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the one million dollar question
which is the best computing system to use ?
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Background: Let me introduce myself

Development of computing systems optimized for computational physics:

APEmille and apeNEXT: LQCD-machines

AMchip: pattern matching processor, installed at CDF

Janus: FPGA-based system for spin-glass simulations

QPACE: Cell-based machine, mainly LQCD

AuroraScience: multi-core based machine
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APEmille e apeNEXT (2000 and 2004)
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Janus (2007)

256 FPGAs

16 boards

8 host PC
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QPACE Machine (2008)

8 backplanes per rack

256 nodes (2048 cores)

16 root-cards

8 cold-plates

26 Tflops peak
double-precision

35 KWatt maximum
power consumption

750 MFLOPS / Watt

TOP-GREEN 500 in
Nov.’09 and July’10
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Use of recent processors

QPACE has been the first attempt (in our community) to use a
commodity processor interconnected by a custom network

what I would like to discuss now is how and how well we can use recent
developed processors for our applications

which issues we have to face out ?

how to program them ?
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Hardware Evolution
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The Multi-core processors era begins !

Multi-core architecture allows CPU performances to scale according to
Moore’s law.

increase frequency beyond
≈ 3 − 4 GHz is not possible

assembly more CPUs in a
single silicon device ✔

great impact on application
performance and design ✘

move challenge to exploit
high-performance computing
from HW to SW ✘
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Many Different Cores

all large core: multi-core Intel x86 CPUs

many small core: NVIDIA GPUs accelerators

all small cores: MIC architectures, Intel Xeon Phi accellerator

mixed large and small cores: Cell, AMD-Fusion, NVIDIA-Denver
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“Classic” Intel multi-core CPU Architectures

4-8+ cores, 1 shared L3-cache (nehalem, sandybridge, haswell, skylake, . . . )
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Numa SMP Multi-socket Multi-core Systems

Symmetric Multi-processor Architecture (SMP)

Non Uniform Memory Architecture (NUMA)

S F. Schifano (Univ. and INFN of Ferrara) Parallel Approaches To LBM October 10, 2016 12 / 73



Many-core Accelerators: Is this really a new concept ?
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Accelerators: today they look like much better !

A common configuration is:
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Accelerators as Sausage Machines
A processor is like a sausage machine:

. . . no input-meat . . . no output-sausage !!

. . . it produces results if you provide enough input-data !!
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Performance Evaluation: Amdhal’s Law

How much can I accelerate my application ?

Amdahl’s Law approximately states:

Suppose a car is traveling between two cities 60 miles apart, and
has already spent one hour traveling half the distance at 30 mph.
No matter how fast you drive the last half: it is impossible to achieve
90 mph average before reaching the second city.
Since it has already taken you 1 hour and you only have a distance
of 60 miles total; going infinitely fast you would only achieve 60
mph.
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Accelerator and the Amdahl’s Law

Amdahl’s Law
The speedup of an accelerated program is limited by the time needed for the
host fraction of the program.
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Accelerator Issues: the Amdahl’s law
Let assume that:

a computation has a execution time:

Ts = tA + tB, tA = P · Ts, tB = (1 − P) · Ts

execution time of portion A can be improved by a factor N using an
accelerated version of the code

execution time of portion B is run on the host and remain un-parallelized.

Under this assumptions the execution time of the new code is

Tp = tA/N + tB = (P · Ts)/N + (1 − P) · Ts

Then the speedup (a measure of how fast is the new code) is:

S(n) = Ts/Tp = Ts
((P·Ts)/N+(1−P)·Ts)

= 1
( P

N +(1−P))

where P is the fraction of code accelerated, and N is the improving factor.
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Accelerator Issues: the Amdahl’s law
Plotting the speed-up as function of N:

even if I improve the 3/4 of my code by large values of N the maximum
speedup I can achieve is limited to 4 !!!

S F. Schifano (Univ. and INFN of Ferrara) Parallel Approaches To LBM October 10, 2016 19 / 73



Accelerator Issues: Host-Device Latency

. . . bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed
and we can’t bribe Nature.

Anonymous

Moving data between Host and GPU is limited by bandwidth and latency:

T (n) = l + n/B

accelerator processor clock period is O(1)ns

PciE latency is O(1)µs
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Let’s look on GPUs: GPU evolution

GPUs evolve much faster in terms of raw-computing power

Fast-growing video-game market forces innovation
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GPUs vs CPUs architecture

GPUs specialized for highly data-parallel and intensive computation
(exactly what rendering is about)

more transistors devoted to data-processing rather than
data caching and flow-control
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GPU Programming Issues

host-to-device latency:
Amdhal’s law

memory access latency:
O(103) processor cycles, run many threads to hide memory-latency

high-data parallelism:
many threads-per-block and many blocks-per-grid
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Where we are going ?

. . . towards a convergence between CPU and GPU architectures
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First attempt to merge GPU and CPU concepts:
MIC architectures
MIC: Many Integrated Core Architecture

Knights Ferry: development board

Knights Corners: production board

Intel Xeon-Phi: commercial board

Knights Landing: latest development
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Intel MIC Systems: Knights Corners

Yet another accelerator board

PCIe interface

Knights Corners: 61 x86 core @ 1.2 GHz

each core has 32KB L1 instruction cache,
32KB L1 data cache, and 256KB L2 cache

512-bit SIMD unit: 16 SP, 8 DP

multithreading: 4 threads / core

8 MB L3 shared coherent cache

4-6 GB GDDR5
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MIC Architectures

cores based on Pentium architecures
≈ 60 cores
in-order architecture
wide SIMD instructions
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Core Architectures

Scalar pipeline derived from the dual-issue
Pentium processor

Fully coherent cache structure

4 execution threads per core

Separate register sets per thread

Fast access to its 256KB local subset of a
coherent L2 cache.

32KB instruction-cache and 32KB data-cache
per core

3-operand, 16-wide vector processing unit (VPU)

VPU executes integer, single-precision float, and
double precision

1024 bits wide, bi-directional (512 bits in each
direction)

S F. Schifano (Univ. and INFN of Ferrara) Parallel Approaches To LBM October 10, 2016 28 / 73



MIC Programming Issues

core parallelism:
� keep all 60 cores (1 reserver for OS) busy
� runs 2-3 (up-to) 4 threads/core is necessary to hide memory

latency

vector parallelism:
� enable data-parallelism
� enable use of 512-bit vector instructions

Amdhal’s law:
� transfer time between host and MIC-board not negligible
� hide transfer time overlapping computation and processing
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Case Study

Lattice Boltzmann application

“classic” multi-core: Sandybridge

GP-GPU

Xeon-Phi
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Lattice Boltzmann Methods
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The D2Q37 Lattice Boltzmann Model
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann

equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations

1chemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.
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Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation to exploit a large fraction of available peak
performance.
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D2Q37: propagation scheme

require to access neighbours cells at distance 1,2, and 3,

generate memory-accesses with sparse addressing patterns.
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D2Q37: boundary-conditions

we simulate a 2D lattice with
period-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

� to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

� e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.
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D2Q37 collision

collision is computed at each lattice-cell

computational intensive: for the D2Q37 model requires > 7600 DP
operations

completely local: arithmetic operations require only the populations
associate to the site
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D2Q37: version 1 and 2

We have developed two versions of the code:

Version 1:
� computes propagation and collision in two separate steps;

� is used if reactive dynamics is enable

� requires computing of the divergence of the velocity field between
the two steps; to do so, we need a further step in which data is
gathered from memory.

Version 2:
� merges computation of propagation and collision in just one single

step;

� saves to access memory twice and improves performances.
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Implementation on multi-core CPUs
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Implementation on Multicore CPUs
Sandybridge architecture

N. sockets 2
CPU family Xeon E5-2680
frequency 2.7 GHz
cores/socket 8
L3-cache/socket 20 MB
Peak Perf. DP 345.6 GFlops
Peak Memory Bw 85.3 GBytes

Advanced Vector Extensions (256-bit)

Symmetric Multi-Processor (SMP) system:
� programming view: single processor with 16-32 cores
� memory address space shared among cores

Non Uniform Memory Access (NUMA) system:
memory access time depends on relative position of thread and data allocation.

Texe ≥ max
�

W
F

,
I
B

�
= max

�
7666
345.2

,
592

85.312

�
ns = max(22.2, 6.94) ns
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Relevant Optimization
Applications approach peak performance if hardware features are exploited
by the code:

core parallelism: all cores has to work in parallel, e.g. running different
functions or working on different data-sets (MIMD/multi-task or SPMD
parallelism);

vector programming: each core has to process data-set using vector
(streaming) instructions (SIMD parallelism);

cache data reuse: data loaded into cache has to be reused as long as
possible to save memory access;

NUMA control: time to access memory depends on the relative
allocation of data and threads.
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Memory layout for LB: Array of Structure

typedef struct {
double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice2D [SIZEX*SIZEY ] ;

AoS exploits cache-locality of populations: relevant for computing
collision and suitable for CPUs.

Two copies of the lattice are kept in memory: each step read from prv

and write onto nxt.
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Code Optimizations

core parallelism:

� lattice split over the cores

� pthreads library to handle parallelism

� NUMA library to control allocations of data and threads

instruction parallelism:

� exploiting vector instructions (AVX)

� process 4 lattice-sites in parallel
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Core Parallelism

Standard POSIX Linux pthread library is used to manage parallelism:

for ( step = 0; step < MAXSTEP ; step++ ) {

if ( tid == 0 | | tid == 1 ) {
comm ( ) ; / / exchange borders
propagate ( ) ; / / apply propagate to l e f t− and r i g h t−border

} else {
propagate ( ) ; / / apply propagate to the inne r pa r t

}

pthread_barrier_wait ( . . . ) ;

if ( tid == 0 )
bc ( ) ; / / apply bc ( ) to the three upper row−c e l l s

if ( tid == 1 )
bc ( ) ; / / apply bc ( ) to the three lower row−c e l l s

pthread_barrier_wait ( . . . ) ;

collide ( ) ; / / compute c o l l i d e ( )

pthread_barrier_wait ( . . ) ;
}
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Vector Programming

Components of 4 cells are combined/packed in a AVX vector of 4-doubles

GCC and ICC vectorization by

enabling auto-vectorization flags,
e.g. -mAVX, -mavx

using the _mm256 vector type and
intrinsics functions
(_mm256_add_pd(), . . . )

using the vector_size attribute
(only GCC)

typedef double fourD __attribute__ ( (vector_size (4 *sizeof (double ) ) ) ) ;

typedef struct {
fourD p1 ; / / popu la t ion 1
fourD p2 ; / / popu la t ion 2
. . .
fourD p37 ; / / popu la t ion 37

} v_pop_type ;
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Collide Performance

GCC no-autovec: 18% of peak

GCC autovec: 31% of peak

GCC intrinsics: 62% of peak
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Propagate Performance

memcopy: 80% of peak

GCC autovec: 22% of peak

GCC intrinsics: 40% of peak
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Optimization of Propagate

cache data-reuse: reordering of populations allows a better CACHE-reuse and improves
performances of propagate;

NUMA control: using the NUMA library to control data and thread allocation avoids
overheads in accessing memory;

cache blocking: load the cache with a small data-subset and work on it as long as
possible;

non-temporal instructions: store data directly to memory without request of
read-for-ownership, and save time.
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Optimization of Propagate

Sandybridge Execution Time (ms)
Lx × Ly Size (GB) Base +NUMA Ctrl +New-Labelling +Cache-Blocking +NT
256 × 8000 0.56 116.08 47.84 36.22 27.54 20.86
256 × 16000 1.13 234.44 95.90 72.14 55.16 41.62
256 × 32000 2.26 414.32 190.95 143.13 110.34 82.97
480 × 8000 1.06 215.92 89.83 67.76 51.42 39.04
480 × 16000 2.12 338.96 178.34 134.77 103.18 77.99
480 × 32000 4.23 711.62 356.87 269.64 205.28 156.23
1680 × 16000 7.41 1376.55 625.31 472.54 372.34 279.16

Sandybridge Bandwidth (GB/s))
Lx × Ly Size (GB) Base +NUMA Ctrl +New-Labelling +Cache-Blocking +NT
256 × 8000 0.56 10.44 25.34 33.48 44.16 58.31
256 × 16000 1.13 10.34 25.29 33.61 44.02 58.35
256 × 32000 2.26 11.71 25.40 33.88 43.99 58.49
480 × 8000 1.06 10.53 25.31 33.55 44.34 58.40
480 × 16000 2.12 13.41 25.49 33.73 44.13 58.38
480 × 32000 4.23 12.78 25.48 33.72 44.33 58.25
1680 × 16000 7.41 11.56 25.45 33.68 43.83 58.46
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Optimization of Propagate

version including all optimizations performs at ≈ 58 GB/s, ≈ 67% of peak and
very close to memory-copy (68.5 GB/s).
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Full Code Performance Version 1
Lattice size: ≈ 250 × 16000 cells

NVIDIA C2050 2-WS 2-SB
propagate 29.11 ms 140.00 ms 42.12 ms
collide 154.10 ms 360.00 ms 146.00 ms
propagate 84 GB/s 17.5 GB/s 60 GB/s
collide 205.4 GF/s 88 GF/s 220 GF/s
T /site 44 ns 130 ns 46 ns
MLUps 22 7.7 21.7
P 172 GF/s 60 GF/s 166 GF/s
Rmax 33% 38% 48%

ξ (collide) – 1.19 1.27

NVIDIA Tesla C2050, ≈ 500 GF DP, ≈ 144 GB/s peak (PARCFD’11)

2-WS: Intel dual 6-core (Westmere), ≈ 160 GF DP, ≈ 60 GB/s peak (ICCS’11)

2-SB: Intel dual 8-core (Sandybridge), ≈ 345 GF DP, ≈ 85.3 GB/s peak

ξ =
P

Nc × v × f
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Full Code Performance Version 2
Execution of propagate and collide performed in a single step.

Lattice size: ≈ 250 × 16000 cells.

NVIDIA C2050 2-WS 2-SB
propagateCollide 167.2 ms 410.0 ms 144.0 ms
propagateCollide 190 GF/s 77 GF/s 224 GF/s
T /site 40 ns 110 ns 35 ns
MLUps 25 9.3 28.2
P 188 GF/s 72 GF/s 216 GF/s
Rmax 36% 45% 62%

ξ (propColl) – 1.05 1.29

NVIDIA Tesla C2050, ≈ 500 GF DP, ≈ 144 GB/s peak (PARCFD’11)

2-WS: Intel dual 6-core (Westmere), ≈ 160 GF DP, ≈ 60 GB/s peak (ICCS’11)

2-SB: Intel dual 8-core (Sandybridge), ≈ 345 GF DP, ≈ 85.3 GB/s peak

Difference of ξ might be accounted to different speed of memory-controllers.
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Results

LBM code on CPUs supporting the new AVX instructions carefully exploiting:

core parallelism

vector/streaming parallelism

cache blocking, cache data-reuse and not-temporal instruction

Results:

AVX version improves performances of collide and propagate by a
factor ≈ 2X w.r.t. the SSE

efficiency is high: 45%− 62% for the dual-socket
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Code and Performance Portability
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Code and Performance Portability

Beside multi-core CPUs, use of accelerator based systems is today a
common option for HPC: Intel Xeon-Phi and AMD and NVIDIA GPUs.

different programming languages and frameworks: C, CUDA, OpenCL,
OpenMP, OpenACC, . . .

specific code-tuning and optimization
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Multi- and Many-core Processors

Xeon E5-2630 v3 Xeon-Phi 7120P Tesla K40
#physical-cores 8 61 15 SMX
#logical-cores 16 244 2880
clock (GHz) 2.4 1.238 0.745
GFLOPS (DP/SP) 307/614 1208/2416 1430/4290
SIMD AVX2 256-bit AVX2 512-bit N/A
cache (MB) 20 30.5 1.68
#Mem. Channels 4 16 –
Max Memory (GB) 768 16 12
Mem BW (GB/s) 59 352 288
ECC YES YES YES

1 Tflops DP in one device ✔

nothing is for free ✘

� manage high number of threads and several levels of parallelism
� hide latency host-device (Amdhal law)
� rewrite of code
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AoS vs SoA Memory Layout

#define N (LX*LY)
typedef struct {
double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice [N ] ;

#define N (LX*LY)
typedef struct {

double p1 [N ] ; / / popu la t ion 1
double p2 [N ] ; / / popu la t ion 2
. . .
double p37 [N ] ; / / popu la t ion 37

} pop_t ;

pop_t lattice ;

data arrangement layouts: AoS (upper), SoA (lower);

C-struct data types: AoS (left), SoA (right).
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AoS vs SoA Memory Layout

E.g.: on NVIDIA K40 GPU:

propagate ≈ 10X faster

collide ≈ 2X faster
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Intrinsics programming is not portable
Intrinsincs: special functions mapped onto assembly instructions

Populations of 8 lattice-cells are packed in a AVX vector of 8-doubles

struct {
__m512d vp0 ;
__m512d vp1 ;
__m512d vp2 ;
. . .
__m512d vp36 ;

} vpop_t ;

vpop_t lattice [LX ] [ LY ] ;

Intrinsics
d = a × b + c =⇒ d = _m512_fmadd_pd(a,b,c)
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Vector programming throuhg directives
Directives: tell the compiler how to vectorize the code:

typedef struct {
double *p [NPOP ] ;

} pop_soa_t ;

/ / sn ippe t o f propagate code to move popu la t ion index 0
for ( xx = XMIN ; xx < stopx ; xx++ ) {

#pragma vec to r nontemporal
for ( yy = YMIN ; yy < YMAX ; yy++ ) {

idx = IDX (xx ,yy ) ;
(nxt−>p [ 0 ] ) [ idx ] = (prv−>p [ 0 ] ) [ idx+OXM3YP1 ] ;

}
}

snippet of sample code for propagate, moving population f0
OXM3YP1: memory address offset associated to the population hop;

pragma vector: yy loop can be vectorized: 2 or more iterations can
be executed in parallel using SIMD instructions;

nontemporal: store can by-pass read-for-ownership (RFO).
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Implementation: using SoA on all architectures

On cache-based processors (Xeon-Phi e x86-CPUs), using SoA
data-layout scheme code for collide is correclty vectorized but
performance are low

investigating this on Xeon-Phi with the Intel profiler we found out that:

Metric Measured Threshold
L1 TLB Miss Ratio 4.30% 1.0%
L2 TLB Miss Ratio 3.00% 0.1%

many TLB misses in executing the collide kernel are caused by several
strided memory accesses to load all data populations.
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Implementation: CAoSoA
Clustered Array of Structure of Array:

allows vectorization of inner structures (clusters) of size VL,

improves locality of populations keeping them closer in memory

typedef struct { double c [VL ] ; } vdata_t ; / / c l u s t e r type d e f i n i t i o n
typedef struct { vdata_t p [NPOP ] ; } caosoa_t ; / / CAoSoA type d e f i n i t i o n
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Implementation: CAoSoA

typedef struct { double c [VL ] ; } vdata_t ; / / c l u s t e r type d e f i n i t i o n
typedef struct { vdata_t p [NPOP ] ; } caosoa_t ; / / CAoSoA type d e f i n i t i o n

/ / sn ippe t o f propagate code to move popu la t ion index 0
for ( xx = startx ; xx < stopx ; xx++ ) {
for ( yy = 0; yy < SIZEYOVL ; yy++ , idx++ ) {

idx = IDX (xx ,yy ) ;
#pragma vec to r a l igned nontemporal

for (tt = 0; tt < VL ; tt++) {
nxt [idx ] . p [ 0 ] . c [tt ] = prv [idx+OPOVL0 ] . p [ 0 ] . c [tt ] ;

}
}

}

/ / sn ippe t o f pa r t o f c o l l i d e code to compute dens i t y rho
vdata_t rho ;

for (ii =0; ii < NPOP ; ii++)
#pragma vec to r a l igned
for (tt=0; tt < VL ; tt++)

rho .c [tt ] = rho .c [tt ] + prv [idx ] . p [ii ] . c [tt ] ;
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Results on MIC (2160 × 8192)

using the CAoSoA scheme TLB misses have been significantly reduced:

Metric Measured Threshold

L1 TLB Miss Ratio 0.06% 1.0%
L2 TLB Miss Ratio 0.00% 0.1%

performace increases with number of threads

AoS SoA CAoSoA

propagate [GB/s] 62 123 123
collide [MLUPS] 26 37 52
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Results on CPU (2160 × 8192)

performance increases with number of threads

improvements using the CAoSoA are smaller w.r.t. Xeon-Phi

AoS SoA CAoSoA

propagate [GB/s] 26 42 41
collide [MLUPS] 14 19 22
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Results on several architectures (2160 × 8192)

Data Structure Haswell Xeon Phi Tesla K80 AMD Hawaii

propagate [GB/s]

AoS 25.67 54.00 32.13 16.14
SoA 12.37 46.76 290.98 183.78
CSoA 42.41 134.30 327.35 232.78
CAoSoA 36.63 117.70 317.43 209.51

collide [MLUPS]

AoS 14.36 28.04 23.07 7.80
SoA 10.98 9.96 103.48 17.38
CSoA 18.53 39.76 107.24 39.15
CAoSoA 21.79 54.45 106.59 44.02

OpenMP on Intel and OpenACC on GPUs and AMD

CSoA is like SoA but alignement is enforced.
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Energy issues

S F. Schifano (Univ. and INFN of Ferrara) Parallel Approaches To LBM October 10, 2016 66 / 73



Energy efficiency: Propagate
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Energy efficiency: Collide
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Energy efficiency
Running on 16 GPUs (8 x NVIDIA K80 Dual GPU boards) system:
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Energy efficiency

Taking into account the Italian average energy cost of 0.17C/kWh, the
savings amount to ≈ 300C/year for each computing node.

Node No. 32 128 1024

kC/year 9.5 38.1 305

Potential saving in kC/year of electricity bill for clusters of different sizes, not
taking into account the savings related to the energy dissipated by the cooling
system.
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Simulation of the Rayleigh-Taylor (RT) Instability

Instability at the interface of two different-density fluids triggered by gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).
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Conclusions
Multi-core architectures have a big inpact on programming.

Efficient programming requires to exploit all features of hardware
systems: core parallelism, data parallelism, cache optimizations, NUMA
(Non Uniform Memory Architecture) system

Accelerators are not a panacea:

� good for desktop-applications
� hard to scale on large clusters

data structure have a big impact on performance

portability of code and performance is necessary

energy efficiency is a big issue

coming back to the one million dollar question . . .
so . . . which is the best computing system to use ?
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