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Introduction to Performance



Optimization
 Real processors have

 registers, cache, parallelism, ... they are bloody complicated

 Why is this your problem?

 In theory, compilers understand all of this and can optimize your code; 
in practice they don't.

 Generally optimizing algorithms across all computational architectures 
is an impossible task, hand optimization will always be needed.

 We need to learn how...

 to measure performance of codes on modern architectures

 to tune performance of the codes by hand (32/64 bit commodity 
processors) and use compilers

 to understand parallel performance



 The peak performance of a chip

 The number of theoretical floating point operations per second

 e.g. 2.8 Ghz Core-i7 has 4 cores and each core can do theoretically 4 flops 

per cycle, for a peak performance of 44.8 Gflops

 Real performance

 Algorithm dependent, the actually number of floating point 

operations per second

 Generally, most programs get about 10% or lower of peak performance

 40% of peak, and you can go on holiday

 Parallel performance

 The scaling of an algorithm relative to its speed on 1 processor.

Performance



Serial Performance
• On a single processor (core), how fast does the 

algorithm complete.

• Factors:

• Memory

• Processing Power

• Memory Transport

• Local I/O

• Load of the Machine

• Quality of the algorithm

• Programming Language
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Pipelining

 Pipelining allows for a smooth progression of 
instructions and data to flow through the 
processor

 Any optimization that facilitate pipelining will 
speed the serial performance of your code.

 As chips support more SSE like character, filling 
the pipeline is more difficult.

 Stalling the pipeline slows codes 

down

 Out of cache reads and writes

 Conditional statements



Memory Locality
 Effective use of the memory heirarchy can facilitate 

good pipelining

 Temporal locality:

 Recently referenced items (instr or data) are likely 
to be referenced again in the near future

 iterative loops, subroutines, local variables

 working set concept

 Spatial locality:

 programs access data which is near to each other:

 operations on tables/arrays

 cache line size is determined by spatial locality

Registers

L1 Cache

L2 Cache

RAM

Local HDD

Shared HDD
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8ICTP School on Parallel Programming

SSD Local Disk

Accelerators: 

GP-GPU

Parallel File 

Systems

Welcome to the complication....
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Understanding the Hardware
Variety is the spice of 

life…



Ivaylo Ivanov, Andrew McCammon, UCSDDE Shaw Research

Molecular dynamics simulations on Application 
Specific Integrated Circuit (ASIC)

Fitting algorithms to hardware…and vice versa



• Choice of algorithm most important consideration (serial and 
parallel)

• Highly scalable codes must be designed to be scalable from the 
beginning! 

• Analysis may reveal need for new algorithm or completely 
different implementation rather than optimization

• Focus of this lecture: performance and using tools to assess 
parallel performance 

Choose 
algorithm 

Implement Analyze Optimize

Code Development and Optimization Process



Analyze

Christian Rössel, Jüelich

Performance



• When you are charged with optimizing an application...

• Don't optimize the whole code

• Profile the code, find the bottlenecks

• They may not always be where you thought they were

• Break the problem down

• Try to run the shortest possible test you can to get meaningful results

• Isolate serial kernels

• Keep a working version of the code!

• Getting the wrong answer faster is not the goal.

• Optimize on the architecture on which you intend to run

• Optimizations for one architecture will not necessarily translate

• The compiler is your friend!

• If you find yourself coding in machine language, you are doing to much.

Philosophy...



Manual Optimization 
Techniques 



Optimization Techniques
 There are basically two different categories:

 Improve memory performance (taking advantage of locality)

 Better memory access patterns

 Optimal usage of cache lines

 Re-use of cached data

 Improve CPU performance

 Reduce flop count

 Better instruction scheduling

 Use optimal instruction set

 A word about compilers

 Most compilers will do many of the techniques below automatically, but is 
still important to understand these.



Optimization Techniques for Memory

 Stride

 Contiguous blocks of memory

 Accessing memory in stride greatly enhances the 
performance



Array indexing
 There are several ways to index arrays:



Example (stride)



Data Dependencies

 In order to perform hand optimization, you really need 
to get a handle on the data dependencies of your loops.

 Operations that do not share data dependencies can be 
performed in tandum.

 Automatically determining data dependencies is tough for the compiler.

 great opportunity for hand optimization



Loop Interchange

 Basic idea: change the order of data independent nested 
loops.

 Advantages:

 Better memory access patterns (leading to improved cache and 
memory usage)

 Elimination of data dependencies (to increase opportunity for 
CPU optimization and parallelization

 Disadvantage:

 Make make a short loop innermost



Loop Interchange – Example



Loop Interchange in C/C++



Loop Interchange – Example 2



Compiler Loop Interchange

 GNU compilers: 

 -floop-interchange

 PGI compilers:

 -Mvect Enable vectorization, including loop 
interchange

 Intel compilers:

 -O3 Enable aggressive optimization,
including loop transformations

CAUTION: Make sure thaour program still works after this!



Loop Unrolling

 Computation cheap... branching expensive

 Loops, conditionals, etc. Cause branching instructions to be 
performed.

 Looking at a loop...

for( i = 0; i < N; 
i++){

do work....
}

Every time this statement is 
hit, a branching instruction is called.

More work, less branches
So optimizing a loop would involve increasing 
the work per loop iteration.



Loop unrolling

 Good news – compilers can do this in the most helpful 
cases 

 Bad news – compilers sometimes do this where it is not 
helpful and or valid.

 This is not helpful when the work inside the loop is not 
mostly number crunching.



Loop Unrolling - Compiler
GNU compilers:

-funrollloops Enable loop unrolling
-funrollallloops Unroll all loops; not recommended

PGI compilers:

-Munroll Enable loop unrolling
-Munroll=c:N Unroll loops with trip counts 

of at least N
-Munroll=n:M Unroll loops up to M times

Intel compilers:

-unroll  Enable loop unrolling
-unrollM Unroll loops up to M times

CAUTION: Make sure that your program still works after 

this!



Loop Unrolling Directives
program dirunroll

integer,parameter :: N=1000000

real,dimension(N):: a,b,c

real:: begin,end

real,dimension(2):: rtime

common/saver/a,b,c

call random_number(b)

call random_number(c)

x=2.5

begin=dtime(rtime)

!DIR$ UNROLL 4

do i=1,N

a(i)=b(i)+x*c(i)

end do

end=dtime(rtime)

print *,' my loop time (s) is 

',(end)

flop=(2.0*N)/(end)*1.0e6

print *,' loop runs at ',flop,' 

MFLOP'

print *,a(1),b(1),c(1)

end s) is 5.9999999E02

 Directives provide a very 
portable way for the 
compiler to perform 
automatic loop unrolling.

 Compiler can choose to 
ignore it.



Blocking for cache (tiling)

 Blocking for cache is

 An optimization that applies for datasets that do not fit entirely 
into cache

 A way to increase spatial locality of reference i.e. exploit full 
cache lines

 A way to increase temporal locality of reference i.e. improves 
data reuse

 Example, the transposing of a matrix



Block algorithm for transposing a matrix

 block data size = bsize

 mb = n/bsize

 nb  = n/bsize

 These sizes can be manipulated 
to coincide with actual cache 
sizes on individual architectures.



Results...



Loop Fusion and Fission



Loop Fusion Example



Loop Fission Example



Prefetching
 Modern CPU's can perform anticipated memory lookups ahead of their 

use for computation.

 Hides memory latency and overlaps computation

 Minimizes memory lookup times

 This is a very architecture specific item

 Very helpful for regular, in-stride memory patterns

GNU:

-fprefetch-loop-arrays If supported by the target machine, generate instructions to 

prefetch memory to improve the performance of loops that access 
large arrays.

PGI:

-Mprefetch[=option:n] Add (don’t add) prefetch instructions for those processors that 

-Mnoprefetch support them (Pentium 4,Opteron); -Mprefetch is default on 

Opteron;
-Mnoprefetch is default on other processors.

Intel:

-O3 Enable -O2 optimizations and in addition, enable more 

aggressive optimizations such as loop and memory access 
transformation, and prefetching.



Optimizing Floating Point performance

 Operation replacement

 Replacing individual time consuming operations with faster 
ones

 Floating point division

 Notoriously slow, implemented with a series of instructions

 So does that mean we cannot do any division if we want performance?

 IEEE standard dictates that the division must be carried out

 We can relax this and replace the division with multiplication by a 
reciprocal

 Compiler level optimization, rarely helps doing this by hand.

 Much more efficient in machine language than straight division, because 
it can be done with approximates



IEEE relaxation

Keep in mind!  This does reduce the precision of the math!



Elimination of Reduntant Work

 Consider the following piece of code

It is clear that the division by B(j) is redundant and can 
be pulled out of the loop

do j = 1,N

do i = 1,N

A(j) = A(j) + C(i,j)/B(j)

enddo

enddo

do j = 1,N

sum = 0.0D0

do i = 1,N

sum = sum + C(i,j)

enddo

A(j) = A(j) + sum/B(j)

enddo



Elimination of Reduntant Work

do k = 1,N

do j = 1,N

do i = 1,N

A(k) = B(k) + C(j) + D(i)

enddo

enddo

enddo

do k = 1,N

Bk = B(k)

do j = 1,N

BkCj = Bk + C(j)

do i = 1,N

A(k) = BkCj + D(i)

enddo

enddo

enddo

Array lookups cost time

By introducing constants and
precomputing values, we
eliminate a bunch of unnecessary
fops

This is the type of thing compilers
can do quite easily.



Function (Procedure) Inlining
 Calling functions and subroutines requires overhead by the CPU to 

perform

 The instructions need to be looked up in memory, the arguments 
translated, etc..

 Inlining is the process by which the compiler can replace a function 
call in the object with the source code

 It would be like creating your application in one big function-less format.

 Advantage

 Increase optimization opportunities

 Particularly advantegeous (necessary) when a function is called a lot, and 
does very little work ( e.g. max and min functions).

 Particularly important in C++!!!



Function (Procedure) Inlining Compiler 
Options



In source
• You can use inline directives to specify that you want a 

function inlined:

inline int fun2() __attribute__((always_inline)); 

inline int fun2() { return 4 + 5; }

• You can find out if functions have been inlined properly, the 
code nm can be looked at.  

• If the function is not in the nm output, it has been inlined.

• Inlining can cause a function to no longer be accessible by a 
debugger.
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Superscalar Processors
 Processors which have multiple functional units are called 

superscalar (instruction level parallelism)

 Examples:

 All modern processors 

 All can do multiple floating point and integer procedures in one clock 
cycle

 Special instructions

 SSE (Streaming SIMD Extensions)

 Allow users to take advantage of this power by packing mutliple operations 
into one register.

 SSE2 for double-precision

 Right now, 4 way is very common (Intel Corei7), but 16-way on the horizon.

 Intel PHI is an extereme form of this.

 Much much more difficult to get peak performance.



Instruction Set Extension Compiler Options



How do you know what the compiler is doing?

 Compiler Reports and Listings

 By default, compilers don't say much unless you screwed up.

 One can generate optimization reports and listing files to yeild output 
that shows what optimizations are performed



Case Study: GAMESS
 Mission from the DoD – Optimize GAMESS DFT code on 

an SGI Altix

 First step: profile the code



Case Study: GAMESS

 Further inspection of the Itanium archtecture showed 2 things:

 The compilers were really bad at loop optimization

 The overhead for conditionals is enormous



Take Home Messages...
 Performance programming on single processors requires

 Understanding memory

 levels, costs, sizes

 Understand SSE and how to get it to work

 In the future this will one of the most important aspects of processor 
performance.

 Understand your program

 No subsitute for speding quality time with your code.

 Do not spend a lot of time doing what I compiler will do 
automatically.

 Start with compiler optimizations!

 Code optimization is hard work!

 We haven't even talked about parallel applications yet!


