

Foundation of Modern Computer Architectures for HPC

Ivan Girotto – igirotto@ictp.it

Information & Communication Technology Section (ICTS)

International Centre for Theoretical Physics (ICTP)

What is High-Performance Computing (HPC)?

- Not a real definition, depends from the prospective:
 - HPC is when I care how fast I get an answer
- Thus HPC can happen on:
 - A workstation, desktop, laptop, smartphone!
 - A supercomputer
 - A Linux Cluster
 - A grid or a cloud
 - Cyberinfrastructure = any combination of the above
- HPC means also High-Productivity Computing

How fast is my CPU?!

- CPU power is measured in FLOPS
 - number of floating point operations x second
 - FLOPS = #cores x clock x $\frac{\text{FLOP}}{\text{cycle}}$
- FLOP/cycle is the number of multiply-add (FMA) performed per cycle
 - architectural limit
 - depend also by the instruction set supported

The CPU Memory Hierarchy

CPU Registers

CACHE

MAIN MEMORY

COMPUTATION

APPLICATION DATA

What Determines Performance?

- How fast is my CPU?
- How fast can I move data around?
- How well can I split work into pieces?

The Classical Model

John Von Neumann

Levels of Transformation

- An algorithm is the sequence of finite steps that describes how to compute a function
- A computer code is a set of instructions written in a syntax defined by the programming language
- The code is finally compiled to become architecture-compatible -"readable" by the CPU.

John Von Neumann

The Classical Model

Sequential Processing

Pipelining

Pipelining

Superscalaring

The Inside Parallelism

Scalar Mode

The Inside Parallelism

Performance Metrics

- When all CPU component work at maximum speed that is called peak of performance
 - Tech-spec normally describe the theoretical peak
 - Benchmarks measure the real peak
 - Applications show the real performance value
- CPU performance is measured as:
 - Floating point operations per seconds GFLOP/s
- But the real performance is in many cases mostly related to the memory bandwidth (GBytes/s)

Cache Memory

- Expensive (SRAM) high-speed memory
- Relatively low-capacity in regards to RAM
- Cache Memory are for Instructions (i.e., L1I)
 and for Data (i.e., L1D)
- Modern CPU are designed with several levels of cache memories

Cache Memory

Loop: load r1, A(i)
load r2, s
mult r3, r2, r1
store A(i), r2
branch => loop

 Designed for temporal/spatial locality

 Data is transferred to cache in blocks of fixed size, called cache lines.

CACHE

- Operation of LOAD/STORE can lead at two different scenario:
 - cache hit
 - cache miss

MAIN MEMORY

The CPU Memory Hierarchy

(a) Memory hierarchy for server

Data Memory Access

- Data ordering
- Reduce at minimum the data transfers
- Avoid complex data structure within computational intensive kernels
- Define constants and help the compiler
- Exploit the memory hierarchy

Multi-core system Vs Serial Programming

Xeon E5650 hex-core processors (12GB - RAM)

Threading and Vectorization

