
!

Floating-Point Math

Luca Heltai
Director of the Joint SISSA-ICTP Master in High Performance Computing

Assistant Professor @ SISSA mathLab

Trieste, 11 Aprile 2014

Luca HELTAI

Exponential Notation

2

Luca HELTAI

Floating-Point Representation (I)

3

Luca HELTAI

Floating-Point Representation (II)

! A floating-point number is represented by the triple
◇ S is the Sign bit (0 is positive and 1 is negative)

▪ Representation is called sign and magnitude

◇ E is the Exponent field (signed)
▪ Very large numbers have large positive exponents

▪ Very small close-to-zero numbers have negative exponents

▪ More bits in exponent field increases range of values

◇ F is the Fraction field (fraction after binary point)
▪ More bits in fraction field improves the precision of FP numbers

 Value of a floating-point number = (-1)S ! val(F) ! 2val(E)

4

S Exponent Fraction

Luca HELTAI

IEEE 754 Floating-Point Standard

! Found in virtually every computer invented since 1980
◇ Simplified porting of floating-point numbers

◇ Unified the development of floating-point algorithms
◇ Increased the accuracy of floating-point numbers

! Single Precision Floating Point Numbers (32 bits)
◇ 1-bit sign + 8-bit exponent + 23-bit fraction

! Double Precision Floating Point Numbers (64 bits)
◇ 1-bit sign + 11-bit exponent + 52-bit fraction

5

S Exponent8 Fraction23

S Exponent11 Fraction52

(continued)

Luca HELTAI

Number limits

! Single precision: ~±1.2*10-38 < x < ~±3.4*1038

! actual precision: ~7 decimal digits
! In comparison: signed 32-bit integer numbers range only

from -214783648 to 214783647 and the smallest positive
number is 1

! Double precision: ~±2.2*10-308 < x < ~±1.8*10308
! actual precision: ~15 decimal digits

6

Luca HELTAI

Floating-point Math Pitfalls

! Floating point math is commutative, but not associative!
Example (single precision):

! 1.0 + (1.5*1038 + (- 1.5*1038)) = 1.0
! (1.0 + 1.5*1038) + (- 1.5*1038) = 0.0

◇ the result of a summation depends on the order of how
the numbers are summed up

◇ results may change significantly, if a compiler changes the
order of operations for optimisation

◇ prefer adding numbers of same magnitude

◇ avoid subtracting very similar numbers

7

Luca HELTAI

Normalized Floating Point

! For a normalized floating point number (S, E, F)

! Significand is equal to (1.F)2 = (1.f1f2f3f4")2

◇ IEEE 754 assumes hidden 1. (not stored) for normalized numbers
◇ Significand is 1 bit longer than fraction

! Value of a Normalized Floating Point Number is

 (–1)S ! (1.F)2 ! 2val(E)

 (–1)S ! (1.f1f2f3f4 ")2 ! 2val(E)

 (–1)S ! (1 + f1!2-1 + f2!2-2 + f3!2-3 + f4!2-4 ")2 ! 2val(E)

8

S E F = f1 f2 f3 f4 "

Luca HELTAI

Biased Exponent Representation

! How to represent a signed exponent? Choices are "
◇ Sign + magnitude representation for the exponent
◇ Two’s complement representation
◇ Biased representation

! IEEE 754 uses biased representation for the exponent
◇ Value of exponent = val(E) = E – Bias (Bias is a constant)

! Recall that exponent field is 8 bits for single precision
◇ E can be in the range 0 to 255
◇ E = 0 and E = 255 are reserved for special use (discussed later)
◇ E = 1 to 254 are used for normalized floating point numbers
◇ Bias = 127 (half of 254), val(E) = E – 127
◇ val(E=1) = –126, val(E=127) = 0, val(E=254) = 127

9

Luca HELTAI

Biased Exponent – Cont’d

! For double precision, exponent field is 11 bits
◇ E can be in the range 0 to 2047
◇ E = 0 and E = 2047 are reserved for special use
◇ E = 1 to 2046 are used for normalized floating point numbers

◇ Bias = 1023 (half of 2046), val(E) = E – 1023
◇ val(E=1) = –1022, val(E=1023) = 0, val(E=2046) = 1023

! Value of a Normalized Floating Point Number is

 (–1)S ! (1.F)2 ! 2E – Bias

 (–1)S ! (1.f1f2f3f4 ")2 ! 2E – Bias

 (–1)S ! (1 + f1!2-1 + f2!2-2 + f3!2-3 + f4!2-4 ")2 ! 2E – Bias

10

Luca HELTAI

Examples of Single Precision

! What is the decimal value of this Single Precision float?

! Solution:
◇ Sign = 1 is negative
◇ Exponent = (01111100)2 = 124, E – bias = 124 – 127 = –3

◇ Significand = (1.0100 " 0)2 = 1 + 2-2 = 1.25 (1. is implicit)
◇ Value in decimal = –1.25 ! 2–3 = –0.15625

! What is the decimal value of?

! Solution:
◇ Value in decimal = +(1.01001100 " 0)2 ! 2130–127 =

11

1 0 1 1 1 1 1 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

implicit

Luca HELTAI

Examples of Double Precision

! What is the decimal value of this Double Precision float ?

! Solution:
◇ Value of exponent = (10000000101)2 – Bias = 1029 – 1023 = 6

◇ Value of double float = (1.00101010 " 0)2 ! 26 (1. is implicit) =
 (1001010.10 " 0)2 = 74.5

! What is the decimal value of ?

! Do it yourself! (answer should be –1.5 ! 2–7 = –0.01171875)

12

0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

Luca HELTAI

Converting FP Decimal to Binary

! Convert –0.8125 to binary in single and double precision
! Solution:

◇ Fraction bits can be obtained using multiplication by 2
▪ 0.8125 ! 2 = 1.625
▪ 0.625 ! 2 = 1.25
▪ 0.25 ! 2 = 0.5
▪ 0.5 ! 2 = 1.0
▪ Stop when fractional part is 0

◇ Fraction = (0.1101)2 = (1.101)2 ! 2 –1 (Normalized)
◇ Exponent = –1 + Bias = 126 (single precision) and 1022 (double)

13

0.8125 = (0.1101)2 = # + $ + 1/16 = 13/16

1 0 1 1 1 1 1 1 0 1 0 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

Single Precision

Double
Precision

Luca HELTAI

Largest Normalized Float

! What is the Largest normalized float?
! Solution for Single Precision:

◇ Exponent – bias = 254 – 127 = 127 (largest exponent for SP)

◇ Significand = (1.111 " 1)2 = almost 2

◇ Value in decimal % 2 ! 2127 % 2128 % 3.4028 " ! 1038

! Solution for Double Precision:

◇ Value in decimal % 2 ! 21023 % 21024 % 1.79769 " ! 10308

! Overflow: exponent is too large to fit in the exponent field

14

0 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 0 1

1 1

Luca HELTAI

Density of Floating-point Numbers

! How can we represent so many more numbers in floating
point than in integer? We don’t!
◇ The number of unique bit patterns has to be the same as

with integers of the same “bitness”

◇ There are 8,388,607 single precision numbers in 
1.0< x <2.0, but only

◇ 8191 in 1023.0< x <1024.0

! absolute precision depends on the magnitude
! some numbers have no exact representation
! approximated using rounding mode (nearest)

15

Luca HELTAI

Smallest Normalized Float

! What is the smallest (in absolute value) normalized float?
! Solution for Single Precision:

◇ Exponent – bias = 1 – 127 = –126 (smallest exponent for SP)

◇ Significand = (1.000 " 0)2 = 1

◇ Value in decimal = 1 ! 2–126 = 1.17549 " ! 10–38

! Solution for Double Precision:

◇ Value in decimal = 1 ! 2–1022 = 2.22507 " ! 10–308

! Underflow: exponent is too small to fit in exponent field

16

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0

Luca HELTAI

Zero, Infinity, and NaN

! Zero
◇ Exponent field E = 0 and fraction F = 0
◇ +0 and –0 are possible according to sign bit S

! Infinity
◇ Infinity is a special value represented with maximum E and F = 0

▪ For single precision with 8-bit exponent: maximum E = 255
▪ For double precision with 11-bit exponent: maximum E = 2047

◇ Infinity can result from overflow or division by zero
◇ +& and –& are possible according to sign bit S

! NaN (Not a Number)
◇ NaN is a special value represented with maximum E and F ' 0
◇ Result from exceptional situations, such as 0/0 or sqrt(negative)
◇ Operation on a NaN results is NaN: Op(X, NaN) = NaN

17

Luca HELTAI

Denormalized Numbers

! IEEE standard uses denormalized numbers to "
◇ Fill the gap between 0 and the smallest normalized float
◇ Provide gradual underflow to zero

! Denormalized: exponent field E is 0 and fraction F ' 0
◇ Implicit 1. before the fraction now becomes 0. (not normalized)

! Value of denormalized number (S, 0, F)

 Single precision: (–1) S ! (0.F)2 ! 2–126

 Double precision: (–1) S ! (0.F)2 ! 2–1022

18

Denorm Denorm +&

Positive
Overflow

-&

Negative
Overflow

Negative
Underflow

Positive
Underflow

Normalized (–ve) Normalized (+ve)

2–126 2128 0-2128 -2–126

Luca HELTAI

Filling the Gaps…

19

! hypothetical 6-bit floating point representation: 
 
E = 3, F = 2

Luca HELTAI

Summary of IEEE 754 Encoding

20

Single-Precision Exponent = 8 Fraction = 23 Value
Normalized Number 1 to 254 Anything ± (1.F)2 ! 2E – 127

Denormalized Number 0 nonzero ± (0.F)2 ! 2–126

Zero 0 0 ± 0
Infinity 255 0 ± &
NaN 255 nonzero NaN

Double-Precision Exponent = 11 Fraction = 52 Value
Normalized Number 1 to 2046 Anything ± (1.F)2 ! 2E – 1023

Denormalized Number 0 nonzero ± (0.F)2 ! 2–1022

Zero 0 0 ± 0
Infinity 2047 0 ± &
NaN 2047 nonzero NaN

Luca HELTAI

Floating-Point Comparison

! IEEE 754 floating point numbers are ordered
◇ Because exponent uses a biased representation "

▪ Exponent value and its binary representation have same ordering

◇ Placing exponent before the fraction field orders the magnitude
▪ Larger exponent ! larger magnitude

▪ For equal exponents, Larger fraction ! larger magnitude

▪ 0 < (0.F)2 ! 2Emin < (1.F)2 ! 2E–Bias < & (Emin = 1 – Bias)

◇ Because sign bit is most significant ! quick test of signed <

! Integer comparator can compare magnitudes

21

Integer
Magnitude
Comparator

X < Y
X = Y
X > Y

X = (EX , FX)

Y = (EY , FY)

Luca HELTAI

Floating Point Addition Example

! Consider Adding (Single-Precision Floating-Point):
+ 1.111001000000000000000102 ! 24
+ 1.100000000000001100001012 ! 22

! Cannot add significands " Why?
◇ Because exponents are not equal

! How to make exponents equal?
◇ Shift the significand of the lesser exponent right
◇ Difference between the two exponents = 4 – 2 = 2
◇ So, shift right second number by 2 bits and increment exponent
1.100000000000001100001012 ! 22
= 0.01100000000000001100001 012 ! 24

22

Luca HELTAI

Floating-Point Addition – cont'd

! Now, ADD the Significands:
+ 1.11100100000000000000010 ! 24
+ 1.10000000000000110000101 ! 22

+ 1.11100100000000000000010 ! 24
+ 0.01100000000000001100001 01 ! 24 (shift right)

+10.01000100000000001100011 01 ! 24 (result)

! Addition produces a carry bit, result is NOT normalized
! Normalize Result (shift right and increment exponent):
 + 10.01000100000000001100011 01 ! 24
= + 1.00100010000000000110001 101 ! 25

23

Luca HELTAI

Rounding

! Single-precision requires only 23 fraction bits
! However, Normalized result can contain additional bits
 1.00100010000000000110001 | 1 01 ! 25

! Two extra bits are needed for rounding
◇ Round bit: appears just after the normalized result
◇ Sticky bit: appears after the round bit (OR of all additional bits)

! Since RS = 11, increment fraction to round to nearest
1.00100010000000000110001 ! 25
 +1
1.00100010000000000110010 ! 25 (Rounded)

24

Round Bit: R = 1 Sticky Bit: S = 1

Luca HELTAI

Rounding to Nearest Even

! Normalized result has the form: 1. f1 f2 " fl R S
◇ The round bit R appears after the last fraction bit fl

◇ The sticky bit S is the OR of all remaining additional bits

! Round to Nearest Even: default rounding mode
! Four cases for RS:

◇ RS = 00 " Result is Exact, no need for rounding
◇ RS = 01 " Truncate result by discarding RS
◇ RS = 11 " Increment result: ADD 1 to last fraction bit
◇ RS = 10 " Tie Case (either truncate or increment result)

▪ Check Last fraction bit fl (f23 for single-precision or f52 for double)

▪ If fl is 0 then truncate result to keep fraction even

25

Luca HELTAI

Additional Rounding Modes

! IEEE 754 standard specifies four rounding modes:

1. Round to Nearest Even: described in previous slide

2. Round toward +Infinity: result is rounded up
Increment result if sign is positive and R or S = 1

3. Round toward -Infinity: result is rounded down
Increment result if sign is negative and R or S = 1

4. Round toward 0: always truncate result

! Rounding or Incrementing result might generate a carry
◇ This occurs when all fraction bits are 1

◇ Re-Normalize after Rounding step is required only in this case

26

Luca HELTAI

Example on Rounding

! Round following result using IEEE 754 rounding modes:
 –1.11111111111111111111111 1 0 ! 2-7

! Round to Nearest Even:
◇ Increment result since RS = 10 and f23 = 1

◇ Incremented result: –10.00000000000000000000000 ! 2-7
◇ Renormalize and increment exponent (because of carry)
◇ Final rounded result: –1.00000000000000000000000 ! 2-6

! Round towards +&:
◇ Truncated Result: –1.11111111111111111111111 ! 2-7

! Round towards –&:
◇ Final rounded result: –1.00000000000000000000000 ! 2-6

27

Round Bit Sticky Bit

Truncate result since negative

Increment since negative and R = 1

Truncate always

Luca HELTAI

Floating Point Addition /

28

1. Compare the exponents of the two numbers. Shift the smaller
number to the right until its exponent would match the larger
exponent.

2. Add / Subtract the significands according to the sign bits.

3. Normalize the sum, either shifting right and incrementing the
exponent or shifting left and decrementing the exponent

4. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Start

Done

Overflow or
underflow? Exception

yes

no

Shift significand right by
d = | EX – EY |

Add significands when signs
of X and Y are identical,
Subtract when different

X – Y becomes X + (–Y)

Normalization shifts right by 1 if
there is a carry, or shifts left by
the number of leading zeros in

the case of subtraction

Rounding either truncates
fraction, or adds a 1 to least

significant fraction bit

Luca HELTAI

Floating Point Adder Block

29

c

z

EZ

EX

FX

Shift Right / Left

Inc / Dec

EY

Swap

FY

Shift Right

Exponent
Subtractor

Significand
Adder/Subtractor

1 1sign

Sign
Computation

d = | EX – EY |

max (EX , EY)

add / subtract

Rounding Logic

sign
SY

add/sub

FZSZ

c

SX

z
Detect carry, or

Count leading 0’s

c

0 1

Luca HELTAI

Advantages of IEEE 754 Standard

! Used predominantly by the industry
! Encoding of exponent and fraction simplifies comparison

◇ Integer comparator used to compare magnitude of FP numbers

! Includes special exceptional values: NaN and ±&
◇ Special rules are used such as:

▪ 0/0 is NaN, sqrt(–1) is NaN, 1/0 is &, and 1/& is 0

◇ Computation may continue in the face of exceptional conditions

! Denormalized numbers to fill the gap
◇ Between smallest normalized number 1.0 ! 2Emin and zero

◇ Denormalized numbers , values 0.F ! 2Emin , are closer to zero
◇ Gradual underflow to zero

30

Luca HELTAI

Floating Point Complexities

! Operations are somewhat more complicated
! In addition to overflow we can have underflow
! Accuracy can be a big problem

◇ Extra bits to maintain precision: guard, round, and sticky
◇ Four rounding modes
◇ Division by zero yields Infinity
◇ Zero divide by zero yields Not-a-Number

◇ Other complexities

! Implementing the standard can be tricky
◇ See text for description of 80x86 and Pentium bug!

! Not using the standard can be even worse

31

Luca HELTAI

Accuracy can be a Big Problem

32

!"#$%& !"#$%' !"#$%(!"#$%) *$+
1.0E+30 -1.0E+30 9.5 -2.3 7.2

1.0E+30 9.5 -1.0E+30 -2.3 -2.3

1.0E+30 9.5 -2.3 -1.0E+30 0

! Adding double-precision floating-point numbers (Excel)

! Floating-Point addition is NOT associative

! Produces different sums for the same data values

! Rounding errors when the difference in exponent is large

