\H' PITTSBURGH

SUPERCOMPUTING
CENTER

Manual and Compiler
Optimizations

Shawn T. Brown, PhD.

Director of Public Health Applications

Pittsburgh Supercomputing Center, Carnegie Mellon University

D .BR
‘H' PITTSBURGH

SUPERCOMPUTING
CENTER

Introduction to Performance

e e
\HS.Optimization

Real processors have

registers, cache, parallelism, ... they are bloody complicated
Why is this your problem?

In theory, compilers understand all of this and can optimize your code;
in practice they don't.

Generally optimizing algorithms across all computational architectures
is an impossible task, hand optimization will always be needed.

We need to learn how...

to measure performance of codes on modern architectures

to tune performance of the codes by hand (32/64 bit commodity
processors) and use compilers

to understand parallel performance

e e
\Hﬁ. Performance

The peak performance of a chip

The number of theoretical floating point operations per second

- e.g. 2.8 Ghz Core-i7 has 4 cores and each core can do theoretically 4 flops
per cycle, for a peak performance of 44.8 Gflops

Real performance

Algorithm dependent, the actually number of floating point
operations per second

- Generally, most programs get about 10% or lower of peak performance

- 40% of peak, and you can go on holiday

Parallel performance

The scaling of an algorithm relative to its speed on 1 processor.

e
\H\' Serial Performance

- On a single processor (core), how fast does the
algorithm complete.

- Factors:
- Memory
- Processing Power
- Memory Transport
- Local I/0
- Load of the Machine
- Quality of the algorithm
- Programming Language

HPC Skillset Training: Performance Optimization with TAU 5

L
‘H\- Pipelining

Clock Cycle
3 4 5 6 7 8

=
M

Stalling the pipeline slows codes
down

Waiting

Instructions Out of cache reads and writes

Conditional statements

F

Stage 1: Fetch

XXX | -

XXX
XX NN

Instructions

[]
H X XXX
Ll Clock Cycle
%{Steg“’““"de HEE XXX 0O 1 2 3 4 5 6 7 8 9
E Stage 3! Execute |_| . . . % % .
o :tage 4:write-back N D . . . & Waltlng .
I:I . . . Instructions .
Completed . =

G@@@ r;'sl:age 1: Fetch

Stage 2: Decode

Pipelining allows for a smooth progression of Stage 3: Bxecute

instructions and data to flow through the
processor

PIPELINE
A

Stage 4: Write-back

Any optimization that facilitate pipelining will
speed the serial performance of your code.

Completed
As chips support more SSE like character, filling Instructions

the pipeline is more difficult. M@? S@ @@@

L
S'Memory Locality

Effective use of the memory heirarchy can facilitate . Spatial locality:
good pipelining
programs access data which is near to each other:

Temporal locality:
operations on tables/arrays

Recently referenced items (instr or data) are likely

to be referenced again in the near future cache line size is determined by spatial locality

iterative loops, subroutines, local variables

working set concept

NdD woJj aguesig

Welcome to the complication....

Machine (32GB)

Socket P#0 (16GE)

Socket P#1 (16GB)

NUMANode P#0 (B192MEB)

NUMANode P2 (8192MB)

L3 (B192KB			L3 (B192KB)																			
L2 (2043KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KE)		L2 (2048KEB)								
L1i (64KE)		L1i (B4KE)		L1i (64KE)		L1i (64KB)		L1i (64KB)		L1i (64K8)		L1i (64KB)		L1i (64KE)								
L1d {16KB)	L1d [16KB)		L1d {16KB)	L1d {16KB)		L1d {16KB)	L1d [16KB)		L1d {16KB)	L1d {16KB)		L1d {16KB)	L1d {16KB)		L1d {16KB)	L1d [16KB)		L1d {16KB)	L1d {16KB)		L1d {16KB)	L1d {16KB)

PU P#D PU P#1

PU P#4 PU P#5

PU P#E PUP#T

PU P#16 PUP#17

PU P#18 PU P#19

Accelerators:

NUMANcde P#1 (8192MEB)

NUMANode P+#3 (B192ME)

GP-GPU

| |||l

| L3 [B192KE) | | 13 (B192K8)

| L2 (2048KB) || L2 (2048K8) | | L2 (2048KE) | | L2 (2048K8B) | | L2 (2048K8) | | L2 (2048KE) L2 (2048KB) L2 (2048KE)

| L1i (64KB) || L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) || L1i (64KB) |
| L1d (16KB) | L1d [16KB) || L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) || L1d (16KB) | L1d (16KB) |

PUP#12 PU P#13

PU P#14 PU P15

PU P24 PU P#25

SSD Local Disk

PU P#26 PU P#2T PU P#28 PU P#29
P llel File

PU P#30 PU P#31

Systems

ICTP School on Parallel Programming

Understandin

Form Factor, Peak Double Total Cache Board Process
Thermal Precision MB) TDP (Watts)
SE10P PCle Card,
(special edition) | Passively Cooled

PCle Ca
No Thermal
Solution

Variety is the spice of
life...

PCIe Card,
. > Intel® Core i7-800 Desktop Processor Series
(intel Discosed
at 3100 series
launch (H1'13)
Processor |Frequency Type| Clock CTP GFLOP | APP 1-way | APP 2-way | APP 4-way
Number GHz
i7-860 Base 2.8 84933 144.8 0.01344 0.02688 0.05376
Single Core [3.46 |105135 55 0.0166368 (0.0332736 |0.0665472
Max Turbo
GPU ONLY |N/A N/A N/A N/A NIA NIA
i7-8608 Base |253 |76834 40528 [0.0121584 |0.0243168 |0.0486336 PCle Card, Actively Cooled PCle Card, Passively Cooled
n information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this informati o
Slngle Core 5.46 105135 55 0.0166363 0.0332736 0.0665472 am(:ss?t;::‘noe'dwar%bl‘x?gd‘mé?;easlllysmnnc?;:gflxgmlﬁa;;gggrtﬁ;ﬂ?; |r?'geevelopment and not yet publicly announced for release. Customers, licensees an ms
Max Turbo el to use code names in advertising, promotion or marketing of any t or services and any such use of Intel's internal code names is at the sole risk of the)
htes, and figures specified are preliminary based on current expeclallons al\d are subject to change without notice.
GPU ONLY |N/A N/A N/A N/A N/A N/A
i7-870 Base 2.93 (88968 146.928 0.0140784 |0.0281568 |0.0563136
Single Core |36 |109200 |58 0.01728 [0.03456 |0.06912 TECHNICAL SPECIFICATIONS A K10 A K20 A K20
Max Turbo Peak double precision floating point 0.19 teraflops 1.17 teraflops 1.31 teraflops
GPUONLY |NA |N/A N/A N/A N/A N/A puctorsmence (beand)
i7-870S Base 2.66 [80869 [42.656 0.0127968 [0.0255936 0.0511872 o e 438 Jereflops 25 teaflope 2.9 tacefiops
Single Core 3.6 109200 58 0.01728 0.03456 0.06912
Max Turbo Number of GPUs 2 x GK104s 1xGK110
GPU ONLY [N/A N/A N/A N/A N/A N/A Number of CUDA cores 2x 1536 2496 2688
i7-875K Base 2.93 (88968 146.928 0.0140784 (0.0281568 |0.0563136 Memory size per board (GDORS) 868 568 468
Single Core 3.6 109200 58 0.01728 0.03456 0.06912 Memory bandwidth for board (ECC off)® 320 GBytes/sec 208 GBytes/sec 250 GBytes/sec
Max Turbi
ax furbo GPU computing applications Seismic, image, signal CFD, CAE, financial computing, computational chemistry
GPU ONLY [N/A IN/A N/A N/A N/A N/A processing, video analytics anddpll'a_rysics, data analytics, satellite imaging, weather
modeling
i7-880 Base 3.06 (93002 149.056 0.0147168 |0.0294336 |0.0588672
Single Core 373 [113234 |60 0.0179184 [0.0358368 |0.0716736 — = ShC e Perae o, Spec
Max Turbo System Servers only Servers and Workstations Servers only
GPU ONLY |N/A N/A /A N/A N/A N/A

HPC Skillset Training: Performance Optimization with TAU

Fitting algorithms to hardware...and vice versa

Molecular dynamics simulations on Application
Specific Integrated Circuit (ASIC)

DE Shaw Research Ivaylo Ivanov, Andrew McCammon, UCSD

-
‘H Code Development and Optimization Process

ose i Implement Analyze

algorlthm

« Choice of algorithm most important consideration (serial and
parallel)

- Highly scalable codes must be designed to be scalable from the
beginning!

- Analysis may reveal need for new algorithm or completely
different implementation rather than optimization

- Focus of this lecture: performance and using tools to assess
parallel performance

\5. Performance

Preparation = Prepare application,
- 1 insert extra code (probes/hooks)

Measurement = Collection of data relevant to

performance analysis
Analyze j 1
Analysis = Calculation of metrics, identification
1 of performance metrics

Presentation = Visualization of results in an

intuitive/understandable form
= Elimination of performance problems

Christian Rossel, Jielich

L
\Hﬁ'PhiIosophy...

When you are charged with optimizing an application...

Don't optimize the whole code

Profile the code, find the bottlenecks
They may not always be where you thought they were

Break the problem down
Try to run the shortest possible test you can to get meaningful results
Isolate serial kernels

Keep a working version of the code!
Getting the wrong answer faster is not the goal.

Optimize on the architecture on which you intend to run
Optimizations for one architecture will not necessarily translate

The compiler is your friend!

If you find yourself coding in machine language, you are doing to much.

D .BR
‘H' PITTSBURGH

SUPERCOMPUTING
CENTER

Manual Optimization
Techniques

=l kb BB
\H\'Optimization Techniques

There are basically two different categories:

Improve memory performance (taking advantage of locality)

Better memory access patterns

Optimal usage of cache lines

Re-use of cached data
Improve CPU performance

Reduce flop count

Better instruction scheduling

Use optimal instruction set

A word about compilers

Most compilers will do many of the techniques below automatically, but is
still important to understand these.

\HS'Optimization Techniques for Memory

. Stride

. Contiguous blocks of memory

. Accessing memory in stride greatly enhances the
performance

Fortran stores “column-wise”

o -

L
\H\'Array indexing

. There are several ways to index arrays:

\ Example (stride

File Edit Options Buffers Tools © Cscope Help
C@x OB 5 FPrWRIF ?

A 1
begin = clock();
for{i=0;i<M;i+4+){
for (3=0; J<N; j++) {
dlil T3l = B3 Iil + el[]jllils

}

end = clock(); '
printff lend-begin) /(CLOCES FPER @

SSEC))
begin = clock({);

for{i=0;i<MN;i++; (|}
for(4=0; 4<M; 1++) {
dlil[3] = bLEi1T31 ¥ <Fill3ls
}
end = clock(); '
printff , {end-begin) / {CLOCES PER _S@
SEC));
return O;
o}
i Session Edit “iew Bookmarks Settings Help
SeiEs SeEiniE .
I¥ | megatron: ~/programming> gcc -03 stride.c -0 stride

| megatron: ~/programeing- 1de

[Loop out-stride time = 7.3100000000 seconds

ride time = 0.510 seconds
: ~/programming> ||

~~|| = shell | (@ shell No. 2 Ao

e Ai—.L
\Hﬁ' Data Dependencies

In order to perform hand optimization, you really need
to get a handle on the data dependencies of your loops.

Operations that do not share data dependencies can be
performed in tandum.

Loop-carried dependencies
i gil,i) % j ¥i1,i+k) Loop-carried
do i=1,n dependencies
a (index (1,i}) = bii)
8 (index (Z,i)) = c{i)
end do indexi{2, i} " > indexid,i+k) Hon-loop-carried
dependencies

- Automatically determining data dependencies is tough for the compiler.

. great opportunity for hand optimization

L
\Hﬁ' Loop Interchange

Basic idea: change the order of data independent nested
loops.

Advantages:

Better memory access patterns (leading to improved cache and
memory usage)

Elimination of data dependencies (to increase opportunity for
CPU optimization and parallelization

Disadvantage:

Make make a short loop innermost

\H\ Loop Interchange — Example

Original Interchanged loops
DO i=1,HN Do J=1,M
Do j§=1,M DO i=1,H
C(i,J)=A(i,j)+B(i,]) C(i,j)=R(i,j)+B(i,])
END DO EHND DO
END O END DO

—'|1__I::|::|::l:r
3
3
3
3
1
4

=¥ Access order
ﬁ
Storage order

L
\H\' Loop Interchange in C/C++

In C, the situation is exactly the opposite

interchange For (j=0; j<M; j++) index reversal
for (1=0; i<N; i++)
ChD1 = AlD] +BLIIOT
for (i=0; i<N; i++) for (7=0; j<M; j++)
for (j=0; j<N; j++) for (1I=0; 1=<N; 1++)
Cl01 = A[D] +BLIGTL COI0 = AL BT,

@ The performance benefit is the same in this case

@ |n many practical situations, loop interchange is much easier to achieve
than index reversal

\H\' Loop Interchange — Example 2

Loop order %335 (P4 2.4Ghz) ¥330 (P3 1.4Ghz)
ik B.77 9.06

i k| 761 .82

ii Kk 2 2 E6

i ko 0.57 1.32

ki j 0.9 1.95
kojoi 0.44 125

=l kb BB
\H\'Compiler Loop Interchange

GNU compilers:
-floop-interchange
PGI compilers:

-Mvect Enable vectorization, including loop
interchange

Intel compilers:

-03 Enable aggressive optimization,
including loop transformations

CAUTION: Make sure thaour program still works after this!

\Hﬁ' Loop Unrolling

Computation cheap... branching expensive

Loops, conditionals, etc. Cause branching instructions to be
performed.

Looking at a loop...

for(1=0;1<N;
/ i++){

do work....
}

Every time this statement is
hit, a branching instruction is called.

So optimizing a loop would involve increasing
the work per loop iteration. More work, less branches

\H\' Loop unrolling

Manually unrolled loo
Normal loop y P

Good news — compilers can do this in the most helpful
cases

Bad news — compilers sometimes do this where it is not
helpful and or valid.

. This is not helpful when the work inside the loop is not
mostly number crunching.

e
\H\' Loop Unrolling - Compiler

GNU compilers:

-funrollloops Enable loop unrolling
-funrollallloops Unroll all loops; not recommended

PGI compilers:

-Munroll Enable loop unrolling

-Munroll=c:N Unroll loops with trip counts
of at least N

-Munroll=n:M Unroll loops up to M times

Intel compilers:

-unroll Enable loop unrolling
-unrollM Unroll loops up to M times

CAUTION: Make sure that your program still works after
this!

program dirunroll

integer,parameter :: N=1000000
real,dimension(N):: a,b,c
real:: begin,end
real,dimension(2) :: rtime

common/saver/a,b, c
call random number (b)
call random number (c)
x=2.5

begin=dtime (rtime)
'DIRS UNROLL 4

do i=1,N
a(i)=b(i)+x*c (1)
end do

end=dtime (rtime)

print *,' my loop time (s) 1is
', (end)
flop=(2.0*N)/ (end) *1.0e6

print *,' loop runs at ',flop,'

MFLOP'
print *,a(l),b(1l),c(1)
end

P
\5 Loop Unrolling Directives

Directives provide a very
portable way for the
compiler to perform
automatic loop unrolling.

Compiler can choose to
ignore it.

L
\H\' Blocking for cache (tiling)

Blocking for cache is

An optimization that applies for datasets that do not fit entirely
into cache

A way to increase spatial locality of reference i.e. exploit full
cache lines

A way to increase temporal locality of reference i.e. improves
data reuse

Example, the transposing of a matrix

L
\H’ Block algorithm for transposing a matrix

- block data size = bsize

- mb = n/bsize
- nb =n/bsize

. These sizes can be manipulated
to coincide with actual cache
sizes on individual architectures

\ Results...

Matrix Trasposition
Matrix size: 2048x2048

R —Straightforward

0.45 H Implermaentation

.40 Block

0.35 - % /mn::-lementatlﬁn
.30

F 3

0.25 =

0.20

gxecution time

0.05

0.00 T T Y x
0 20 40 G0 &l

block size

120

\H\' Loop Fusion and Fission

Fusion: Merge multiple loops into one

=

Fission: Split one loop into multiple loops

/
T,

L
\H\' Loop Fusion Example

Potential for Fusion: dependent operations in separate

loops
Advantage:
Re-usage of array B()
Disadvantages:

@ |n total 4 arrays now contend for cache space
More registers needed

L
\H' Loop Fission Example

Potential for Fission: independent operations in a single

loop
Advantage:
@ First loop can be scheduled more efficiently and be parallelised as well
Disadvantages:

@ Less opportunity for out-of-order superscalar execution
@ Additional loop created (a minor disadvantage)

\ Prefetching

Modern CPU's can perform anticipated memory lookups ahead of their
use for computation.

Hides memory latency and overlaps computation

Minimizes memory lookup times

This is a very architecture specific item

Very helpful for regular, in-stride memory patterns

GNU:
-fprefetch-loop-arrays If supported by the target machine, generate instructions to

prefetch memory to improve the performance of loops that access
large arrays.

PGI:
-Mprefetch[=option:n] Add (don’t add) prefetch instructions for those processors that

-Mnoprefetch support them (Pentium 4,0pteron); -Mprefetch is default on
Opteron,;
-Mnoprefetch is default on other processors.

Intel:

-03 Enable -O2 optimizations and in addition, enable more
aggressive optimizations such as loop and memory access
transformation, and prefetching.

D
\HS. Optimizing Floating Point performance

Operation replacement

Replacing individual time consuming operations with faster
ones

Floating point division

- Notoriously slow, implemented with a series of instructions

- So does that mean we cannot do any division if we want performance?
|[EEE standard dictates that the division must be carried out

- We can relax this and replace the division with multiplication by a
reciprocal

- Compiler level optimization, rarely helps doing this by hand.

- Much more efficient in machine language than straight division, because
it can be done with approximates

L
\\'IEEE relaxation

GNU:
-funsafe-math-optimizations

Allow optimizations for fleoating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or ANSI
standards.

PGI:
--Kieee -Knoieee (default)

Perform floating-point operations 1in strict conformance with the
IEEE 754 standard. Some optimizations are disabled with -Kieee, and a
more accurate math library is used. The default -Knoieee uses faster
but very slightly less accurate methods.

INTEL:
--no-prec-div (132 and 132em)

Enables optimizations that give slightly less precise results
than full IEEE division. With some optimizations, such as -xN and -xB,
the compiler may change fleoating-point division computations 1nto
multiplication by the reciprocal of the denominator.

Keep in mind! This does reduce the precision of the math!

\H\'Elimination of Reduntant Work

Consider the following piece of code

do j = 1,N
do i = 1,N
A(J) = A(J) + C(1,3)/B(3)
enddo

enddo

It is clear that the division by B(j) is redundant and can
be pulled out of the loop

do j = 1,N
sum = 0.0DO
do i = 1,N
sum = sum + C(i,7)
enddo

A(3) = A(G) + sum/B(3)
enddo

=111 . k-Nke?®
\Hﬁ'Elimination of Reduntant Work

do k = 1,N
do j = 1,N
do 1 = 1,N
ACk) = B(k) + C(3) + D(1)
enddo
enddo
enddo
Array lookups cost time do k = 1,N
Bk = B(k)
' i do j = 1,N
By introducing constants and]]
precomputing values, we gléci_l =]B_kN+ C(3)
](cellmlnateabunch of unnecessary A = BKGS + DCD)
ops
enddo
enddo

This is the type of thing compilers

: : enddo
can do quite easily.

P
\H\'Function (Procedure) Inlining

Calling functions and subroutines requires overhead by the CPU to
perform

The instructions need to be looked up in memory, the arguments
translated, etc..

Inlining is the process by which the compiler can replace a function
call in the object with the source code

It would be like creating your application in one big function-less format.
Advantage

Increase optimization opportunities

Particularly advantegeous (necessary) when a function is called a lot, and
does very little work (e.g. max and min functions).

Particularly important in C++!!!

A O :
\H\' Function (Procedure) Inlining Compiler

Options

GNU compilers:
-fno-inline Disable inlining
-finline-functions Enable inlining of functions
PGl compilers:
-Mextract=option[,option,..] Extract functions selected by option for
use in inlining; eption may be
name :functionor size:N whereNis a
number of statements
-Minline=option[,option,..] Perform inlining using eption; option
may be lib:filename.ext,
name :function, size:N, or levels:P

Intel compilers:

-1ip Enable single-file interprocedural
optimization, including enhanced inlining
-ipo Enable interprocedural optimization

across files

\H\. In source

- You can use inline directives to specify that you want a
function inlined:

inline int fun2() attribute ((always inline));
inline int fun2() { return 4 + 5; }

- You can find out if functions have been inlined properly, the
code nm can be looked at.

- If the function is not in the nm output, it has been inlined.

- Inlining can cause a function to no longer be accessible by a
debugger.

HPC Skillset Training: Performance Optimization with TAU 42

P
\Hﬁ'Su perscalar Processors

Processors which have multiple functional units are called
superscalar (instruction level parallelism)

Examples:

All modern processors

All can do multiple floating point and integer procedures in one clock
cycle

Special instructions

SSE (Streaming SIMD Extensions)

- Allow users to take advantage of this power by packing mutliple operations
into one register.

- SSE2 for double-precision
Right now, 4 way is very common (Intel Corei7), but 16-way on the horizon.
Intel PHI is an extereme form of this.

Much much more difficult to get peak performance.

Instruction Set Extension Compiler Options

GMU:
—mmmx,/ no-mmx These switches enable or disable the use of
built-in functions that allow direct access to
-msse the MMXx, 5SSE, S55EZ2, 55EZ2 and 2Dnow
-mNo-sse extensions of the i1nstruction set

-msse’? / -mno-sse?
-msse3 / -mno-sse3
-m3dnow / -mno-3dnow

FGI:
--fastsse
Chooses generally optimal flags for a processor that supports
SSE instructions (Pentium 3/4, AthlonxXP/MP, Opteron) and SSEZ

(Pentium 4, Opteron). Use pgf90 -fastsse -help to see the
equivalent switches.

INTEL:
—arch SSE Optimizes for Intel Pentium 4 processors with Streaming
SIMD Extensions (SSE).

—arch SSEZ Optimizes for Intel Pentium 4 processors with Streaming
SIMD Extensions 2 (SSEZ2).

How do you know what the compiler is doing?

- Compiler Reports and Listings

By default, compilers don't say much unless you screwed up.

One can generate optimization reports and listing files to yeild output
that shows what optimizations are performed

GNU compilers

PGl compilers
-Minfo=option|[,option, ...

-Mneginfo=option|[,cption]

-Mlist

Intel compilers
—opt_report

-opt_report file filename

Mone

Frints information to stderr on
option; option can be one or more
of time, loop, inline, sym, or all

Prints information to stderr on why
optimizations of type cption were
not performed; option can be concur
or loop

Generates a listing file

Generates an optimization report on
stderr

Generates an optimization report to
filename

Case Study: GAMESS

. Mission from the DoD — Optimize GAMESS DFT code on
an SGI Altix

. First step: profile the code

Metric: Time
W3 lue: Exclusive
LInits . microsec onds

T ET] oE&T-3
2179 ET I 1CT1
1 73mE7 B omatD

0479907 [DFTTRFO

aa0gz2 [T4 spplication

8633006 EE O0CT-2
Ta521B8 [DFTTRF
Ezzos32] DFTFOCH
AE0ETOE [DFTAD
3402274 [] DFTGAD

gzsE02 [QT

1506RGS | GLEGUID
145231 GROFT
24127 | MPI_Init[]
21250 | MFPI_Rew(
G456 | STMFCT
AI4E3 [MPI_Sendd
118987 GRODFT
45566 | IMPINF
42756 | ATWVED
235.69 | INFEAS
2YTA6 | Srulng
1378 RADPT
585094 [MPI_Oaihen)
8.5 | MPI_Camm_dupd
4778 MPI_Zarmrm_fread

L
) Case Study: GAMESS

+ Before

Source code from the OCT subroutine from the GAMESS program. This portion
gf cnd-_akls represented in the loop level profiling in the previous slide by the OCT-
moniker.

DO K=1,NITR
FA=F4%(1.5D+00-0.5D+00"F4"F4)

END DO

F2=0.5D+00"F4

« After
Optimized source code from the OCT subroutine from the GAMESS program.
F41 = F4*(1.5D0-0.5D0*F4*F4)
FA42 = F41*(1.5D0-0 5D0*F41*F41)
F43 = F42%(1.5D0-0.5D0*F42*F42)
FA44 = F43%(1.5D0-0 5D0*F43*F43)
F2=0.5D0"F44

« New code is 5x faster through this section of the program

Further inspection of the Itanium archtecture showed 2 things:

The compilers were really bad at loop optimization

The overhead for conditionals is enormous

e EHhHhwbb? :];
\H\'Take Home Messages...

Performance programming on single processors requires

Understanding memory
levels, costs, sizes
Understand SSE and how to get it to work

In the future this will one of the most important aspects of processor
performance.

Understand your program

No subsitute for speding quality time with your code.

Do not spend a lot of time doing what | compiler will do
automatically.

Start with compiler optimizations!
Code optimization is hard work!

We haven't even talked about parallel applications yet!

