& Exponent field E = 0 and fraction F =0
& +0 and -0 are possible according to sign bit S

 Infinity
¢ Infinity is a special value represented with maximum Eand F=0

= For single precision with 8-bit exponent: maximum E = 255
» For double precision with 11-bit exponent: maximum E = 2047

& Infinity can result from overflow or division by zero
&+ and —« are possible according to sign bit S

» NaN (Not a Number)

¢ NaN is a special value represented with maximum Eand F# 0
¢ Result from exceptional situations, such as 0/0 or sqrt(negative)
<& QOperation on a NaN results is NaN: Op(X, NaN) = NaN

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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Denormalized Numbers

< |EEE standard uses denormalized numbers to ...

< Fill the gap between 0 and the smallest normalized float

< Provide gradual underflow to zero

% Denormalized: exponent field E is 0 and fraction F# 0

< Implicit 1. before the fraction now becomes 0. (not normalized)

< Value of denormalized number ( S, 0, F)

Single precision:  (=1)° x (0.F), x 27126
Double precision:  (—1) S x (0.F), x 2-1022

Negative Negative Positive Positive
Overflow Underflow ; Underflow Overflow
— r A + A N A
I
- Normalized (—ve) Denorm ! Denorm Normalized (+ve) Foo
) _2328 _2—l126 0 2—l126 21l28 ]

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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Filling the Gaps...

** hypothetical 6-bit floating point representation:

E=3,F=2

A 'S . . e hendhandh & AAAA“AAAA s s 4 4 4 4 & & A .
v b 4 h v
0 9 10 15

5
-15 -10 -0

¢ Denormalized a Normalized e Infinity

02 0 02 04 06 08

¢ Denormalized a Normalized @ Infinity

(c'[p> infomational Conire

19
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Summary of |IEEE 754 Encoding

Single-Precision

Exponent = 8

Fraction = 23

Normalized Number 1 to 254 Anything + (1.F), x 26127
Denormalized Number 0 nonzero + (0.F), x 2-126
Zero 0 0 + 0
Infinity 255 0 + o0
NaN 255 nonzero NaN

Double-Precision

Exponent = 11

Fraction = 52

Normalized Number 1 to 2046 Anything + (1.F), x 261023
Denormalized Number 0 nonzero + (0.F), x 2-1022
Zero 0 0 + 0

Infinity 2047 0 +

NaN 2047 nonzero NaN

¢ virtute ec;
o,\
"
o)

Gﬁ?,,
“SISSA”
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Floating-Point Comparison

» |[EEE 754 floating point numbers are ordered
& Because exponent uses a biased representation ...

» Exponent value and its binary representation have same ordering
¢ Placing exponent before the fraction field orders the magnitude
» Larger exponent = larger magnitude

» For equal exponents, Larger fraction = larger magnitude
= 0<(0.F), x 2Emn< (1.F), x 2E-Bias < o (E . =1 — Bias)

min

<& Because sign bit is most significant = quick test of signed <

* Integer comparator can compare magnitudes

X=(Ey, Fy) —{ Integer X<Y
Magnitude — X =Y
Y=(E,, F,) — Comparator e —
(Ey. £ XY o e,

Luca HELTAI
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Floating Point Addition Example

¢ Consider Adding (Single-Precision Floating-Point):
+ 1.11100100000000000000010, x 24

+ 1.10000000000000110000101, x 22

% Cannot add significands ... Why?
¢ Because exponents are not equal

“ How to make exponents equal?

<& Shift the significand of the lesser exponent right

¢ Difference between the two exponents =4 — 2 = 2

¢ So, shift right second number by 2 bits and increment exponent
1.10000000000000110000101, x 22

= 0.01100000000000001100001 01, x 24

) International Centr
(CTP kt;refrheoreﬂcal ghys?tx
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Floating-Point Addition — cont'd

** Now, ADD the Significands:
+ 1.11100100000000000000010

+ 1.10000000000000110000101

X

X

24
22

+ 1.11100100000000000000010

X

+ 0.01100000000000001100001 01 x

24

24 (shift right)

+10.01000100000000001100011 01 x

24 (result)

¢ Addition produces a carry bit, result is NOT normalized

* Normalize Result (shift right and increment exponent):

+ 10.01000100000000001100011
+ 1.00100010000000000110001

Luca HELTAI

01 x 24

101 x 2°

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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¢ Single-precision requires only 23 fraction bits

< However, Normalized result can contain additional bits

1.00100010000000000110001 | 101 x 25
Round Bit: R=1_ L Sticky Bit: S=1

“* Two extra bits are needed for rounding

< Round bit: appears just after the normalized result
& Sticky bit: appears after the round bit (OR of all additional bits)

» Since RS = 11, increment fraction to round to nearest

1.00100010000000000110001 x 2>
+1

1.00100010000000000110010 x 25 (Rounded)

) i;t‘;r“n:rlonal Centre
(CTP for Theoretical Physics
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Rounding to Nearest Even

< Normalized result has the form: 1. f, £, ... fR S

o The round bit R appears after the last fraction bit f,

¢ The sticky bit S is the OR of all remaining additional bits
% Round to Nearest Even: default rounding mode
“ Four cases for RS:
RS =00 > Resultis Exact, no need for rounding
RS =01 > Truncate result by discarding RS

RS =112 Increment result: ADD 1 to last fraction bit
RS =10 > Tie Case (either truncate or increment result)

SO O

= Check Last fraction bit f, (f,; for single-precision or f;, for double)

» If f,is 0 then truncate result to keep fraction even

TN S
y % International Centre
(*’“*“”‘g/ (:CTP> for Theoretical Physics

“SISSA
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Additional Rounding Modes

» I[EEE 754 standard specifies four rounding modes:

1. Round to Nearest Even: described in previous slide

2. Round toward +Infinity: result is rounded up
Increment result if sign is positive and R or S =1

3. Round toward -Infinity: result is rounded down
Increment result if sign is negative and Ror S =1

4. Round toward 0: always truncate result

“ Rounding or Incrementing result might generate a carry

¢ This occurs when all fraction bits are 1

¢ Re-Normalize after Rounding step is required only in this case

AN ™o Abcs Salom
¢ \ylgt International Centre
<*S*;§§f/ (:CTP> for Theoretical Physics
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Example on Rounding

“* Round following result using IEEE 754 rounding modes:

-1.11111111111111111111111 ;0 x 27

< Round to Nearest Even; ~ Round Bit = =Sticky Bit

Increment result since RS = 10 and f,; = 1

Incremented result: =10.00000000000000000000000 x 2-7

&
&

¢ Renormalize and increment exponent (because of carry)

¢ Final rounded result: =1.00000000000000000000000 x 2-6

S 400" . i
* Round towards +=: 1|, cote result since negative
o Truncated Result: =1.11111111111111111111111 x 2-7

TS —o0" : :
* Round towards —e: Increment since negative and R = 1

¢ Final rounded result: =1.00000000000000000000000 x 2-6

International Centre
CTP for Theoretical Physics

Truncate always D .
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Floating Point Addition /

C Start )

A 4

. Compare the exponents of the two numbers. Shift the smaller
number to the right until its exponent would match the larger
exponent.

Shift significand right by
d=|Ex—Ey|

A 4

. Add / Subtract the significands according to the sign bits.

A 4

. Normalize the sum, either shifting right and incrementing the
exponent or shifting left and decrementing the exponent

Add significands when signs
of X and Y are identical,
Subtract when different

X—Y becomes X+ (-Y)

I
Y

. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Overflow or
underflow?

Normalization shifts right by 1 if

there is a carry, or shifts left by

the number of leading zeros in
the case of subtraction

Rounding either truncates
fraction, or adds a 1 to least
significant fraction bit

Infernational Centr
(F Sulag®) nter entre
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Floating Point Adder Block

EX EY
v v F F
N / sign 1) 1 X 1 Y
Exponent CEED) | |
Subtractor / T v S A 4
wap
|
d=|Ex-Ey]| : \ 4 :
» Shift Right
|
Sy | add / subtract \ N \ 4
add/sub . =l \ Significand
S Computation sign \ Adder/Subtractor
Y—b
max ( Ey, Ey) | 4
c A 4 c \ 4
Detect carry, or .| Shift Right / Left
—— Count leading 0's | z L
A 4 \ 4
Inc / Dec c Rounding Logic
Sz E; Fz
ey
SISSA

Luca HELTAI
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Advantages of |IEEE 754 Standard

» Used predominantly by the industry

* Encoding of exponent and fraction simplifies comparison

¢ Integer comparator used to compare magnitude of FP numbers

¢ Includes special exceptional values: NaN and +«

& Special rules are used such as:
= 0/0 is NaN, sqrt(—1) is NaN, 1/0 is «, and 1/« is O
& Computation may continue in the face of exceptional conditions

*» Denormalized numbers to fill the gap

¢ Between smallest normalized number 1.0 x 2577 and zero

¢ Denormalized numbers , values 0.F x 2Fmin " are closer to zero
& Gradual underflow to zero

D Infernational Centr

N 2 nier enire

kg*;g*fj/ (CTP for Theoretical Physics
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Floating Point Complexities

 Operations are somewhat more complicated

** In addition to overflow we can have underflow

¢ Accuracy can be a big problem

&
&
&
&
&

Extra bits to maintain precision: guard, round, and sticky
Four rounding modes

Division by zero yields Infinity

Zero divide by zero yields Not-a-Number

Other complexities

“ Implementing the standard can be tricky

&

See text for description of 80x86 and Pentium bug!

“ Not using the standard can be even worse

Luca HELTAI
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(CTP for Theoretical Physics

31




Accuracy can be a Big Problem

Valuel Value2 Value3 Value4d Sum

1.0E+30 -1.0E+30 9.5 -2.3 7.2
1.0E+30 9.5 -1.0E+30 -2.3 -2.3
1.0E+30 9.5 -2.3 -1.0E+30 0

“ Adding double-precision floating-point numbers (Excel)

* Floating-Point addition is NOT associative
*» Produces different sums for the same data values

¢ Rounding errors when the difference in exponent is large

FED Infernational Centr
& NAEE) nternational Centre
\\SIESA 4 (CTP for Theoretical Physics
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