
Continuous Integration and
Numerical Regression Testing
for HPC Scientific Codes
Filippo SPIGA1,2 <fs395@cam.ac.uk>

1 High Performance Computing Service, University of Cambridge
2 Quantum ESPRESSO Foundation

How we build software for science?

Release

à I know what is needed, I know what
Me and my group need to compute

à I think this is the correct way because
this is what interests me

à I developed the code and It works for me!

à I pass the software to another collaborator,
he/she will figure out how to compile/run/…

Gather Requirements

Design

Develop & Test

This happens… lot of times!

Because everybody …

The (invalid) argument

Why bother about all of this, we
always did “stuff” in this way and it

was good enough…

WRONG

Bottom line

BETTER
SOFTWARE

BETTER
RESEARCH

Challenges in High Performance Computing

3 main challenges in High Performance Computing

• the performance challenge: build High Performance Computing
systems (and the convergence of HPC and Big Data)

• the programming challenge: programming High Performance
Computing systems, achieving scalability and good efficiency without
sacrifice portability

• the prediction challenge: developing truly predictive complex
application codes, explore new science and push the boundaries

Long Tail of Science

Impact everything: system design, scheduling policies, data policies, data management, cost
models, code efficiency vs scalability, TTS vs ETS, …

Material Science,
Astrophysics, CFD, …

Genomics, system
biology, …

Social sciences, computational
linguistics, econometric modeling, …

R
es

ou
rc

es
 u

se
d

Number of users

O(M)

O(100K)

O(10K)

Verification vs Validation

Fact: a computational simulation is only a model of reality. Such models may not
accurately reflect the phenomena of interest.

• Verification: determine that the code solves the chosen model correctly

• Validation: determine that the model itself captures the essential physical
phenomena with adequate fidelity

Everybody understands that
• without adequate verification and validation, computational results are not

credible
• the bigger and more complex the code, the harder it is to verify and validate
• diligence and alertness are far from a guarantee that the code is free of

defects/bugs
however …

What happen in most HPC communities…

Code development

Full-code Validation

Modularization

Documentation

Unit Testing

Functional/Numerical testing

Continuous Integration

Not common at all, sophistication
rarely pays back

Gaining popularity after long time

Lot of new “in house” codes lack of
these

Very few…

Research Computing

Software Testing

Software testing is an investigation conducted to provide stakeholders with information about
the quality of the product or service under test. Software testing can also provide an
objective, independent view of the software to allow the business to appreciate and
understand the risks of software implementation. Test techniques include the process of
executing a program or application with the intent of finding software bugs (errors or
other defects).

What a software bug looks like...
• The code crashes for some input cases
• The code returns wrong results
• The code misbehave if a particular library is used or architecture is changed
• The code generate unreproducible results

Software Testing tecniques

• Static (no execution): examination of the documentation, source code…

• code do not need to be executed

• Functional (“Black Box”): based on functionality of the software

• no knowledge of the interior workings of the application

• Structural (“White Box”): base on the structure of the software

• Required knowledge the internal workings of the code.

Regression Testing

Regression testing is a type of software testing that seeks to uncover new software bugs, or
regressions, in existing functional and non-functional areas of a system after changes such
as enhancements, patches or configuration changes, have been made to them. The purpose
of regression testing is to ensure that changes have not introduced new faults.

Regression testing can be used not only for testing the correctness of a program, but often
also for tracking the quality of its output. Regression tests can be broadly categorized as
functional tests or unit tests. Functional tests exercise the complete program with
various inputs.

• A tradeoff between Coverage and Complexity
• Being test-driven, not bug-driven

Unit-testing

Unit testing is a software testing method by which individual units of source code, sets of
one or more computer program modules together with associated control data, usage
procedures, and operating procedures, are tested to determine whether they are fit for
use.

Unit tests are short code fragments created by programmers or occasionally by testers
during the development process.

• Unit tests can exercise individual functions, subroutines, or object methods.
(core functionalities must be unit-tested)

• There is not universal recipe… you must know what is worth to test!
• Know the internal mechanism of the application helps…
• …but Unit Tests can be design as black-box (look at reference/trusted outputs)

Anatomy of an Unit Test
Anatomy of a Unit Test

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 6 / 81

Practicing Testing: Must Have vs Should Have

Must have

• A set of input cases that cover most of
the functionalities

• A set of reference outputs (run on a
set of reference architectures) to verify
your results

• A set of historical results to compare
variability across different versions
and ensure continuity in correctness

• Broader view about how all the
package works and components
interact one to each other

Should have

• Something that run tests for you
(à Continuous Integration)

• Framework that compares all the
possible tests for you
(à e.g. Test-suite)

• Routines that implement core
functionalities (e.g. computing
observable quantities,
derivates/integrals, …) constantly
under control during simulations

• Specific domain expertise in the field
to be able to set tolerances and
validate outlier

Continuous Integration (CI)

Continuous Integration SW

• Tens of different software package… a jungle!

• Most CI designed for enterprise software development... not scientific
software development!

• There is no standard de-facto for CI in Research Computing

• CI is usually a “separate service”, you need to maintain and upgrade it
regularly (and it can be a pain)

For an extensive list: https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software

Builbot

• Buildbot is a build and test automation framework (CI).

• Very popular in many open source projects

• Configuration by editing a file

• Based on Python/Twisted

• Easy to customize

BuildBot Documentation
Release 0.8.12

Brian Warner

April 24, 2015

BuildBot -- architecture

Scheduling, building, notifying

Buildbot overview

17

http://buildbot.net/buildbot/docs/current/manual/introduction.html

Upon branch update, build is created, and test suite is run

Source: buildbot team

What buildbot does for me…
• Upon branch update or at

specific time interval, a build is
created and test suite is run

• Developer is alerted (via UI or
email) when a test fails, can
submit fix, and re-launch test
(even manually)

• Upload test results or compiled
applications to an external
server

Essential configuration elements

• List of Slaves

• One or multiple Factories (composed by list of Steps)

• One or multiple Builders (which accept lst of Factories)

• One or multiple Schedulers (which trigger list of Builders)

How do I deploy a BuildBot master?

mkdir -p $HOME/my_buildbot_master

cd $HOME/my_buildbot_master

virtualenv --no-site-packages buildbot_sandbox

source buildbot_sandbox/bin/activate

pip install buildbot

buildbot create-master master

edit “master/master.cfg”

buildbot start master

How do I deploy a BuildBot slave?

mkdir -p $HOME/my_buildbot_slave

cd $HOME/my_buildbot_slave

virtualenv --no-site-packages buildbot_sandbox

source buildbot_sandbox/bin/activate

pip install buildbot

buildslave create-slave my_slave\

<buildbot-master-IP>:9989 my_slave <password>

buildbot start my_slave

Live demo…

Test-code

• Project initiated by James Spencer (ICL)

• Python module for testing for regression errors in numerical (principally
scientific) software.

• It runs a set of calculations, and compares the output data to that generated by
a previous calculation (which is regarded to be "correct").

• It is designed to be lightweight and highly portable.

• It can run a set of tests and check the calculated data is within a desired
tolerance of results contained in previous reference output

• The programs to be tested can be run in serial and in parallel and tests can be
run in either locally or submitted to a compute cluster.

https://github.com/jsspencer/testcode

Test-code, configuration files

Two configuration files:

• jobconfig defines the tests to run

• userconfig defines a program to be tested

Test-code, capabilities

• compare = compare set of test outputs from a previous testcode run against the
benchmark outputs.

• diff = diff set of test outputs from a previous testcode run against the benchmark outputs.

• make-benchmarks = create a new set of benchmarks and update the userconfig file with
the new benchmark id. Also runs the ‘run’ action.

• recheck = compare set of test outputs from a previous testcode run against benchmark
outputs and rerun any failed tests.

• run = run a set of tests and compare against the benchmark outputs.

• tidy = remove files from previous testcode runs from the test directories.

Live demo…

Online resources

• BuildBot homepage : http://buildbot.net

• BuildBot documentation: http://docs.buildbot.net/current/manual/index.html (v0.8.12)

• BuildBot examples

• ONETEP: http://www.cmth.ph.ic.ac.uk/buildbot/onetep/waterfall

• ABINIT: http://buildbot.abinit.org/waterfall

• DCO : http://www.stce.rwth-aachen.de/buildbot/dco/waterfall

• Test-code source code (GitHub): https://github.com/jsspencer/testcode

• Test-code Documentation: https://testcode.readthedocs.org/en/latest/

Best Practices (1/3)

1. Write programs for people, not computers

• Make names consistent, distinctive, and meaningful.

• Make code style and formatting consistent.

2. Let the computer do the work

• Make the computer repeat tasks.

• Use a build tool to automate workflows.

3. Make incremental changes

• Work in small steps with frequent feedback and course correction.

• Use a version control system.

• Put everything that has been created manually in version control

Best Practices (2/3)

4. Do not repeat yourself (or others)

• Every piece of data must have a single authoritative representation in the system.

• Modularize code rather than copying and pasting.

• Re-use code instead of rewriting it.

5. Plan for mistakes

• Add assertions to programs to check their operation.

• Use an off-the-shelf unit testing library.

• Turn bugs into test cases.

6. Optimize software only after it works correctly

Best Practices (3/3)

7. Document design and purpose, not mechanics

• Document interfaces and reasons, not implementations.

• Refactor code in preference to explaining how it works.

• Embed the documentation for a piece of software in that software.

8. Collaborate

• Use pre-merge code reviews.

• Use pair programming when bringing someone new up to speed and when tackling
particularly tricky problems.

• Use an issue tracking tool.

Closing remarks…

But everybody can make mistakes…

