
Problem solving at realistic
complexities using the deal.II library.

Luca Heltai
luca.heltai@sissa.it

…with many contributors around the world…
 

ICTP - 12 October 2016

mailto:luca.heltai@sissa.it

ICTP12.10.2016

Computational Science and Engineering

A big part of it boils down to…

Software

Yet,	we	never	talk	about	it!	
! In our students' education
! In our papers
! In our professional interactions

ICTP12.10.2016

A talk about Software:

How	to	write	computational	software 
for	“real	problems”?

...considering differences to “model problems” in:
! size
! complexity
! the way we develop it
! the way we teach it

In	this	talk:	
• Some	of	our	objectives	(with	examples)	
• Our	experience	(with	statistical	data)	
• Conclusions

Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

 
May involve tens of thousands of pieces, very labor
intensive, interface to designers and to manufacturing

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning (preprocessing)

 
 

 
 
 
 
 
May involve 10s of millions or more of cells; requires lots of
memory; very difficult to parallelize

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning (preprocessing)

 
 

 
 
 
 
 
May involve 10s of millions or more of cells; requires lots of
memory; very difficult to parallelize

Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements, finite
volumes, finite differences, …

 

 
 

Involves some of the biggest computations ever done,
10,000s of processors, millions of CPU hours, wide variety of
algorithms

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

 
 
 

 

Can be done in parallel, main difficulty is the amount of data.

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

 
 
 

 

Goal: Not to plot data, but to provide insight!

Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude, angle of
attack, …)

● To vary physical parameters that may not be known exactly

● To vary parameters of the numerical model (e.g. mesh size)

● To improve match with experiments

A complete example

Goal: Simulating the deformation of a drill

Data produced by Patrik Boettcher:
● Created during a 2-week deal.II course
● Time needed: approximately 50 hours, including learning

deal.II
Geometry and mesh provided by Hannah Ludwig.

A complete example

Goal: Simulating the deformation of a drill

Steps:
(1) Create or obtain a coarse mesh
(2) Identify the model (elasticity) and implement a solver
(3) Obtain material parameters for steel used in the drill
(4) Mark up geometry: Where do which forces act
(5) Identify magnitude of forces
(6) Mark up geometry: Describe boundary approximation
(7) Postprocess for quantities of interest
(8) Visualize
(9) Start over: Optimization of drill and validation

A complete example

Step 1: Create or obtain a coarse mesh

Here: 
Mesh was obtained courtesy of 
Hannah Ludwig, 
University of Dortmund

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 2: Identify the model

Here:
● Linear, small deformation elasticity model 3d:  
 
 
 

● Justified because displacements will be <0.3mm on domain
sizes of >20mm

Project by Patrik Boettcher, 
University of Heidelberg, 2012

− ∇ (λ ∇ ⋅u)− 2∇ ⋅(με(u)) = f in Ω
 u = gD o n ΓD
n⋅(λ(∇ ⋅u) I+2με(u)) = gN o n ΓN

A complete example

Step 2: Implement an elasticity solver

Here: 
Use step-8 in 3d.

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 3: Identify material parameters

Here: 
Find the elasticity parameter of the 
appropriate steel kind for drills. 
 
Choose: High-speed steel  
HS-30 with

Project by Patrik Boettcher, 
University of Heidelberg, 2012

λ = 207,000 N
mm2

μ = 82,800 N
mm2

A complete example

Step 4: Mark up geometry – where does which force act?

Here:
● Clamped

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 4: Mark up geometry – where does which force act?

Here:
● Clamped
● Cutting edge

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 5: Identify appropriate magnitude of forces

Here:
Choose forces so that the 
total torque does not exceed  
the level to which Patrik's 
household drill is  
rated, i.e., 25 Nm.

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 6: Mark up boundaries for geometry description

Here:
Without appropriate 
boundary description

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 6: Mark up boundaries for geometry description

Here:
With appropriate 
boundary description  
for outer boundary 
(no description 
for the inner 
ones was 
available)

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 7: Identify goals of simulation and set up postprocessing
needs

Here:
The goal is to determine 
the torsion angle of 
the drill from the 
displacement  
vector.

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 8: Visualize

Here:
Mesh

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 8: Visualize

Here:
Magnitude 
of 
displacement  
(in mm)

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 8: Visualize

Here:
Torsion 
angle 
(in degrees)

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 8: Visualize

Here:
Disp-  
lacement
(in mm)

Project by Patrik Boettcher, 
University of Heidelberg, 2012

A complete example

Step 9: Repeat to optimize and validate

Project by Patrik Boettcher, 
University of Heidelberg, 2012

Workflow for HPC in PDEs

Each of these steps...
● Identify geometry and details of the model
● Preprocess: Mesh generation
● Solve problem with FEM/FVM/FDM
● Postprocess: Visualize
● Repeat
...needs software that requires:
● domain knowledge
● knowledge of the math. description of the problem
● knowledge of algorithm design
● knowledge of software design and management

ICTP12.10.2016

A Much More Complex Example from Wolfgang Bangerth

Goal: Simulate convection in Earth's mantle and elsewhere. 

The tool of choice:

ASPECT
Advanced Solver for Problems  

in Earth's ConvecTion

http://aspect.dealii.org/

http://aspect.dealii.org/

ICTP12.10.2016

Goal: Simulate convection in Earth's mantle and elsewhere. 

Questions:

! What drives plate motion?

! What is the thermal history of the earth?

! Do hot spots exist and how do they relate to global convection?

! Interaction with the atmosphere?

! When does mantle convection exist?

! What does that mean for other planets?

A Much More Complex Example from Wolfgang Bangerth

ICTP12.10.2016

ASPECT - Challenges I

For convection in the earth mantle:

! Depth: ~35 – 2890 km

! Volume: ~1012 km3

! Resolution required: <10 km

! Uniform mesh: ~109 cells

! Using Taylor-Hood (Q2/Q1) elements: ~3•1010 unknowns

! At 105–106 DoFs/processor: 30k-300k cores!

ICTP12.10.2016

ASPECT - Challenges II

Thermal convection is described by the relatively “simple”
Boussinesq approximation:

 

 
..this is not dissimilar from a typical “model problem”…

ICTP12.10.2016

ASPECT - Challenges II

However, in reality:

! All coefficients depend nonlinearly on 
 – pressure  
 – temperature  
 – strain rate  
 – chemical composition

! Dependence is not continuous
! Viscosity varies by at least 1010

! Material is compressible
! Geometry depends on solution 
 

ICTP12.10.2016

ASPECT - Challenges III

People want to change things:
! Geometries: 

– global 
– regional 
– model problems

ICTP12.10.2016

ASPECT - Challenges III

People want to change things:
! Geometries: 

– global 
– regional 
– model problems

! Material models: 
– isoviscous vs realistic 
– compressible vs incompressible

! Boundary conditions
! Initial conditions
! Add tracers or compositional fields
! … …  

! What happens to the solution: postprocessing

ICTP12.10.2016

General Considerations About Research Software

We need to think about the whole application:
! Adaptive meshes
! Nonlinear loops
! Efficient preconditioners
! Scalability to 10,000s of cores
! Where we can cut corners to make things faster

If the code is for the community:
! Extensibility
! Ease of use
! Documentation
! Needs to fit into the community workflow

ICTP12.10.2016

Main QUESTION…

How	to	write	such	a	Software?

Rough	estimate:	
From	scratch,	about	200.000	lines	of	code

Will	it	be	good?	Well	documented?

•Realistically:	20.000	lines	of	code	per	
year/per	person	

•About	10	Years	of	a	man’s	Work

ICTP12.10.2016

The Bitter Reality - I

Research software today:

! Typically written by graduate students 
– without a good overview of existing software 
– with little software experience 
– with little incentive to write high quality code

! Often maintained by postdocs 
– with little time  
– need to consider software a tool to write papers

! Advised by faculty 
– with no time  
– oftentimes also with little software experience

ICTP12.10.2016

The Bitter Reality - II

Most	research	software	is	not	of		
High	Quality	

There	is	a	complexity	limit	to	what 
we	can	get	out	of	a	PhD	student

Most	research	software	is	never	
actually	released	as	OpenSource

ICTP12.10.2016

Can we be inspired by Existing OpenSource Solutions?

! Creating software is both an art and a science

! We could learn from the answers! 

! Use what others have already done (and use for free!): 
– Linear algebra packages like PETSc, Trilinos 
– Finite element packages like libMesh, FEniCS, deal.II 
– Optimization packages like COIN, CPLEX, SNOPT, … 

! On this, build only what is application specific
! Use sound software design principles

What	makes	existing	software	successful?	
(Best	practices?	Lessons	learned?)

ICTP12.10.2016

An Question of Efficiency…

!""#$%%&&&'()*+,,'-./% 0001-+2/*3/04*3/)."!

! "#

6"#$%#&'($)*%+,-.

!"#$"%&&'#$%"')*+%,

!!!!1#$%!''!()!*'+,-#./ ! 1.+#%!?-#!#-(-)(45!-'/)67,#

%.%&)*#/,!.9#,#!(-!)9#!:,'--+'%#,!='(4)8

ICTP12.10.2016

!""#$%%&&&'()*+,,'-./% 0001-+2/*3/04*3/)."!

! "#

6"#$%#&'($)*%+,-.

!"#$"%&&'#$%"')*+%/')-%'"%./'0*1)2"%3

!!!!1#$%!''!()!*'+,-#./ ! 1.+#%!?-#!#-(-)(45!-'/)67,#

-5&"%"3!8,'--+'%#,!(-!7/)#,!@<A!6##>-=!@!AB'!)7>#-!B<A!*#7,-

An Question of Efficiency…

ICTP12.10.2016

…and an Ethical Question!

Would	your	math	paper	be	accept,	if	you	stated	
a	theorem,	and	provided	a	graph	showing	that	

things	work	in	one	particular	case?	
(Provided	you	are	not	Fermat?)

Most	computational	papers	do	not	provide	a	
way	to	reproduce	their	results…

ICTP12.10.2016

This is deeper than it looks…

How	does	this	affect	our	field? 

•Reproducibility?	 
(rare)		

•Archival?	 
(very	rare)	

•“Standing	on	the	shoulders	of	giants”?	 
(extremely	rare)

ICTP12.10.2016

A successful example

A library for finite element computations that supports a
large variety of PDE applications tailored to non-experts. 

Our playground today:

The	deal.II	Library

ICTP12.10.2016

deal.II

Why choose deal.II?
! It supports complex computations in many fields
! It is general (not area-specific)
! It has fully adaptive, dynamically changing 3d meshes
! It scales to 10,000s of processors
! It is efficient on today's multicore machines

Fundamental	premise: 
Provide building blocks that can be used in many 

different ways, not a rigid framework.

ICTP12.10.2016

Applications using deal.II

Examples of what can be done with deal.II:

! Biomedical imaging
! Brain biomechanics
! E-M brain stimulation 

! Microfluidics
! Oil reservoir flow
! Fuel cells
! Transonic aerodynamics
! Foam modeling
! Fluid-structure interactions
! Atmospheric sciences 

! Quantum mechanics
! Neutron transport
! Nuclear reactor modeling 

! Numerical methods research

! Fracture mechanics
! Damage models
! Solidification of alloys
! Laser hardening of steel
! Glacier mechanics
! Plasticity
! Contact/lubrication models 

! Electronic structure
! Photonic crystals 

! Financial modeling 

! Chemically reactive flow
! Flow in the Earth mantle

! Many others…

ICTP12.10.2016

How do we measure success in academia?

What	drives	people	towards	deal.II?

Publications per year citing deal.II (Total as of today: 857)

ICTP12.10.2016

What makes it successful?

General observations: 

In particular, what really counts is:
! Utility and quality
! Documentation
! Community

All of the big libraries provide this for their users.

Success or failure of scientific software projects 
is not decided on technical merit alone.

The true factors are beyond the code… 
It is not enough to be a good programmer

ICTP12.10.2016

Utility and Quality in deal.II
! Lots of error checking in the code (with meaningful error messages!)  

Two versions of the library, one with debug code enabled (range checking, internal
condition checking, etc.) 30-50 times slower than release version.

! Extensive test-suite  
8000+ tests are run at each merge to master, with several different configurations.
New releases of the library are issued only if no tests fail.

! Code that goes in the the library is always peer reviewed 
12 people have write access (and they act as code-reviewers). Everybody can
make a “pull request”. Nobody merge their own pull request.

ICTP12.10.2016

4 main developers - 8 developers (LH) - 77 contributors

An average of ~40 (peer reviewed and tested)
commits per week, ~3 pull requests per day

ICTP12.10.2016

“Oligarchic” Git Merge Strategy

i)	every	set	of	changes	is	rebased	on	master,	ii)	a	pull	request	is	opened	(on	average	3	PR	per	day),	iii)	
other	developers	make	a	peer	review	on	the	proposed	changes	(using	github	facilities),	iv)	all	comments/
critiques	are	addressed,	v)	an	automatic	tester	is	run	on	the	proposed	changes	(Travis	CI),	vi)	the	pull	

request	is	merged	on	master,	and	the	full	test-suite	is	run	on	master

ICTP12.10.2016

Community

! Developers Mailing List  
115 members, 617 topics

! Users Mailing List  
733 members, 2007 topics

! Downloads 
500+ downloads per month

! Feedbacks  
About 150 users give us feedbacks periodically

on average 10 emails per day

Time before first response:

ICTP12.10.2016

Survey on 150 users

All	Results	HERE

https://docs.google.com/forms/d/1K2nhtfGuf15Cdw6E4_nbPk82zS9-XNfuRqOjFBWkp7E/viewanalytics

ICTP12.10.2016

Documentation and Education

! Installation instructions/README/FAQs

! Within-function comments
! Function interface documentation
! Class-level documentation
! Module-level documentation
! Worked “tutorial” programs

! Recorded, interactive demonstrations

deal.II has 10,000+ HTML pages. 170,000 lines of code are actually
documentation (~10 man years of work).

There are 68 recorded video lectures on YouTube (Wolfgang Bangerth).

ICTP12.10.2016

Tutorial Programs in deal.II

deal.II comes with ~60 extensively documented tutorial programs:

! From small Laplace solvers (~100s of lines)

! To medium-sized applications (~1000s of lines)

! Intent:

! teach deal.II

! teach advanced numerical methods

! teach software development skills

This is what really drives users to deal.II

ICTP12.10.2016

Step-6:

! Laplace equation, variable coefficient

! Adaptive mesh refinement

! 118 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

Step-40:

! Laplace equation, variable coefficient, 2d or 3d

! Adaptive mesh refinement

! Massively parallel: runs on 16k cores

! 138 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

Step-22:

! Stokes equations, “interesting” boundary conditions, 2d/3d

! Adaptive mesh refinement, advanced solvers

! 206 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

Step-31/32:

! Boussinesq equations, realistic material models, 2d/3d

! Adaptive mesh refinement, advanced solvers, parallel

! 864 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

Step-41:

! Contact problem: Membrane over an obstacle

! Active set/Newton solver

! 177 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

Step-42:

! Elasto-plastic contact problem

! Active set/Newton solver, multigrid, 3d, parallel

! 586 lines of code

Tutorial Programs in deal.II

ICTP12.10.2016

What a student can expect

Because they no longer have to write most of their codes, a
student can achieve in 3 years with deal.II:

! Solve a complex model

! With realistic geometries, unstructured meshes

! Higher order finite elements

! Multigrid-based solver 

! Parallelization

! Output in formats for high-quality graphics 

! Results almost from the beginning: a wide variety of tutorials
allow a gentle start

ICTP12.10.2016

Gallery of Bigger Examples

There are also large applications (not part of deal.II):

! Aspect: Advanced Solver for Problems 
in Earth Convection 
– ~60,000 lines of code 
– Open source: http://aspect.dealii.org/ 

! OpenFCST: A fuel cell simulation package 
– Supported by an industrial consortium 
– Open source: http://www.openfcst.org/ 

! WaveBEM: A nonlinear solver for ship-wave interaction  
– Supported by a mixed consortium (OpenViewSHIP) 
– ~80,000 lines of code 
– Open source: http://github.com/mathLab/WaveBEM 

http://aspect.dealii.org/
http://www.openfcst.org/
http://github.com/mathLab/WaveBEM

ICTP12.10.2016

Aspect Example - I

http://aspect.dealii.org/

http://aspect.dealii.org/

ICTP12.10.2016

Aspect Example - II

http://aspect.dealii.org/

http://aspect.dealii.org/

ICTP12.10.2016

WaveBEM - I

WaveBEM:

Nonlinear solver for ship-wave interaction using potential
flow

(Andrea Mola, Luca Heltai, Nicola Giuliani,

 Antonio DeSimone, SISSA)

ICTP12.10.2016

WaveBEM - II

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4

2
g

z
/ V

2 ∞

x/L

Fr = 0.408
Refined Mesh
Coarse Mesh
Experiments

ICTP12.10.2016

Conclusions - I

What this development model means for us:

! We can solve problems that were previously intractable 

! Methods developers can demonstrate applicability

! Applications scientists can use state of the art methods 

! Our codes become far smaller: 
– less potential for error 
– less need for documentation 
 
– lower hurdle for “reproducible” research (publishing the 
 code along with the paper) 

! More impact/more citations when publishing one's code

ICTP12.10.2016

Conclusions - II

What this development model means for our community:

! Faster progress towards “real” applications

! Leveling the playing field – excellent online resources are there
for all

! Raising the standard in research: 
 
– can't get 2d papers published (easily) any more  
– reviewers can require state-of-the-art solvers 
– allows for easier comparison of methods

ICTP12.10.2016

Conclusions - III

Computational science has spent too much time where everyone
writes their own software. 

By building on existing, well written and well tested, software
packages:

! We build codes much faster

! We build better codes

! We can solve more realistic problems

