
Shared Memory
Programming Paradigm !

Ivan Girotto – igirotto@ictp.it
Information & Communication Technology Section (ICTS)

International Centre for Theoretical Physics (ICTP)

1	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Multi-CPUs & Multi-cores NUMA system!

2	

Main	Memory		
Dual	Socket	(Westmere)	-	24GB	RAM	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Processes and Threads!

3	

Instruc>ons	 Data	 Files	

Registers	 Stack	

Thread	

Instruc>ons	 Data	 Files	

Registers	 Stack	

Thread	

4	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Processes and Threads!

5	

Instruc>ons	 Data	 Files	

Registers	 Stack	

Thread	

Instruc>ons	 Data	 Files	

Registers	

Stack	

Registers	

Stack	

Registers	

Stack	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Multi-threading - Recap!
•  A thread is a (lightweight) process - an instance of a program

plus its own data (private memory)
•  Each thread can follow its own flow of control through a

program
•  Threads can share data with other threads, but also have

private data
•  Threads communicate with each other via the shared data.
•  A master thread is responsible for co-ordinating the threads

group
 6	

7	

OpenMP (Open spec. for Multi Processing) !
OpenMP is not a computer language

•  Rather it works in conjunction with existing languages such as
standard Fortran or C/C++

Application Programming Interface (API)
•  that provides a portable model for parallel applications

•  Three main components:
•  Compiler directives
•  Runtime library routines
•  Environment variables

8	

OpenMP Parallelization !
OpenMP is directive based

•  code (can) work without them

OpenMP can be added incrementally
OpenMP only works in shared memory

•  multi-socket nodes, multi-core processors
OpenMP hides the calls to a threads library

•  less flexible, but much less programming
Caution: write access to shared data can easily lead to race conditions and

incorrect data

9	

•  Thread-based Parallelism
•  Explicit Parallelism
•  Fork-Join Model
•  Compiler Directive Based
•  Dynamic Threads

10	

OpenMP Parallelization !

Getting Started with OpenMP!
OpenMP’s constructs fall into 5 categories:

•  Parallel Regions
•  Work sharing
•  Data Environment (scope)
•  Synchronization
•  Runtime functions/environment variables

OpenMP is essentially the same for both Fortran and C/C++

11	

Directives Format!
A directive is a special line of source code with meaning only
to certain compilers.

A directive is distinguished by a sentinel at the start of the line.

OpenMP sentinels are:

•  Fortran: !$OMP (or C$OMP or *$OMP)

•  C/C++: #pragma omp

12	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

OpenMP: Parallel Regions
For example, to create a 4-thread parallel region:
each thread calls foo(ID,A) for ID = 0 to 3

13	

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID =omp_get_thread_num();

 foo(ID,A);

}

printf(“All Done\n”);

Each thread redundantly
executes the code within
the structured block

thread-safe	rouGne:	A	rouGne	that	performs	
the	intended	funcGon	even	when	executed	
concurrently	(by	more	than	one	thread)		

double A[1000];

omp_set_num_threads(4);

foo(0,A); foo(1,A); foo(2,A); foo(3,A);

printf(“All Done\n”);

A single copy of A is
shared between
all threads.

Threads wait here for all
threads to finish before
proceeding (i.e. barrier).

14	

How many threads?
•  The number of threads in a parallel region is determined by

the following factors:

•  Use of the omp_set_num_threads() library function

•  Setting of the OMP_NUM_THREADS environment
variable

•  The implementation default

•  Threads are numbered from 0 (master thread) to N-1.

15	

Compiling OpenMP!
gcc -fopenmp -c my_openmp.c

gcc -fopenmp -o my_openmp.x my_openmp.o

icc -openmp -c my_openmp.c
icc -openmp -o my_openmp.x my_openmp.o

16	

OpenMP runtime library!
OMP_GET_NUM_THREADS() – returns the current # of threads.

OMP_GET_THREAD_NUM() - returns the id of this thread.

OMP_SET_NUM_THREADS(n) – set the desired # of threads.

OMP_IN_PARALLEL() – returns .true. if inside parallel region.

OMP_GET_MAX_THREADS() - returns the # of possible threads.

17	

Memory footprint!

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

18	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Thread 1 Thread 2
load a Program

Private
data

Shared
data

10

10

10 11 11

11 11

add a 1
store a

load a
add a 1
store a

19	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Simple C OpenMP Program
#include <omp.h>
#include <stdio.h>

int main () {

 printf("Starting off in the sequential world.\n");
 #pragma omp parallel
 {
 printf("Hello from thread number %d\n", omp_get_thread_num());
 }
 printf("Back to the sequential world.\n");
 return 0;
}

20	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

PROGRAM HELLO
 INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS
 INTEGER OMP_GET_THREAD_NUM

!!Fork a team of threads giving them their own copies of variables
!$OMP PARALLEL PRIVATE(NTHREADS, TID)

!!Obtain thread number
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID

!!Only master thread does this

 IF (TID .EQ. 0) THEN

 NTHREADS = OMP_GET_NUM_THREADS()
 PRINT *, 'Number of threads = ', NTHREADS
 END IF

!!All threads join master thread and disband
!$OMP END PARALLEL
END PROGRAM

21	

Variable Scooping !
All existing variable still exist inside a parallel region

•  by default SHARED between all threads

But work sharing requires private variables
•  PRIVATE clause to OMP PARALLEL directive
•  Index variable of a worksharing loop
•  All declared local variable within a parallel region
•  The FIRSTPRIVATE clause would initialize the private

instances with the contents of the shared instance
 Be aware of the sharing nature of static variables

22	

 Exploiting Loop Level Parallelism

Loop level Parallelism: parallelize only loops

Easy to implement

Highly readable code

Less than optimal performance (sometimes)

Most often used

23	

Parallel Loop Directives

Fortran do loop directive
•  !$omp do

C\C++ for loop directive
•  #pragma omp for

These directives do not create a team of threads
but assume there has already been a team forked.

If not inside a parallel region shortcuts can be used.
•  !$omp parallel do
•  #pragma omp parallel for

24	

Parallel Loop Directives /2
These are equivalent to a parallel construct followed
immediately by a worksharing construct.

!$omp parallel do

Same as

!$omp parallel
...
!$omp do

#pragma omp parallel for

Same as

#pragma omp parallel
...
#pragma omp for

25	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		 26	

integer :: N, start, len, numth, tid, i, end

double precision, dimension (N) :: a, b, c

!$OMP PARALLEL PRIVATE (start, end, len, numth, tid, i)

 numth = omp_get_num_threads()

 tid = omp_get_thread_num()

 len = N / numth

 if(tid .lt. mod(N, numth)) then

 len = len + 1

 start = len * tid + 1

 else

 start = len * tid + mod(N, numth) + 1

 endif

 end = start + len - 1

 do i = start, end

 a(i) = b(i) + c(i)

 end do

!OMP END PARALLEL

Not	the	intended	
mode	for	OpenMP	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

How is OpenMP Typically Used?
OpenMP is usually used to parallelize loops:

27	

void main()

{

 double Res[1000];

 #pragma omp parallel for

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

void main()

{

 double Res[1000];

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

Split-up this loop between multiple threads

Sequential program Parallel program

28	

Work-Sharing Constructs
Divides the execution of the enclosed code region
among the members of the team that encounter it.

Work-sharing constructs do not launch new threads.

No implied barrier upon entry to a work sharing
construct.

However, there is an implied barrier at the end of the
work sharing construct (unless nowait is used).

29	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Work Sharing Constructs - example

30	

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 for(i=istart;I<iend;i++) {a[i]=a[i]+b[i];}

}

#pragma omp parallel

#pragma omp for schedule(static)

for(i=0;I<N;i++) { a[i]=a[i]+b[i];}

Sequential code

OpenMP // Region

OpenMP Parallel
Region and a work-
sharing for construct

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

schedule(staGc	[,chunk])	

31	

!$OMP PARALLEL DO &
!$OMP SCHEDULE(STATIC,3)

DO J = 1, 36

 Work (j)
END DO

!$OMP END DO

•  Iterations are divided evenly among threads

•  If chunk is specified, divides the work into
chunk sized parcels

•  If there are N threads, each thread does
every Nth chunk of work.

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

schedule(dynamic	[,chunk])	

32	

!$OMP PARALLEL DO & !
$OMPSCHEDULE(DYNAMIC,1)

DO J = 1, 36

 Work (j)
END DO

!$OMP END DO

•  Divides the workload into chunk sized parcels.

•  As a thread finishes one chunk, it grabs the
next available chunk.

•  Default value for chunk is one.

•  More overhead, but potentially better load
balancing.

The	Schedule	Clause	SCHEDULE	(type	[,chunk])	
The schedule clause effects how loop iterations are mapped onto threads

 schedule(static [,chunk])
•  Deal-out blocks of iterations of size “chunk” to each thread

 schedule(dynamic [,chunk])
•  Each thread grabs “chunk” iterations off a queue until all

iterations have been handled

 schedule(guided [,chunk])
•  Threads dynamically grab blocks of iterations. The size of the

block starts large and shrinks down to size “chunk” as the
calculation proceeds

 schedule(runtime)
•  Schedule and chunk size taken from the

 OMP_SCHEDULE environment variable

33	

No Wait Clauses

•  No wait: if specified then threads do not synchronise at
the end of the parallel loop.

For Fortran, the END DO directive is optional with NO WAIT

being the default.

Note that the nowait clause is incompatible with a simple

parallel region meaning that using the composite
directives will not allow you to use the nowait clause.

34	

OpenMP: Reduction(op : list)

The variables in “list” must be shared in the enclosing parallel region.

Inside a parallel or a worksharing construct:

•  A local copy of each list variable is made and initialized

depending on the “op” (e.g. 0 for “+”)

•  pair wise “op” is updated on the local value

•  Local copies are reduced into a single global copy at the end of

the construct.

35	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

OpenMP: A Reduction Example
#include <omp.h>
#define NUM_THREADS 2
void main ()
{

 int i;
 double ZZ, func(), sum=0.0;

 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel for reduction(+:sum) private(ZZ)
 for (i=0; i< 1000; i++){
 ZZ = func(i);
 sum = sum + ZZ;
 }

}

36	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Compute PI!

37	

Integrate,	i.e	determine	area	
under	funcGon	numerically	
using	slices	of	h	*	f(x)	at	
midpoints		

38	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

We can make the parallel region directive itself conditional.

Fortran: IF (scalar logical expression)
C/C++: if (scalar expression)

#pragma omp parallel if (tasks > 1000)

{

 while(tasks > 0) donexttask();

}

39	

if CLAUSE

SYNCHRONIZATION!

40	

OpenMP: How do Threads Interact?

OpenMP is a shared memory model.
•  Threads communicate by sharing variables.

Unintended sharing of data can lead to race conditions:
•  race condition: when the program’s outcome changes as the

threads are scheduled differently.

To control race conditions:
•  Use synchronization to protect data conflicts.

Synchronization is expensive so:
•  Change how data is stored to minimize the need for

synchronization.

41	

Note that updates to shared variables:

(e.g. a = a + 1)

are not atomic!

If two threads try to do this at the same time, one of
the updates may get overwritten.

42	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Thread 1 Thread 2
load a Program

Private
data

Shared
data

10

10

10 11 11

11 11

add a 1
store a

load a
add a 1
store a

43	

Barrier

Fortran - !$OMP BARRIER
C\C++ - #pragma omp barrier

This directive synchronises the threads in a team by
causing them to wait until all of the other threads have
reached this point in the code.

Implicit barriers exist after work sharing constructs. The
nowait clause can be used to prevent this behaviour.

 Add a note about single/master

44	

Critical
Only one thread at a time can enter a critical section.

45	

Example: pushing and popping a task stack
!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)
 ...
!$OMP CRITICAL (STACKPROT)
 inext = getnext(stack)
!$OMP END CRITICAL (STACKPROT)
 call work(inext,inew)
!$OMP CRITICAL (STACKPROT)
 if (inew .gt. 0) call putnew(inew,stack)
!$OMP END CRITICAL (STACKPROT)
 ...
!$OMP END PARALLEL

Atomic
Atomic is a special case of a critical section that can be used for certain

simple statements

Fortran: !$OMP ATOMIC
 statement

where statement must have one of these forms:
x = x op expr, x = expr op x, x = intr (x, expr) or

x = intr(expr, x)
op is one of +, *, -, /, .and., .or., .eqv., or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

46	

Non Parallelizzabile!
Show an example of Instruction dependency

47	

OpenMP Tasking!
•  Useful to deal with unbalanced problem
•  Linked lists is a good example
•  Mostly applied for functional parallelism

48	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Runtime Environment !

49	

•  When a thread encounters a task construct, a new task is
generated

•  The moment of execution of the task is up to the runtime system

•  Execution can be either immediate or delayed

•  Completion of a task can be enforced through task
synchronization

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Task Synchronization!

50	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		 51	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Poor Performances!
Often naive approaches multi-threaded programming results in poor
performances
•  Modern NUMA architecture requires specific attention, specially

considering multithreaded-programming
•  The overhead of thread-management is not always negligible
•  Reduce to minimum the critical regions
•  FALSE SHARING is behind the corner
•  Anything shared is a possible source

of race condition (if write access)

52	

Ivan	Giro+o	
igiro+o@ictp.it	 M1.4	-	Shared	Memory	Programming	Paradigm		

Exercises!
1. write an “hello-world” program that prints on std output how many

threads are executed and the thread_ID for each thread
2. parallelize the heat equation code using OpenMP
3. parallelize the fast-transpose using OpenMP
4. parallelize the code provided in class using OpenMP

Note: perform performance analysis for the points 2-4. Write a Makefile that
somehow allows to compile the serial and the OpenMP versions of the code.
Instrument the code to print at runtime the number of threads, in case of a
parallel version.

53	

