
Manual and Compiler
Optimizations
Shawn T. Brown, PhD.

Director of Public Health Applications

Pittsburgh Supercomputing Center, Carnegie Mellon University

Introduction to Performance

Optimization
 Real processors have

 registers, cache, parallelism, ... they are bloody complicated

 Why is this your problem?

 In theory, compilers understand all of this and can optimize your code;
in practice they don't.

 Generally optimizing algorithms across all computational architectures
is an impossible task, hand optimization will always be needed.

 We need to learn how...

 to measure performance of codes on modern architectures

 to tune performance of the codes by hand (32/64 bit commodity
processors) and use compilers

 to understand parallel performance

 The peak performance of a chip

 The number of theoretical floating point operations per second

 e.g. 2.8 Ghz Core-i7 has 4 cores and each core can do theoretically 4 flops

per cycle, for a peak performance of 44.8 Gflops

 Real performance

 Algorithm dependent, the actually number of floating point

operations per second

 Generally, most programs get about 10% or lower of peak performance

 40% of peak, and you can go on holiday

 Parallel performance

 The scaling of an algorithm relative to its speed on 1 processor.

Performance

Serial Performance
• On a single processor (core), how fast does the

algorithm complete.

• Factors:

• Memory

• Processing Power

• Memory Transport

• Local I/O

• Load of the Machine

• Quality of the algorithm

• Programming Language

5HPC Skillset Training: Performance Optimization with TAU

Pipelining

 Pipelining allows for a smooth progression of
instructions and data to flow through the
processor

 Any optimization that facilitate pipelining will
speed the serial performance of your code.

 As chips support more SSE like character, filling
the pipeline is more difficult.

 Stalling the pipeline slows codes

down

 Out of cache reads and writes

 Conditional statements

Memory Locality
 Effective use of the memory heirarchy can facilitate

good pipelining

 Temporal locality:

 Recently referenced items (instr or data) are likely
to be referenced again in the near future

 iterative loops, subroutines, local variables

 working set concept

 Spatial locality:

 programs access data which is near to each other:

 operations on tables/arrays

 cache line size is determined by spatial locality

Registers

L1 Cache

L2 Cache

RAM

Local HDD

Shared HDD

D
is

ta
n
c
e
 fro

m
 C

P
U

S
p
e
e
d

8ICTP School on Parallel Programming

SSD Local Disk

Accelerators:

GP-GPU

Parallel File

Systems

Welcome to the complication....

9HPC Skillset Training: Performance Optimization with TAU

Understanding the Hardware
Variety is the spice of

life…

Ivaylo Ivanov, Andrew McCammon, UCSDDE Shaw Research

Molecular dynamics simulations on Application
Specific Integrated Circuit (ASIC)

Fitting algorithms to hardware…and vice versa

• Choice of algorithm most important consideration (serial and
parallel)

• Highly scalable codes must be designed to be scalable from the
beginning!

• Analysis may reveal need for new algorithm or completely
different implementation rather than optimization

• Focus of this lecture: performance and using tools to assess
parallel performance

Choose
algorithm

Implement Analyze Optimize

Code Development and Optimization Process

Analyze

Christian Rössel, Jüelich

Performance

• When you are charged with optimizing an application...

• Don't optimize the whole code

• Profile the code, find the bottlenecks

• They may not always be where you thought they were

• Break the problem down

• Try to run the shortest possible test you can to get meaningful results

• Isolate serial kernels

• Keep a working version of the code!

• Getting the wrong answer faster is not the goal.

• Optimize on the architecture on which you intend to run

• Optimizations for one architecture will not necessarily translate

• The compiler is your friend!

• If you find yourself coding in machine language, you are doing to much.

Philosophy...

Manual Optimization
Techniques

Optimization Techniques
 There are basically two different categories:

 Improve memory performance (taking advantage of locality)

 Better memory access patterns

 Optimal usage of cache lines

 Re-use of cached data

 Improve CPU performance

 Reduce flop count

 Better instruction scheduling

 Use optimal instruction set

 A word about compilers

 Most compilers will do many of the techniques below automatically, but is
still important to understand these.

Optimization Techniques for Memory

 Stride

 Contiguous blocks of memory

 Accessing memory in stride greatly enhances the
performance

Array indexing
 There are several ways to index arrays:

Example (stride)

Data Dependencies

 In order to perform hand optimization, you really need
to get a handle on the data dependencies of your loops.

 Operations that do not share data dependencies can be
performed in tandum.

 Automatically determining data dependencies is tough for the compiler.

 great opportunity for hand optimization

Loop Interchange

 Basic idea: change the order of data independent nested
loops.

 Advantages:

 Better memory access patterns (leading to improved cache and
memory usage)

 Elimination of data dependencies (to increase opportunity for
CPU optimization and parallelization

 Disadvantage:

 Make make a short loop innermost

Loop Interchange – Example

Loop Interchange in C/C++

Loop Interchange – Example 2

Compiler Loop Interchange

 GNU compilers:

 -floop-interchange

 PGI compilers:

 -Mvect Enable vectorization, including loop
interchange

 Intel compilers:

 -O3 Enable aggressive optimization,
including loop transformations

CAUTION: Make sure thaour program still works after this!

Loop Unrolling

 Computation cheap... branching expensive

 Loops, conditionals, etc. Cause branching instructions to be
performed.

 Looking at a loop...

for(i = 0; i < N;
i++){

do work....
}

Every time this statement is
hit, a branching instruction is called.

More work, less branches
So optimizing a loop would involve increasing
the work per loop iteration.

Loop unrolling

 Good news – compilers can do this in the most helpful
cases

 Bad news – compilers sometimes do this where it is not
helpful and or valid.

 This is not helpful when the work inside the loop is not
mostly number crunching.

Loop Unrolling - Compiler
GNU compilers:

-funrollloops Enable loop unrolling
-funrollallloops Unroll all loops; not recommended

PGI compilers:

-Munroll Enable loop unrolling
-Munroll=c:N Unroll loops with trip counts

of at least N
-Munroll=n:M Unroll loops up to M times

Intel compilers:

-unroll Enable loop unrolling
-unrollM Unroll loops up to M times

CAUTION: Make sure that your program still works after

this!

Loop Unrolling Directives
program dirunroll

integer,parameter :: N=1000000

real,dimension(N):: a,b,c

real:: begin,end

real,dimension(2):: rtime

common/saver/a,b,c

call random_number(b)

call random_number(c)

x=2.5

begin=dtime(rtime)

!DIR$ UNROLL 4

do i=1,N

a(i)=b(i)+x*c(i)

end do

end=dtime(rtime)

print *,' my loop time (s) is

',(end)

flop=(2.0*N)/(end)*1.0e6

print *,' loop runs at ',flop,'

MFLOP'

print *,a(1),b(1),c(1)

end s) is 5.9999999E02

 Directives provide a very
portable way for the
compiler to perform
automatic loop unrolling.

 Compiler can choose to
ignore it.

Blocking for cache (tiling)

 Blocking for cache is

 An optimization that applies for datasets that do not fit entirely
into cache

 A way to increase spatial locality of reference i.e. exploit full
cache lines

 A way to increase temporal locality of reference i.e. improves
data reuse

 Example, the transposing of a matrix

Block algorithm for transposing a matrix

 block data size = bsize

 mb = n/bsize

 nb = n/bsize

 These sizes can be manipulated
to coincide with actual cache
sizes on individual architectures.

Results...

Loop Fusion and Fission

Loop Fusion Example

Loop Fission Example

Prefetching
 Modern CPU's can perform anticipated memory lookups ahead of their

use for computation.

 Hides memory latency and overlaps computation

 Minimizes memory lookup times

 This is a very architecture specific item

 Very helpful for regular, in-stride memory patterns

GNU:

-fprefetch-loop-arrays If supported by the target machine, generate instructions to

prefetch memory to improve the performance of loops that access
large arrays.

PGI:

-Mprefetch[=option:n] Add (don’t add) prefetch instructions for those processors that

-Mnoprefetch support them (Pentium 4,Opteron); -Mprefetch is default on

Opteron;
-Mnoprefetch is default on other processors.

Intel:

-O3 Enable -O2 optimizations and in addition, enable more

aggressive optimizations such as loop and memory access
transformation, and prefetching.

Optimizing Floating Point performance

 Operation replacement

 Replacing individual time consuming operations with faster
ones

 Floating point division

 Notoriously slow, implemented with a series of instructions

 So does that mean we cannot do any division if we want performance?

 IEEE standard dictates that the division must be carried out

 We can relax this and replace the division with multiplication by a
reciprocal

 Compiler level optimization, rarely helps doing this by hand.

 Much more efficient in machine language than straight division, because
it can be done with approximates

IEEE relaxation

Keep in mind! This does reduce the precision of the math!

Elimination of Reduntant Work

 Consider the following piece of code

It is clear that the division by B(j) is redundant and can
be pulled out of the loop

do j = 1,N

do i = 1,N

A(j) = A(j) + C(i,j)/B(j)

enddo

enddo

do j = 1,N

sum = 0.0D0

do i = 1,N

sum = sum + C(i,j)

enddo

A(j) = A(j) + sum/B(j)

enddo

Elimination of Reduntant Work

do k = 1,N

do j = 1,N

do i = 1,N

A(k) = B(k) + C(j) + D(i)

enddo

enddo

enddo

do k = 1,N

Bk = B(k)

do j = 1,N

BkCj = Bk + C(j)

do i = 1,N

A(k) = BkCj + D(i)

enddo

enddo

enddo

Array lookups cost time

By introducing constants and
precomputing values, we
eliminate a bunch of unnecessary
fops

This is the type of thing compilers
can do quite easily.

Function (Procedure) Inlining
 Calling functions and subroutines requires overhead by the CPU to

perform

 The instructions need to be looked up in memory, the arguments
translated, etc..

 Inlining is the process by which the compiler can replace a function
call in the object with the source code

 It would be like creating your application in one big function-less format.

 Advantage

 Increase optimization opportunities

 Particularly advantegeous (necessary) when a function is called a lot, and
does very little work (e.g. max and min functions).

 Particularly important in C++!!!

Function (Procedure) Inlining Compiler
Options

In source
• You can use inline directives to specify that you want a

function inlined:

inline int fun2() __attribute__((always_inline));

inline int fun2() { return 4 + 5; }

• You can find out if functions have been inlined properly, the
code nm can be looked at.

• If the function is not in the nm output, it has been inlined.

• Inlining can cause a function to no longer be accessible by a
debugger.

42HPC Skillset Training: Performance Optimization with TAU

Superscalar Processors
 Processors which have multiple functional units are called

superscalar (instruction level parallelism)

 Examples:

 All modern processors

 All can do multiple floating point and integer procedures in one clock
cycle

 Special instructions

 SSE (Streaming SIMD Extensions)

 Allow users to take advantage of this power by packing mutliple operations
into one register.

 SSE2 for double-precision

 Right now, 4 way is very common (Intel Corei7), but 16-way on the horizon.

 Intel PHI is an extereme form of this.

 Much much more difficult to get peak performance.

Instruction Set Extension Compiler Options

How do you know what the compiler is doing?

 Compiler Reports and Listings

 By default, compilers don't say much unless you screwed up.

 One can generate optimization reports and listing files to yeild output
that shows what optimizations are performed

Case Study: GAMESS
 Mission from the DoD – Optimize GAMESS DFT code on

an SGI Altix

 First step: profile the code

Case Study: GAMESS

 Further inspection of the Itanium archtecture showed 2 things:

 The compilers were really bad at loop optimization

 The overhead for conditionals is enormous

Take Home Messages...
 Performance programming on single processors requires

 Understanding memory

 levels, costs, sizes

 Understand SSE and how to get it to work

 In the future this will one of the most important aspects of processor
performance.

 Understand your program

 No subsitute for speding quality time with your code.

 Do not spend a lot of time doing what I compiler will do
automatically.

 Start with compiler optimizations!

 Code optimization is hard work!

 We haven't even talked about parallel applications yet!

