CINECA s CAI

SuperComputing Applications and Innovation

Sparse Matrix Computation with
PETSc

Portable, Extensible Toolkit for Scientific Computation

Simone Bna - s.bn@cineca.it
SuperComputing Applications and Innovation Department

PRACE * S'NES8

CINECA 5 CAI

SuperComputing Applic

Outline

» Introduction to Sparse Matrices
» Sparse Matrix computation with PETSc

» Case studies: Engineering Applications and Domain

Decomposition in HPC

PRACE * 'NECA

CINECA s CAI

SuperComputing Applications and Innovation

Introduction to Sparse matrices

PRACE * S'NES8

CINECA 5 CAI

SuperComputing Applications and Innovation

Definition of a Sparse Matrix and a Dense Matrix

> A sparse matrix is a matrix in which the number of non-zeroes
entries is O(n) (The average number of non-zeroes entries in each

row is bounded independently from n)

/1.0 0 50 0 0 0O 0 0 \

0030 0 0 0 0 110 0

0 0 0 0 90 0 0 0

0 0 60 0 0 0 0 0

0 0 0 70 0 0 0 0
20 0 0 0 0 100 0 0

0 0 0 8 0 0 0 0
\0 40 0 0 0 0 0 120/

» A dense matrix is a non-sparse matrix (The number of non-zeroes

: 2 1.0 34 50 75 23 0 21 85
elements 15 O(n)) (6,5 35 0 54 10 1 0 2.1\

0 28 57 92 1.1 3 0 24
34 54 0 43 34 21 11 4.3
86 58 21 22 31 55 34 23 CINECA
h4 6.7 98 21 34 43 21 35 Fﬂﬂg[

43 34 12 54 02 32 08 1.2
\3.2 0 1.3 45 07 98 03 1.2

CINECA 5 CAI

SuperComputing Applications and Innovation

Sparsity and Density

» The sparsity of a matrix is defined as the number of zero-valued
elements divided by the total number of elements (m x n for an m

X N matrix)

» The density of a matrix is defined as the complementary of the

sparsity: density = 1 - sparsity

» For Sparse matrices the sparsity is = 1 and the density is << 1

Example:
1.0 0 50 0 0 0 0 0
m=38 nnzeros = 12 0 30 0 0 0 0 11.0 0
O 0 0 0 90 0 0 0
— 8 - * 0 0 6.0 0 0 0 0 0
n= nzeros = M*n - nnzeros N T
20 0 0 0 0 100 0 0
sparsity = 64 - 12 / 64 = 0.8125 O 0 0 80 0 0 0 0
0 40 0 0 0O 0 0 120 PRACE CINECA

density = 1 - 0.8125 = 0.1875

CINECA s CAI

SuperComputing Applications and Innovation

Sparsity pattern

» The distribution of non-zero elements of a sparse matrix can be

described by the sparsity pattern, which is defined as the set of

entries of the matrix different from zero. In symbols:

{ (i:j):Aij # 0}

2000

4000

6000}

8000

10000 [

PRACE * 'NECA

12000} , , , o .
0 2000 4000 6000 8000 10000 12000
nz = 250260

CINECA 5 CAI

SuperComputing Applicatiol

Sparsity pattern

>

The sparsity pattern can be represented also as a Graph, where

nodes i and j are connected by an edge if and only if 4;; _ o

In a Sparse Matrix the degree of a vertex in the graph is

<<relatively low>>

Conceptually, sparsity corresponds to a system loosely coupled

.1

2

3

4

5

o F Y [#3] P =
= = = = =

@Q)G)

1
0
1
0
1

1
1
0
0
0

1
0
0
1
0

=] o o o o

PRACE * C'NECA

CINECA 5 CAI

SuperComputing Applications and Innovation

Jacobian of a PDE

> Matrices are used to store the Jacobian of a PDE.

» The following discretizations generates a sparse matrix

> Finite difference
> Finite volume

» Finite element method (FEM)

> Different discretization can lead to a Dense linear matrix:

» Spectral element method (SEM)

» Fast fourier transform (FFT)

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applicatio

Sparsity pattern in Finite Difference

» The sparsity pattern in finite difference depends on the topology
of the adopted computational grid (e.g. cartesian grid), the
indexing of the nodes and the type of stencil

Star stencil Box stencil

BACE + C'NECA

CINECA 5 CAI

SuperComputing Applicatio

Sparsity pattern in Finite Difference

» The sparsity pattern in finite difference depends on the topology
of the adopted computational grid (e.g. cartesian grid), the

indexing of the nodes and the type of stencil

0 I |
7. 8. 9. ° ®]
2+ @ °) ° —
[° °
4+ e ° °) —
4. 5. 6. @ [@ [] []
6) ®) o
e ° °
8 ° ° ° o |
° ® ® ° ° °
1 2 3 | I | ' INECA
100 2 4 6 8 10 A

i SCAl

SuperComputing Applicatio

Sparsity pattern in Finite Element

» The sparsity pattern depends on the topology of the adopted
computational grid (e.g. unstructured grid), the kind of the finite
element (e.g. Taylor-Hood, Crouzeix-Raviart, Raviart-Thomas,

Mini-Element,...) and on the indexing of the nodes.

> In Finite-Element discretizations, the sparsity of the matrix is a
direct consequence of the small-support property of the finite

element basis

» Finite Volume can be seen as a special case of Finite Element

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applic

Sparsity pattern in Finite Element

AIJ f IIJi IIJ]
10 11 12
= 1)
7 8 9 T
4 5 6 8+ @ ® e & @ e ®
1. 12 | | T

1 ECA

CINECA 5 CAI

SuperComputing Applicatiol

Sparsity pattern in Spectral Element Method

=f¢i1/)j

» SEM uses a tensor product space spanned by nodal basis functions

associated with Gauss-Lobatto nodes

» In Spectral Element discretizations, the density of the matrix is a
direct consequence of the support of the spectral element basis

(Orthogonal polynomials: Legendre polynomials, Chebyshev

PRACE * 'NECA

i SCAl

SuperComputing Applicatio

Don’t reinvent the wheel!

» The use of storage techniques for sparse matrices is fundamental,

in particular for large-scale problems

» Standard dense-matrix structures and algorithms are slow and

ineffcient when applied to large sparse matrices

» There are some available tools to work with Sparse matrices that
uses specialised algorithms and data structures to take advantage

of the sparse structure of the matrix

!

» The PETSc toolkit (http://www.mcs.anl.gov/petsc/)

PRACE * C'NECA
» The TRILINOS project (https://trilinos.org/)

CINECA s CAI

SuperComputing Applications and Innovation

Sparse Matrix computation with
PETSc

PRACE * S'NES8

CINECA 5 CAI

SuperComputing Applicatiol

PETSc in a nutshell

PETSc - Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

Tools for distributed vectors and matrices
Linear system solvers (sparse/dense, iterative/direct)
Non linear system solvers

Serial and parallel computation

Vv V. V VY V

Support for Finite Difference and Finite Elements PDE

discretizations

A\

Structured and Unstructured topologies

» Support for debugging, profiling and graphical output 7#4CE CINECA

CINECA 5 CAI

SuperComputing Applications and

PETSc class hierarchy

Level of

Abstraction /

Application Co@
y "'“

A P

ki

SNES

(Nonlinear Equations Solvers)

PC

(Preconditioners)

LY

TS

(Time Stepping)

KSP

(Krylov Subspace Methods)

Matrices

Vectors

Index Sets

BLAS

MPI

riACE

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation

PETSc numerical components

Parallel Numerical Components of PETSc

Nonlinear Solvers
Time Steppers

Newton—based Methods

IMEX Pseudo-Ti
Other General Lingar seudo—ime Runge—Kutf

Line Search | Trust Region Stepping

Krylov Subspace Methods

GMRES CG CGS Bi—-CG-Stab TFOQME Richardson Chebychev Other
Preconditioners
Additive Block LU
. H | .
Schwarz Jacobi Jacobi ILU ICC (sequential only) Other
Matrices
Compressed Block Compressed Symmetric
Sparse Row Sparse Row Blgck Compressed Rqw Dense Other
(ALD (BALI) (SBALI)

Index Sets

Vectors
Indices Block Indices Stride Other

/3 CINECA

CINECA 5 CAI

SuperComputing Applications and

External Packages

Dense linear algebra: Scalapack, Plapack

Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist
Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party
ODE solvers: PVODE

Eigenvalue solvers (including SVD): SLEPc

vV VvV VvV Vv VYV VY

Optimization: TAO

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applications and

PETSc deSIgn concepts

Goals

» Portability: available on many platforms, basically anything that
has MPI

* Performance
» Scalable parallelism

» Flexibility: easy switch among different implementations
Approach

* Object Oriented Delegation Pattern : many specific
implementations of the same object

» Shared interface (overloading):
MATMult(A,x,y); //y <- AX
same code for sequential, parallel, dense, sparse

« Command line customization
Drawback

» Nasty details of the implementation hidden
PRACE eeeo

= SCAI

SuperComputing Applications and Innovation

PETSc and Parallelism

> All objects in PETSc are defined on a communicator; they can only

interact if on the same communicator

» PETSc is layered on top of MPI: you do not need to know much MPI when
you use PETSc

> Parallelism through MPI (Pure MPI programming model). Limited support
for use with the hybrid MPI-thread model.

» PETSc supports to have individual threads (OpenMP or others) to each manage their own

(sequential) PETSc objects (and each thread can interact only with its own objects).

» No support for threaded code that made Petsc calls (OpenMP, Pthreads) since PETSc is not

«thread-safe».

» Transparent: same code works sequential and parallel.

PRACE * 'NECA

i SCAl

SuperComputing Applicatiol

Matrlces

What are PETSc matrices?

Roughly represent linear operators that belong to the dual of
a vector space over a field (e.g. R")

In most of the PETSc low-level implementations, each process
logically owns a submatrix of contiguous rows

Features
Supports many storage formats
AlJ, BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-only) ...
Data structures for many external packages

MUMPS (parallel), SuperLU_dist (parallel), SuperLU,
UMFPack

Hidden communications in parallel matrix assembly
Matrix operations are defined from a common interface
Shell matrices via user defined MatMult and other ops

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applications and Innovation

Matrix AlJ format

The default matrix representation within PETSc is

—
—

0123456738
. the general sparse AlJ format (Yale sparse
1 matrix or Compressed Sparse Row, CSR)
5
3 » The nonzero elements are stored by rows
1 » Array of corresponding column numbers
0 » Array of pointers to the beginning of each row

index
0 1 7 12 15 19 24
T DNONBABENBERBNE
row pointer

) Pﬂﬂ”[CINECA

23

i SCAl

SuperComputing Applicatiol

Matrlx memory preallocation

« PETSc matrix creation is very flexible: No preset sparsity pattern)

 Memory preallocation is critical for achieving good performance
during matrix assembly, as this reduces the number of allocations
and copies required during the assembling process. Remember:
malloc is very expensive (run your code with -memory_info, -
malloc_log)

* Private representations of PETSc sparse matrices are dynamic data
structures: additional nonzeros can be freely added (if no
preallocation has been explicitly provided).

* No preset sparsity pattern, any processor can set any element:
potential for lots of malloc calls

« Dynamically adding many nonzeros

- requires additional memory allocations
- requires copies
— Kills performances!
PRACE ~ S'NECA

CINECA 5 CAI

SuperComputing Applicatio

Preallocation of a parallel sparse matrix

Each process logically owns a matrix subset of contiguously numbered global
rows. Each subset consists of two sequential matrices corresponding to

diagonal and parts.
(120 0 3 0 [0 4)
POl 0 5 6 | 7 0 0| 8 0
9 0 10 | 11 0 0 | 12 0
o | 13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 2292 0 | 24 0
P2
25 26 27 | 0 0 28 | 29 0
\ 30 0 0 | 31 32 33| 0 34

Process O

dnz=2, onz=2

dnnz [0]
dnnz[1]
dnnz[2]

Process 1

=2, onnz[0]=2
=2, onnz[1l]=2
2

=2, onnz[2]

dnz=3, onz=2

dnnz [0]
dnnz[1]
dnnz[2]

Process 2

=3, onnz[0]
=3, onnz[1]

=2, onnz[2]

2
1
1

dnz=1, *onz=4 C1NECA
dnnz Opq, onnzd

dnnz[1]

=1, “onnz[1]=4

CINECA s CAI

SuperComputing Applications and Innovation

Preallocatlon of a parallel sparse matrix

Off—diagonal block
has off—processor connection

.
- m

Diagonal block has on—processor
connections

y €Ax,+Bxg

* X heeds to be communicated
« Ax, can be computed in the
meantime

Algorithm

« Initiate asynchronous sends/receives
for xg

« compute Ax,

* make sure Xz is in

« compute B x;

The splitting of the matrix storage into
A (diag) and B (off-diag) part, codefor
the PRACE CINECA

sequential case can be reused.,

CINECA 5 CAI

SuperComputing Applications and Innovation

Numerlcal Matrix Operations

Function Name Operation
MatAXPY(Mat Y, PetscScalar a,Mat X,MatStructure); Y =Y +a*x X
MatMult(Mat A, Vec x, Vec y); y=Axzx
MatMultAdd(Mat A,Vec x, Vec y,Vec z); z=y+ Axx
MatMultTranspose(Mat A,Vec x, Vec y); Y = AT % o
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z); z=19y+ AT x x
MatNorm(Mat A,NormType type, double *r); r = || A||type
MatDiagonalScale(Mat A, Vec 1,Vec r); A = diag(l) x A = diag(r)
MatScale(Mat A,PetscScalar a); A=ax A
MatConvert(Mat A,MatType type,Mat *B); B=A
MatCopy(Mat A,Mat B,MatStructure); B=A
MatGetDiagonal(Mat A, Vec X); xr = diag(A)
MatTranspose(Mat A,MatReuse,Mat* B); B=AT
MatZeroEntries(Mat A); A=0
MatShift(Mat Y,PetscScalar a); Y=Y +axl

PRACE * C'NES2

27

CINECA 5 CAI

SuperComputing Applicatio

Sparse Matrices and Linear Solvers

* Solve a linear system A x = b using the Gauss Elimination method

can be very time-resource consuming

« Alternatives to direct solvers are iterative solvers

« Convergence of the succession is not always guarateed
« Possibly much faster and less memory consuming

« Basic iteration: y <- A x executed once x iteration

« Also needed a good preconditioner: B = A"

PRACE * 'NECA

i SCAl

SuperComputing Applicatiol

Iteratlve solver basics

KSP (Krylov SPace Methods) objects are used for solving linear
systems by means of iterative methods.

Convergence can be improved by using a suitable PC object
(preconditoner).

Almost all iterative methods are implemented.

Classical iterative methods (not belonging to KSP solvers) are
classified as preconditioners

Direct solution for parallel square matrices available through
external solvers (MUMPS, SuperLU_dist). Petsc provides a built-in
LU serial solver.

Many KSP options can be controlled by command line
Tolerances, convergence and divergence reason
Custom monitors and convergence tests

PRACE * 'NECA

CINECA s CAI

SuperComputing Applications and Innovation

Solver Types

Options

Database
Method KSPType Name
Richardson KSPRICHARDSON richardson
Chebyshev KSPCHEBYSHEV chebyshev
Conjugate Gradient [|] KSPCG cg
BiConjugate Gradient KSPBICG bicg
Generalized Minimal Residual [16] KSPGMRES cmres
Flexible Generalized Minimal Residual KSPFGMRES femres
Deflated Generalized Minimal Residual KSPDGMRES dgmres
Generalized Conjugate Residual KSPGCR gcr
BiCGSTAB [Y] KSPBCGS begs
Conjugate Gradient Squared [|] KSPCGS cgs
Transpose-Free Quasi-Minimal Residual (1) [©] KSPTFOMER tfgmr
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR teqmr
Conjugate Residual KSPCR cr
Least Squares Method KSPLSQR Isqr
Shell for no KSF method KSPPREONLY preonly

PRACE * S'NES8

30

CINECA s CAI

SuperComputing Applications and Innovation

Preconditioner types

Method PCType Options Database Name
Jacobi PCIACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor

SOR with Eisenstat trick PCEISENSTAT eisenstat
[ncomplete Cholesky PCICC icc
[Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Algebraic Multigrid PCGAMG gamg
Linear solver PCKSP ksp
Combination of preconditioners PCCOMPOSITE composite
LU PCLU lu
Cholesky PCCHOLESKY cholesky
No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

PRACE

31

CINECA

CINECA 5 CAI

SuperComputing Applicatio

Factorlzatlon preconditioner

 Exact factorization: A= LU

« Inexact factorization: A= M = L U where L, U obtained by throwing
away the ‘fill-in’ during the factorization process (sparsity pattern of
M is the same as A)

« Application of the preconditioner (that is, solve Mx = y) approx same
cost as matrix-vector product y <- Ax

» Factorization preconditioners are sequential

« PCICC: symmetric matrix, PCILU: nonsymmetric matrix

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applicatio

Parallel precondltloners

« Factorization preconditioners are sequential

« We can use them in parallel as a subpreconditioner of a parallel
preconditioner as Block Jacobi or Additive Schwarz methods

« Each processor has its own block(s) to work with

PRACE * 'NECA

CINECA 5 CAI

SuperComputing Applicatiol

Block Jacobi and Additive Schwarz
preconditioners

« Both methods are parallel

» BlockJacobi is fully parallel, Schwarz requires communications
between neighbours

« Both require sequential local solver

 Schwarz can be more robust than BlockJacobi and have better
convergence properties

Domain partitioning Matrix blocks

I h PRACE * 'NECA

SuperComputing Applications and Innovation

Case Studies: Engineering
Applications and Domain
Decomposition in HPC

PRACE * S'NES8

CINECA s CAI

SuperComputing Applicatiol

Case study: Engineering Applications

Typical applications of Sparse Matrices are in all engineering
problems where large linear systems generated by Finite
Difference or Finite Volume discretizations have to be solved:

CFD (Navier-Stokes equations — parabolic equations)

¢ Zh@ P+ Vp— vP2utf=0

Heat transfer (Poisson’s equation — elliptic equation)

¢+ kAT =f

CSM (Time dependent Elasticity equations — hyperbolic equations)

0% u
o t*

=V - a(u) + f PRACE CINECA

CINECA 5 CAI

SuperComputing Applicatio

Case study: Domain Decomposition in HPC

* Inthe HPC world, the matrices cannot be stored in a single machine
due to the limitation of the memory installed in a single node
* One solution is to decompose the domain of the equations in many
subdomains (DD: domain decomposition)
» The initial matrix is decomposed in many blocks, each of them can be
stored in a different node of the HPC machine
 Many decomposition have been proposed in literature (for a reference see: A.
Valli, A. Quarteroni, Domain Decomposition Methods for Partial Differential Equations)Z
» Classical Schwartz algorithm (Dirichlet — Dirichlet DD)
 Block Jacobi preconditioner Jeman partonns g
« Balancing Domain Decomposition
by Constraints (PCBDDC)

B

CINECA s CAI

SuperComputing Applications and Innovation

Thank you for the attention

PRACE * S'NES8

