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Introduction to Sparse matrices 



Definition of a Sparse Matrix and a Dense Matrix 

A sparse matrix is a matrix in which the number of non-‐zeroes 

entries is O(n) (The average number of non-‐zeroes entries in each 

row is bounded independently from n) 

 

 

 

A dense matrix is a non-‐sparse matrix (The number of non-‐zeroes 

elements is O(n2)) 

 

 



Sparsity and Density 

The sparsity of a matrix is defined as the number of zero-‐valued 

elements divided by the total number of elements (m x n for an m 

x n matrix) 

The density of a matrix is defined as the complementary of the 

sparsity: density = 1  sparsity 

For Sparse matrices the sparsity is density is << 1 

Example: 

m = 8       nnzeros =  12 

n = 8        nzeros = m*n  nnzeros 

sparsity = 64  12 / 64 = 0.8125 

density = 1  0.8125 = 0.1875     

 



Sparsity pattern 



Sparsity pattern 



Jacobian of a PDE 

Matrices are used to store the Jacobian of a PDE. 

The following discretizations generates a sparse matrix 

Finite difference 

Finite volume 

Finite element method (FEM) 

Different discretization can lead to a Dense linear matrix: 

Spectral element method (SEM) 

Fast fourier transform (FFT) 

 

 



Sparsity pattern in Finite Difference 

The sparsity pattern in finite difference depends on the topology 

of the adopted computational grid (e.g. cartesian grid), the 

indexing of the nodes and the type of stencil 
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Sparsity pattern in Finite Element 

The sparsity pattern depends on the topology of the adopted 

computational grid (e.g. unstructured grid), the kind of the finite 

element (e.g. Taylor-‐Hood, Crouzeix-‐Raviart, Raviart-‐Thomas, 

Mini-‐Element indexing of the nodes. 

In Finite-‐Element discretizations, the sparsity of the matrix is a 

direct consequence of the small-‐support property of the finite 

element basis 

Finite Volume can be seen as a special case of Finite Element 



Sparsity pattern in Finite Element 



Sparsity pattern in Spectral Element Method 



 

The use of storage techniques for sparse matrices is fundamental, 

in particular for large-‐scale problems 

Standard dense-‐matrix structures and algorithms are slow and 

ineffcient when applied to large sparse matrices 

There are some available tools to work with Sparse matrices that 

uses specialised algorithms and data structures to take advantage 

of the sparse structure of the matrix 

 

The PETSc toolkit (http://www.mcs.anl.gov/petsc/)  

The TRILINOS project (https://trilinos.org/) 



Sparse Matrix computation with 
PETSc 



PETSc in a nutshell 

Tools for distributed vectors and matrices 

Linear system solvers (sparse/dense, iterative/direct) 

Non linear system solvers 

Serial and parallel computation 

Support for Finite Difference and Finite Elements PDE 

discretizations 

Structured and Unstructured topologies 

Support for debugging, profiling and graphical output 
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PETSc  Portable, Extensible Toolkit for Scientific Computation 
Is a suite of data structures and routines for the scalable (parallel) solution 
of scientific applications mainly modelled by partial differential equations. 



PETSc class hierarchy 
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PETSc numerical components 

18 



External Packages 

 Dense linear algebra: Scalapack, Plapack 

 Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist 

 Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party 

 ODE solvers: PVODE 

 Eigenvalue solvers (including SVD): SLEPc 

 Optimization: TAO 



PETSc design concepts 
Goals 

Portability: available on many platforms, basically anything that 
has MPI 

Performance 

Scalable parallelism 

Flexibility: easy switch among different implementations 
Approach 

Object Oriented Delegation Pattern : many specific 
implementations of the same object 

Shared interface (overloading): 
                      MATMult(A,x,y); // y <-‐ A x 
                      same code for sequential, parallel, dense, sparse 

Command line customization 
Drawback 

Nasty details of the implementation hidden 
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PETSc and Parallelism 
All objects in PETSc are defined on a communicator; they can only 

interact if on the same communicator 

PETSc is layered on top of MPI: you do not need to know much MPI when 

you use PETSc 

Parallelism through MPI (Pure MPI programming model). Limited support 

for use with the hybrid MPI-‐thread model. 

PETSc supports to have individual threads (OpenMP or others) to each manage their own 

(sequential) PETSc objects (and each thread can interact only with its own objects).  

No support for threaded code that made Petsc calls (OpenMP, Pthreads) since PETSc is not 

«thread-‐safe». 

Transparent: same code works sequential and parallel. 

 



Matrices 
What are PETSc matrices? 

Roughly represent linear operators that belong to the dual of 
a vector space over a field (e.g. Rn) 
In most of the PETSc low-‐level implementations, each process 
logically owns a submatrix of contiguous rows 

 
Features 

Supports many storage formats 
AIJ,  BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-‐only) ... 

Data structures for many external packages 
MUMPS (parallel), SuperLU_dist (parallel), SuperLU, 
UMFPack 

Hidden communications in parallel matrix assembly   
Matrix operations are defined from a common interface 
Shell matrices via user defined MatMult and other ops 
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Matrix AIJ format 
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The default matrix representation within PETSc is 
the general sparse AIJ format (Yale sparse 
matrix or Compressed Sparse Row, CSR) 

  
 The nonzero elements are stored by rows 
  Array of corresponding column numbers  
  Array of pointers to the beginning of each row 



Matrix memory preallocation 
PETSc matrix creation is very flexible: No preset sparsity pattern 
Memory preallocation is critical for achieving good performance 
during matrix assembly, as this reduces the number of allocations 
and copies required during the assembling process. Remember: 
malloc is very expensive (run your code with memory_info, -‐
malloc_log) 
Private representations of PETSc sparse matrices are dynamic data 
structures: additional nonzeros can be freely added (if no 
preallocation has been explicitly provided). 
No preset sparsity pattern, any processor can set any element: 
potential for lots of malloc calls 
Dynamically adding many nonzeros  

requires additional memory allocations 
requires copies 
 kills performances! 
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Preallocation of a parallel sparse matrix 

Process 0 

dnz=2,  onz=2  

dnnz[0]=2,  onnz[0]=2  

dnnz[1]=2,  onnz[1]=2  

dnnz[2]=2,  onnz[2]=2  

Process 1 

dnz=3,  onz=2  

dnnz[0]=3,  onnz[0]=2  

dnnz[1]=3,  onnz[1]=1  

dnnz[2]=2,  onnz[2]=1  

Process 2 

dnz=1,  onz=4  

dnnz[0]=1,  onnz[0]=4  

dnnz[1]=1,  onnz[1]=4  25 

P0 
 
 

 
 

P1 
 
 

 
 

P2 

Each process logically owns a matrix subset of contiguously numbered global 
rows. Each subset consists of two sequential matrices corresponding to 
diagonal and off-‐diagonal parts. 



Preallocation of a parallel sparse matrix 

y   A xA + B xB 
 

xB needs to be communicated 
A xA can be computed in the 
meantime 

 
Algorithm 
 

Initiate asynchronous sends/receives 
for xB 
 compute A xA 
make sure xB is in 
compute B xB 

 
The splitting of the matrix storage into 
A (diag) and B (off-‐diag) part, code for 
the 
sequential case can be reused. 
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Numerical Matrix Operations 
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Sparse Matrices and Linear Solvers 

Solve a linear system A x = b using the Gauss Elimination method 

can be very time-‐resource consuming 

 

Alternatives to direct solvers are iterative solvers 

Convergence of the succession is not always guarateed 

Possibly much faster and less memory consuming 

Basic iteration: y <-‐ A x executed once x iteration 

-‐1 
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Iterative solver basics 
KSP (Krylov SPace Methods) objects are used for solving linear 
systems by means of iterative methods. 
Convergence can be improved by using a suitable PC object 
(preconditoner). 
Almost all iterative methods are implemented. 
Classical iterative methods (not belonging to KSP solvers) are 
classified as preconditioners  
Direct solution for parallel square matrices available through 
external solvers (MUMPS, SuperLU_dist). Petsc provides a built-‐in 
LU serial solver. 
Many KSP options can be controlled by command line 
Tolerances, convergence and divergence reason 
Custom monitors and convergence tests 
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Solver Types 
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Preconditioner types 

31 



Factorization preconditioner 
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Exact factorization: A = LU 
L U where L, U obtained by throwing 

-‐
M is the same as A) 
Application of the preconditioner (that is, solve Mx = y) approx same 
cost as matrix-‐vector product y <-‐ A x 
Factorization preconditioners are sequential 
 
PCICC: symmetric matrix, PCILU: nonsymmetric matrix 
 



Parallel preconditioners 
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Factorization preconditioners are sequential  
We can use them in parallel as a subpreconditioner of a parallel 
preconditioner as Block Jacobi or Additive Schwarz methods 
Each processor has its own block(s)  to work with 

   



Block Jacobi and Additive Schwarz 
preconditioners 

34 

Both methods are parallel  
BlockJacobi is fully parallel, Schwarz requires communications 
between neighbours 
Both require sequential local solver 
Schwarz can be more robust than BlockJacobi and have better 
convergence properties 

   



Case Studies: Engineering 
Applications and Domain 

Decomposition in HPC 



Case study: Engineering Applications 
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Case study: Domain Decomposition in HPC 
In the HPC world, the matrices cannot be stored in a single machine 
due to the limitation of the memory installed in a single node  
One solution is to decompose the domain of the equations in many 
subdomains (DD: domain decomposition) 
The initial matrix is decomposed in many blocks, each of them can be 
stored in a different node of the HPC machine 
Many decomposition have been proposed in literature (for a reference see: A. 
Valli, A. Quarteroni, Domain Decomposition Methods for Partial Differential Equations): 

Classical Schwartz algorithm (Dirichlet  Dirichlet DD) 
Block Jacobi preconditioner 
Balancing Domain Decomposition  

     by Constraints (PCBDDC) 
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Thank you for the attention 


