
High-level Optimization

David Grellscheid

Optimisation and Maintainability, David Grellscheid 2016-03-11

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on 

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

Optimisation and Maintainability, David Grellscheid 2016-03-11

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on 

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

 
A friend of my friend said that  

you should never do XYZ,  
because the code will be slower!

Optimisation and Maintainability, David Grellscheid 2016-03-11

Donald Knuth, December 1974:

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative
impact when debugging and maintenance are
considered. We should forget about small
efficiencies, say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our opportunities in that
critical 3%.

“Structured Programming with go to Statements”, Computing Surveys, Vol 6, No 4.

Optimisation and Maintainability, David Grellscheid 2016-03-11

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

Optimisation and Maintainability, David Grellscheid 2016-03-11

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

CPU time much cheaper than human time!

Optimisation and Maintainability, David Grellscheid 2016-03-11

Reusability is an efficiency!

If the student after you has to start from 0,
nothing gained

Optimisation and Maintainability, David Grellscheid 2016-03-11

Optimization points
Someone else already solved (part of) the problem:

LAPACK, BLAS
GNU scientific library

C++ Boost
Numpy, Scipy, Pandas

…

Develop googling skills, evaluate what exists.  
Quality often much better than self-written attempts

Optimisation and Maintainability, David Grellscheid 2016-03-11

Optimization points

Choice of programming language

Be aware of what exists

Know strengths / weaknesses

But: needs to fit rest of project

take a look at Haskell, Erlang, JS

Optimisation and Maintainability, David Grellscheid 2016-03-11

Optimization points

findLongestUpTo :: Int -> (Int,Int)
findLongestUpTo mx = maximum (map f [1 .. mx])
 where f x = (collatzLength x,x)

collatzLength :: Int -> Int
collatzLength 1 = 1
collatzLength n = 1 + collatzLength (collatzStep n)

collatzStep :: Int -> Int
collatzStep n
 | even n = n `div` 2
 | otherwise = 3 * n + 1

Optimisation and Maintainability, David Grellscheid 2016-03-11

Optimization points

Program design

First version: understand the problems

start again

Second version: you know what you’re doing

refactor / clean up / make reusable

Done :-)

Optimisation and Maintainability, David Grellscheid 2016-03-11

Optimization points

Algorithm / data structure choice

can get orders of magnitude in speed

Local and hardware-specific optimisations

- next lecture -

Optimisation and Maintainability, David Grellscheid 2016-03-11

Complexity basics

Much simplified, skipping formal derivation

Optimisation and Maintainability, David Grellscheid 2016-03-11

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Optimisation and Maintainability, David Grellscheid 2016-03-11

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

Optimisation and Maintainability, David Grellscheid 2016-03-11

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

O(N N!)

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

Optimisation and Maintainability, David Grellscheid 2016-03-11

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

15 Sorting Algorithms in 6 Minutes  
 http://youtu.be/kPRA0W1kECg

Optimisation and Maintainability, David Grellscheid 2016-03-11

Data structure complexity

Optimisation and Maintainability, David Grellscheid 2016-03-11

http://bigocheatsheet.com/

Nicolai Josuttis, The C++ Standard Library.

http://bigocheatsheet.com/

