
Compiling,	Linking		
&	Mixed	Languages	

Ivan	Giro9o	–	igiro9o@ictp.it	
Informa(on	&		Communica(on	Technology	Sec(on	(ICTS)	

Interna(onal	Centre	for	Theore(cal	Physics	(ICTP)			

Script	Language	Benefits	
•  Portability	

–  Script	code	does	not	need	to	be	recompiled	
–  PlaAorm	abstrac(on	is	part	of	script	library	

•  Flexibility	
–  Script	code	can	be	adapted	much	easier	
–  Data	model	makes	combining	mul(ple	extensions	easy	

•  Convenience	
–  Script	languages	have	powerful	and	convenient	facili(es	for	pre-	
and	post-processing	of	data	

–  Only	(me	cri(cal	parts	in	compiled	language	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 2	

From	Scrip(ng	to	Compiled	Codes	
•  maximum	control	of	the	low-level	implementa(on	
•  high-performance		

–  compiler	are	wriKen	to	deliver	best	op(miza(on	by	having	
full/relevant	knowledge	of	the	back-end	architecture	

•  the	O.S.	loads	the	binary	into	memory	and	starts	the	
execu(on	(no	other	support	would	be	required)	

•  direct	interface	to	most	of	scien(fic	code	available	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 3	

The	Compiler	
•  Crea(ng	an	executable	includes	mul(ple	steps	
•  The	“compiler”	(gcc)	is	a	wrapper	for	several	
commands	that	are	executed	in	succession	

•  The	“compiler	flags”	similarly	fall	into	categories	
and	are	handed	down	to	the	respec(ve	tools	

•  The	“wrapper”	selects	the	compiler	language	
from	source	file	name,	but	links	“its”	run(me	

•  We	will	look	into	a	C	example	first,	since	this	is	
the	language	the	OS	is	(mostly)	wriKen	in	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 4	

The	Compiling	Phases	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 5	

#include <stdio.h>
int main(int argc, char **argv)
{

 printf(“hello world\n”);
 return 0;

}

Compila(on	Command	examples		

Pre-Processing	
•  Pre-processing	is	mandatory	in	C	(and	C++)	
•  Pre-processing	will	handle	'#'	direc(ves	

–  File	inclusion	with	support	for	nested	inclusion	
–  Condi(onal	compila(on	and	Macro	expansion	

•  In	this	case:	/usr/include/stdio.h	
–  and	all	files	are	included	by	it	-	are	inserted	and	the	
contained	macros	expanded	

•  Use	-E	flag	to	stop	ader	pre-processing:	
–  gcc	-E	-o	hello.pp.c	hello.c	
–  cpp	main.c	main.i	(same)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 6	

Compiling	
•  Compiler	converts	a	high-level	language	into	the	specific	instruc(on	

set	of	the	target	CPU	
•  Individual	steps:	

–  Parse	text	(lexical	+	syntac(cal	analysis)	
–  Do	language	specific	transforma(ons	
–  Translate	to	internal	representa(on	units	(IRs)	
–  Op(miza(on	(reorder,	merge,	eliminate)	
–  Replace	IRs	with	pieces	of	assembler	language	

•  Using	-S	the	compila(on	stops	ader	the	stage	of	compila(on	(does	
not	assemble).		The	output	is	in	the	form	of	an	assembler	code	file	
for	each	non-assembler	input	file	specified.	
–  gcc	-S	hello.c	(produces	hello.s)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 7	

Assembling	
•  Assembler	(as)	translates	assembly	to	binary	

–  from	there,	Linux	tools	are	needed	for	accessing	the	
content		

•  Creates	so-called	object	files	(in	ELF	format)	
–  gcc	-c	hello.c	
–  nm	hello.o	

•  Be	careful	at	built-in	func(ons		
–  -fno-buil(n	can	be	used	to	work-around	the	problem	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 8	

Linking	
•  Linker	(ld)	puts	binary	together	with	startup	code	
and	required	libraries	

•  Final	step,	result	is	executable	
–  gcc	-o	hello	hello.o	

•  The	linker	then	“builds”	the	executable	by	matching	
undefined	references	with	available	entries	in	the	
symbol	tables	of	the	objects/libraries	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 9	

Why	is	a	linker	interes(ng	to	us?!	
•  Understanding	linkers	will	help	you	to	build	large	
programs	

•  Understanding	linkers	will	help	you	to	avoid	dangerous	
programming	errors		

•  Understanding	linkers	will	help	you	how	language	
scoping	rules	are	implemented	

•  Understanding	linkers	will	help	you	understand	how	
things	works	

•  Understanding	linkers	will	enable	you	to	exploit	shared	
libraries	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 10	

Object	Files	
•  Object	Files	are	divided	in	three	categories:	

–  Rolocatable	Object	Files	(*.o)	
–  Executable	Object	File	
–  Shared	Object	Files		

•  Compiled	object	files	have	mul(ple	sec(ons	and	a	symbol	table	
describing	their	entries:	
–  “Text”:	this	is	executable	code	
–  “Data”:	pre-allocated	variables	storage	
–  “Constants”:	read-only	data	
–  “Undefined”:	symbols	that	are	used	but	not	defined	
–  “Debug”:	debugger	informa(on	(e.g.	line	numbers)	

•  Sec(ons	can	be	inspected	with	the	“readelf”	command	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 11	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 12	

Symbols	in	Object	Files	
ig@hp83-inf-21> nm visibility.o
0000000000000000 t add_abs
000000000000002a T main
 U printf
0000000000000000 r val1
0000000000000004 R val2
0000000000000000 d val3
0000000000000004 D val4

Sta(c	Libraries	
•  Sta(c	libraries	built	with	the	“ar”	command	are	
collec(ons	of	objects	with	a	global	symbol	table	

•  When	linking	to	a	sta(c	library,	object	code	is	copied	
into	the	resul(ng	executable	and	all	direct	addresses	
recomputed	(e.g.	for	“jumps”)	

•  Symbols	are	resolved	“from	led	to	right”,	so	circular	
dependencies	require	to	list	libraries	mul(ple	(mes	or	
use	a	special	linker	flag	

•  When	linking	only	the	name	of	the	symbol	is	checked,	
not	whether	its	argument	list	matches	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 13	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 14	

#building static the library
ig@hp83-inf-21 > ar -rcs libmy.a myfile*.o

#brute force linking
ig@hp83-inf-21 > gcc main.c ./libmy.a

#Using -L (tells the compiler where look for libraries)
ig@hp83-inf-21 > gcc main.c -L./ -lmy

#Same above using gcc notation
igi@hp83-inf-21 > gcc main.c \
> -Wl,--library-path=/scratch/igirotto/linking -Wl,-lmy

Shared	Libraries	
•  Shared	libraries	are	more	like	executables	that	are	
missing	the	main()	func(on	

•  When	linking	to	a	shared	library,	a	marker	is	added	to	
load	the	library	by	its	“generic”	name	(soname)	and	
the	list	of	undefined	symbols	

•  When	resolving	a	symbol	(func(on)	from	shared	library	
all	addresses	have	to	be	recomputed	(relocated)	on	
the	fly.	

•  The	shared	linker	program	is	executed	first	and	then	
loads	the	executable	and	its	dependencies	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 15	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 16	

#building shared library
ig@hp83-inf-21 > gcc -shared -o mylib.so swap.o

#brute force linking
ig@hp83-inf-21 > gcc main.c ./libmy.so

#Using -L (tells the compiler where look for libraries)
ig@hp83-inf-21 > gcc main.c -L./ -lmy
ig@hp83-inf-21 > ldd a.out
 linux-vdso.so.1 => (0x00007fffdbb6b000)
 libmy.so => not found
 /lib64/ld-linux-x86-64.so.2 (0x00007fa003cd1000)

#Add a directory to the runtime library search
pathigi@hp83-inf-21 > gcc main.c \
> -Wl,--rpath=/scratch/igirotto/linking -Wl,-lmy

Using	LD_PRELOAD	
•  Using	the	LD_PRELOAD	environment	variable,	symbols	
from	a	shared	object	can	be	preloaded	into	the	global	
object	table	and	will	override	those	in	later	resolved	
shared	libraries	
–  replace	specific	func(ons	in	a	shared	library	

•  Example:	override	log()	with	a	faster	version:	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 17	

double log(double x) {
 return my_log(x);

}

$gcc	-shared	-o	fasterlog.so	faster.c	-lmy_log	
$LD_PRELOAD=./fasterlog.so	./myprog-with	

How	Does	it	Work?		
•  the	command	“make” looks	for	a	file	called	[Mm]akefiles			

–  you	can	specify	a	different	name	“make	-f	[makefile	name]”		

•  This	file	contains	a	series	of	direc(ves	that	tell	the	“make”	
u(lity	how	to	compile	your	program	and	in	what	order		

•  Each	file	(entry)	is	associated	with	a	list	of	other	files	by	which	
it	is	dependent:	dependency	line		

•  If	any	of	the	associated	files	have	been	recently	modified,	the	
make	u(lity	will	execute	a	direc(ve	command	just	below	the	
dependency	line		

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 18	

hello: main.o factorial.o hello.o
 g++ main.o factorial.o hello.o -o hello

main.o: main.cpp
 g++ -c main.cpp

factorial.o: factorial.cpp
 g++ -c factorial.cpp

hello.o: hello.cpp
 g++ -c hello.cpp

clean:
 rm -rf *o hello

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 19	

hello

main.o

factorial.o factorial.cpp

main.cpp

factorial.o hello.o

hello.cpp

clean

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 20	

Components	of	a	Makefile	
•  Comments	
•  Rules	
•  Dependency	Lines	
•  Shell	Lines	
•  Macros	
•  Inference	Rules	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 21	

Comments	
•  A	comment	is	indicated	by	the	character	“#”.		All	text	that	appears	

ader	it	will	be	ignored	by	the	make	u(lity	un(l	the	end	of	line	is	
detected.		

•  Comments	can	start	anywhere.		There	are	more	complex	comment	
styles	that	involve	con(nua(on	characters	but	please	start	each	
new	comment	line	with	an	#	and	avoid	the	more	advanced	features	
for	now.		

•  Example	
–  #	
–  #	This	is	a	comment	
–  projecte.exe	:	main.obj	io.obj										#	this	is	also	a	comment.	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 22	

Rules	
•  Rules	tell	make	when	and	how	to	make	a	file.		The	format	is	as	

follows:	
–  A	rule	must	have	a	dependency	line	and	may	have	an	ac(on	or	shell	line	

ader	it.		The	ac(on	line	is	executed	if	the	dependency	line	is	out	of	date.		
–  Example:	

hello.o: hello.cpp

 g++ -c hello.cpp

–  This	shows	hello.o		as	a	module	that	requires	hello.cpp	as	source	code.		If	
the	last	modified	date	of	hello.cpp	is	newer	than	hello.o,	than	the	next	
line	(shell	line)	is	executed.		

–  Together,	these	two	lines	form	a	rule.	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 23	

Dependency	Lines	
•  The	lines	with	a	“:”	are	called	dependency	lines.			

–  To	the	led	are	the	dependencies	
–  	To	the	right	are	the	sources	needed	to	make	the	dependency.		

•  At	the	running	of	the	make	u(lity,	the	(me	and	date	when	Project.exe	was	last	
built	are	compared	to	the	dates	when	main.obj	and	io.obj	were	built.		If	either	
main.obj	or	io.obj	have	new	dates,	then	the	shell	line	ader	the	dependency	line	is	
executed.		

•  The	make	process	is	recursive	in	that	it	will	check	all	dependencies	to	make	sure	
they	are	not	out	of	date	before	comple(ng	the	build	process.		

•  It	is	important	that	all	dependencies	be	placed	in	a	descending	order	in	the	file.		
•  Some	files	may	have	the	same	dependencies.		For	instance,	suppose	that	two	files	

needed	a	file	called	bitvect.h.		What	would	the	dependency	look	like:	
•  main.obj	this.obj:		bitvect.h	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 24	

Shell	Lines	
•  The	indented	lines	(must	have	tab)	that	follow	each	
dependency	line	are	called	shell	lines.		Shell	lines	tell	
make	how	to	build	the	target.		

•  A	target	can	have	more	than	one	shell	line.		Each	line	
must	be	preceded	by	a	tab.		

•  Ader	each	shell	is	executed,	make	checks	to	see	if	it	
was	completed	without	error.		

•  You	can	ignore	this	but	I	would	not	at	this	point.	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 25	

Shell	Lines	
•  Ader	each	shell	line	is	executed,	Make	checks	the	shell	line	exit	

status.		
•  Shell	lines	that	returning	an	exit	status	of	zero	(0)	means	without	

error	and	non-zero	if	there	is	an	error.		
•  The	first	shell	line	that	returns	an	exit	status	of	non-zero	will	cause	

the	make	u(lity	to	stop	and	display	an	error.		
•  You	can	override	this	by	placing	a	“-”	in	front	of	the	shell	

command,	but	I	would	not	do	this.		
–  Example:		
	-	gcc	–o	my	my.o	mylib.o		

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 26	

Macros	
Examples	of	macros:	
•  HOME	=	/home/courses/cop4530/spring02	
•  CPP	=	$(HOME)/cpp	
•  TCPP	=	$(HOME)/tcpp	
•  PROJ	=	.	
•  INCL	=	-I	$(PROJ)	–I$(CPP)	–I$(TCPP)	
•  You	can	also	define	macros	at	the	command	line	such	as		

–  Make	DIR	=	/home/faculty/whalley/public_html/cop5622proj/lib2	
–  And	this	would	take	precedence	over	the	one	in	the	file.	

	
Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 27	

Inference	Rules	
•  Inference	rules	are	a	method	of	generalizing	the	build	

process.		In	essence,	it	is	a	sort	of	wild	card	nota(on.		
•  The	“%”	is	used	to	indicate	a	wild	card.		
•  Examples:	
•  %.obj	:	%.c	
•  										$(CC)	$(FLAGS)	–c	$(.SOURCE)	
•  All	.obj	files	have	dependencies	of	all	%.c	files	of	the	

same	name.		

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 28	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 29	

 eval.o : eval.c eval.h
 g++ -c eval.c

 $@		-	The	name	of	the	target	of	the	rule	(eval.o).	
 $<		-	The	name	of	the	first	dependency	(eval.c).		
 $^		-	The	names	of	all	the	dependencies	(eval.c eval.h).
 $?		-	The	names	of	all	dependencies	that	are	newer	than	the	target

target : dependencies

TAB commands #shell commands

AutomaSc	variables	are	used	to	refer	to	specific	part	of	rule	components	
	

Mixed	Linking	
•  Fully	sta(c	linking	is	a	bad	idea	with	GNU	libc;	it	
requires	matching	shared	objects	for	NSS	

•  Dynamic	linkage	of	add-on	libraries	requires	a	
compa(ble	version	to	be	installed	(e.g.	MKL)	

•  Sta(c	linkage	of	individual	libs	via	linker	flags	-Wl,-
Bsta(c,-l|w3,-Bdynamic	

•  can	be	combined	with	grouping,	example:		
–  gcc	[...]	-Wl,--start-group,-Bsta(c	-lmkl_gf_lp64	\	
-lmkl_sequen(al	-lmkl_core	-Wl,--end-group,-Bdynamic	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 30	

From	C	to	FORTRAN	
•  Basic	compila(on	principles	are	the	same	

–  preprocess,	compile,	assemble,	link	
•  In	Fortran,	symbols	are	case	insensi(ve	

–  most	compilers	translate	them	to	lower	case	
•  In	Fortran	symbol	names	may	be	modified	to	make	them	

different	from	C	symbols		(e.g.	append	one	or	more	
underscores)	

•  Fortran	entry	point	is	not	“main”	(no	arguments)	
PROGRAM	=>	MAIN__	(in	gfortran)	

•  C-like	main()	provided	as	startup	(to	store	args)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 31	

Pre-Processing	in	FORTAN	
•  Pre-processing	is	mandatory	in	C/C++	
•  Pre-processing	is	op(onal	in	Fortran	
•  Fortran	pre-processing	enabled	implicitly	via	file	name:	
name.F,	name.F90,	name.FOR	

•  Legacy	Fortran	packages	oden	use	/lib/cpp:	
–  /lib/cpp	-C	-P	-tradi(onal	-o	name.f	name.F	

•  -C	:	keep	comments	(may	be	legal	Fortran	code)	
•  -P	:	no	'#line'	markers	(not	legal	Fortran	syntax)	
•  -tradi(onal	:	don't	collapse	whitespace	(incompa(ble	with	fixed	
format	sources)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 32	

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 33	

Symbols	in	Object	Files	(FORTRAN	COMPILED)	
ig@hp83-inf-21> nm test.o
000000000000006d t MAIN__
 U
_gfortran_set_args
 U
_gfortran_set_options
 U
_gfortran_st_write
 U
_gfortran_st_write_done
 U
_gfortran_transfer_character_write
0000000000000000 T greet_
0000000000000078 T main
0000000000000020 r options.1.1883

Ivan	GiroKo	-	igiroKo@ictp.it									
Trieste,	4th	October	2016	 Compiling,	Linking		&	Mixed	Languages	 34	

