
DAQ application using open source tools for

Plasma heating experiment

by Rameshkumar Joshi

Institute for Plasma Research, India

1

Institute for Plasma Research, India

Integrated DAQ architecture

MODBUS TCP

Programmable

Logic

Controller

Computer having

CSS OPI, EPICS,

Python, C

MODBUS-TCP

communication

Client

having Web-

browser

Communication

over Http

Pymodbus PyEpics, Cython,

Numpy, Scipy,

Matplotlib

MODBUS TCP

Field

I/o

Signal

Conditioning PLC

EPICS

Client

CSS

Studio

2

• There are multiple DAQ systems are running simultaneously in the Institute. They must

exchange data during experiment. Experimental Physics and Industrial Control Systems

(EPICS) is provide the infrastructure by which each DAQ can exchange data as per

requirement.

• User Interface has been designed using Java based Control System Studio (CSS) which

can glue with the EPICS network variable to plot as well as display values.

• The system is designed and implemented the real time programmable logic controllers

(PLC) data to monitoring and control using EPICS.

Basic Requirement

Page: 3

• The Interface between PLC and computer is based on Ethernet. Using MODBUS/TCP

communication data have been exchanged between PLC and Computer. For MODBUS

communication Pymodbus library has been used as implementation platform.

• Logical control has been designed using Python. The calibration and algorithm

implementation is designed using C. The C functionality can be called using cython

interface with Python.

• Calibration of the instrumentation data has been implemented by curve fitting using

Numpy, Scipy and Matplotlib.

The infrastructure layer: EPICS

• The infrastructure layer is implemented with EPICS
(Experimental Physics and Industrial Control System)

• EPICS is

– an open-source control system toolkit

EPICS Introduction

– used in hundreds of large and small experimental physics

projects world-wide: light sources, high energy physics, fusion

(KSTAR, NSTX), telescopes

– maintained and further developed by a world-wide community

of users (including ITER)

• The same infrastructure for the CODAC servers and for

the plant system controllers to ensure a uniform

standard interface.

4

Python action script on action button click event handling

CSS and Python

5

Packages

Used tools and libraries
Name File Download

Base baseR3.14.12.2.tar.gz http://www.aps.anl.gov/epics/base/R3-14/12.php

Extensions extensionsTop_20070703.tar.gz http://www.aps.anl.gov/epics/extensions/configure/index.php

PYTHON Python-2.7.6.tar.xz http://www.python.org/getit/

EDM edm-1-12-71.tgz http://ics-web.sns.ornl.gov/edm/

CSS CSS-3.0 http://cs-studio.sourceforge.net/

PV Access from a Shell

EPICS Base provides several utilities for reading and

modifying Process Variables from command shell. Here caget

and caput are demonstrated by accessing our softIoc.

$ caget calc:a calc:b calc:sum

Database Creation:

record(ai,"ICRH:KW2_PLATE_VOLTAGE")

{

field(DTYP,"Soft Channel")

field(VAL,0) field(UDF,1) field(FLNK,"ICRH:KW2_PLATE_VOLTAGE")

}

6

$ caget calc:a calc:b calc:sum

calc:a 0

calc:b 0

calc:sum 0

$ caput calc:a 2

Old : calc:a 0

New : calc:a 2

$ caget calc:a calc:b calc:sum

calc:a 2

calc:b 0

calc:sum 2

$ caput calc:b 3

Old : calc:b 0

New : calc:b 3

$ caget calc:a calc:b calc:sum

calc:a 2

calc:b 3

calc:sum 5

import ctypes

import time

from epics import caget, caput

tmy_test_lib = ctypes.cdll.LoadLibrary('/home/admin/CSS-Workspaces/Default/icrh/libds.so')

print "now initialization is %d" % tmy_test_lib.DsInit()

print "now connection is %d" % tmy_test_lib.DsConnect()

while True:

tmy_test_lib.DsRead()

f3 = tmy_test_lib.DsReadAnalogIp(2)*20/4095

caput("ICRH:KW2_PLATE_VOLTAGE",f3)

time.sleep(.100)

}

Packages

C implementation
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/wait.h>

#include <signal.h>

#include <tcl.h>

#include "nrutil.h“

#define MYPORT 4461

#define NO_OF_SAMPLES 2

#define ACQ_LIMIT 100000

int DsReadAnalogIp(int chno)

7

int DsReadAnalogIp(int chno)

{

int status ;

int value ;

int sine_bit = 1 ;

unsigned short int b ;

b = disp_packet.data[chno] & 0x00ff ;

disp_packet.data[chno] = disp_packet.data[chno] & 0xff00 ;

disp_packet.data[chno] = disp_packet.data[chno] >> 8 ;

b = b << 8 ;

disp_packet.data[chno] = disp_packet.data[chno] + b ;

/* convert into double */

if (disp_packet.data[chno] > 0x7ff0)

{

disp_packet.data[chno] = 0xfff0 - disp_packet.data[chno] ;

sine_bit = -1 ;

} return value;

}

Packages

Numpy and Scipy and Matplotlib
import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

from scipy.interpolate import interp1d

from scipy import interpolate

with open('kw20_plate_c.calib', 'r') as f2:

lines = f2.readlines()

data = [line.split()for line in lines]

data2 = np.asfarray(data)

x1 = data2[:,0]

y1 = data2[:,1]

print len(x1)

new_length=len(x1)

new_x = np.linspace(x1.min(), x1.max(), new_length)

#new_y = sp.interpolate.interp1d(x, y, kind='cubic')(new_x)

#new_y = interp1d(x1, y1, kind='cubic')(new_x)

8

#new_y = interp1d(x1, y1, kind='cubic')(new_x)

print x1.min()

print x1.max()

print new_x

#print new_y

print interp1d(x1, y1, kind='cubic')(0.88)

print interp1d(x1, y1, kind='cubic')(2.88)

print interp1d(x1, y1, kind='cubic')(4.88)

new_y = interp1d(x1, y1, kind='cubic')(new_x)

plt.plot(x1, y1,'r')

plt.plot(new_x, new_y,'g')

plt.show()

OPI user interface screen for DAC software

Experiments and Results

9

1.5 MW monitoring and control screen for DAC software

Experiments and Results

10

Experimental shot panel for DAC software

Experiments and Results

11

� EPICS and Extended modules have been compiled with Linux 32 bit

machine as host computer.

� 1000 process variables have been created with unique PV name which

have been exported with softIOC command provided by EPICS base.

� PyEPICS and python script program has been used to run recursively at

specified time delay for data monitoring and acquisition.

� Cython package gives ability to make C library as shared object which

Summary

� Cython package gives ability to make C library as shared object which

functionality can be called using Python program.

� Wireshark and system monitor utilities have been used to check system

parameters and validation with benchmarking.

� CSS OPI (user interface) can be run from any client computer which

gets parameter and display data on periodic time scale.

12

1. http://www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf

2. Piero Fraternali, Gustavo Rossi, Fernando Sánchez-Figueroa, "Rich Internet Applications", IEEE Internet Computing, vol.14, no.

3, pp. 9-12, May/June 2010, doi:10.1109/MIC.2010.76

3. Delta AH-500 PLC module reference:

4. http://www.ferret.com.au/ODIN/PDF/Showcases/105517.pdf

5. http://www.aps.anl.gov/epics/

6. Pymodbus Python Package, https://pypi.python.org/pypi/pymodbus.

7. Pyepics Python Package, cars9.uchicago.edu/software/python/pyepics3/

8. Ramesh Joshi et al. Conceptual design of EPICS based implementation for ICRH DAC system, Conference preceding of

SocProS 2013, IIT Roorkee

9. http://www.alexandra.dk/uk/services/publications/documents/iot_comic_book.pdf

10.http://en.wikipedia.org/wiki/Smart_city#Examples_of_use

11.http://sydney.edu.au/health-sciences/research/healthinformatics/projects/internet-of-things.pdf

12.http://www.theguardian.com/local-governmentnetwork/2011/aug/18/internet-of-things-local government

13.http://en.openei.org/apps/FRED/web/#layer

References

13.http://en.openei.org/apps/FRED/web/#layer

14.http://www.ourplanetaryskin.org

15.X. Chen, K. Kasemir, “BOY, a modern graphical operator interface editor and runtime”. Proceedings of 2011 Particle Accelerator

Conference, New York, NY, USA.

16.http://eclipse.org/rap/

17.http://tools.ietf.org/html/rfc1122#section-1.1.3

18.http://mqtt.org/

19.http://xmpp.org/

20.http://m2m.eclipse.org/

21.http://www.iot-a.eu/public

22.http://en.wikipedia.org/wiki/Open-source_hardware

23.http://semanticweb.org/wiki/Main_Page

24.http://stephendnicholas.com/archives/1217

25.http://www.ohwr.org/projects/cernohl/wiki

13

Thanks

14

