
Sparse Matrix Computation with
PETSc

Portable, Extensible Toolkit for Computation
Simone Bnà s.bn@cineca.it

SuperComputing Applications and Innovation Department

Outline

Introduction to Sparse Matrices

Sparse Matrix computation with PETSc

Case studies: Engineering Applications and Domain

Decomposition in HPC

2

Introduction to Sparse matrices

Definition of a Sparse Matrix and a Dense Matrix

A sparse matrix is a matrix in which the number of non-‐zeroes

entries is O(n) (The average number of non-‐zeroes entries in each

row is bounded independently from n)

A dense matrix is a non-‐sparse matrix (The number of non-‐zeroes

elements is O(n2))

Sparsity and Density

The sparsity of a matrix is defined as the number of zero-‐valued

elements divided by the total number of elements (m x n for an m

x n matrix)

The density of a matrix is defined as the complementary of the

sparsity: density = 1 sparsity

For Sparse matrices the sparsity is density is << 1

Example:

m = 8 nnzeros = 12

n = 8 nzeros = m*n nnzeros

sparsity = 64 12 / 64 = 0.8125

density = 1 0.8125 = 0.1875

Sparsity pattern

Sparsity pattern

Jacobian of a PDE

Matrices are used to store the Jacobian of a PDE.

The following discretizations generates a sparse matrix

Finite difference

Finite volume

Finite element method (FEM)

Different discretization can lead to a Dense linear matrix:

Spectral element method (SEM)

Fast fourier transform (FFT)

Sparsity pattern in Finite Difference

The sparsity pattern in finite difference depends on the topology

of the adopted computational grid (e.g. cartesian grid), the

indexing of the nodes and the type of stencil

Sparsity pattern in Finite Difference

The sparsity pattern in finite difference depends on the topology

of the adopted computational grid (e.g. cartesian grid), the

indexing of the nodes and the type of stencil

Sparsity pattern in Finite Element

The sparsity pattern depends on the topology of the adopted

computational grid (e.g. unstructured grid), the kind of the finite

element (e.g. Taylor-‐Hood, Crouzeix-‐Raviart, Raviart-‐Thomas,

Mini-‐Element indexing of the nodes.

In Finite-‐Element discretizations, the sparsity of the matrix is a

direct consequence of the small-‐support property of the finite

element basis

Finite Volume can be seen as a special case of Finite Element

Sparsity pattern in Finite Element

Sparsity pattern in Spectral Element Method

The use of storage techniques for sparse matrices is fundamental,

in particular for large-‐scale problems

Standard dense-‐matrix structures and algorithms are slow and

ineffcient when applied to large sparse matrices

There are some available tools to work with Sparse matrices that

uses specialised algorithms and data structures to take advantage

of the sparse structure of the matrix

The PETSc toolkit (http://www.mcs.anl.gov/petsc/)

The TRILINOS project (https://trilinos.org/)

Sparse Matrix computation with
PETSc

PETSc in a nutshell

Tools for distributed vectors and matrices

Linear system solvers (sparse/dense, iterative/direct)

Non linear system solvers

Serial and parallel computation

Support for Finite Difference and Finite Elements PDE

discretizations

Structured and Unstructured topologies

Support for debugging, profiling and graphical output

16

PETSc Portable, Extensible Toolkit for Scientific Computation
Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

PETSc class hierarchy

17

PETSc numerical components

18

External Packages

 Dense linear algebra: Scalapack, Plapack

 Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist

 Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party

 ODE solvers: PVODE

 Eigenvalue solvers (including SVD): SLEPc

 Optimization: TAO

PETSc design concepts
Goals

Portability: available on many platforms, basically anything that
has MPI

Performance

Scalable parallelism

Flexibility: easy switch among different implementations
Approach

Object Oriented Delegation Pattern : many specific
implementations of the same object

Shared interface (overloading):
 MATMult(A,x,y); // y <-‐ A x
 same code for sequential, parallel, dense, sparse

Command line customization
Drawback

Nasty details of the implementation hidden

20

PETSc and Parallelism
All objects in PETSc are defined on a communicator; they can only

interact if on the same communicator

PETSc is layered on top of MPI: you do not need to know much MPI when

you use PETSc

Parallelism through MPI (Pure MPI programming model). Limited support

for use with the hybrid MPI-‐thread model.

PETSc supports to have individual threads (OpenMP or others) to each manage their own

(sequential) PETSc objects (and each thread can interact only with its own objects).

No support for threaded code that made Petsc calls (OpenMP, Pthreads) since PETSc is not

«thread-‐safe».

Transparent: same code works sequential and parallel.

Matrices
What are PETSc matrices?

Roughly represent linear operators that belong to the dual of
a vector space over a field (e.g. Rn)
In most of the PETSc low-‐level implementations, each process
logically owns a submatrix of contiguous rows

Features

Supports many storage formats
AIJ, BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-‐only) ...

Data structures for many external packages
MUMPS (parallel), SuperLU_dist (parallel), SuperLU,
UMFPack

Hidden communications in parallel matrix assembly
Matrix operations are defined from a common interface
Shell matrices via user defined MatMult and other ops

22

Matrix AIJ format

23

The default matrix representation within PETSc is
the general sparse AIJ format (Yale sparse
matrix or Compressed Sparse Row, CSR)

 The nonzero elements are stored by rows
 Array of corresponding column numbers
 Array of pointers to the beginning of each row

Matrix memory preallocation
PETSc matrix creation is very flexible: No preset sparsity pattern
Memory preallocation is critical for achieving good performance
during matrix assembly, as this reduces the number of allocations
and copies required during the assembling process. Remember:
malloc is very expensive (run your code with memory_info, -‐
malloc_log)
Private representations of PETSc sparse matrices are dynamic data
structures: additional nonzeros can be freely added (if no
preallocation has been explicitly provided).
No preset sparsity pattern, any processor can set any element:
potential for lots of malloc calls
Dynamically adding many nonzeros

requires additional memory allocations
requires copies
 kills performances!

24

Preallocation of a parallel sparse matrix

Process 0

dnz=2, onz=2

dnnz[0]=2, onnz[0]=2

dnnz[1]=2, onnz[1]=2

dnnz[2]=2, onnz[2]=2

Process 1

dnz=3, onz=2

dnnz[0]=3, onnz[0]=2

dnnz[1]=3, onnz[1]=1

dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4

dnnz[0]=1, onnz[0]=4

dnnz[1]=1, onnz[1]=4 25

P0

P1

P2

Each process logically owns a matrix subset of contiguously numbered global
rows. Each subset consists of two sequential matrices corresponding to
diagonal and off-‐diagonal parts.

Preallocation of a parallel sparse matrix

y A xA + B xB

xB needs to be communicated
A xA can be computed in the
meantime

Algorithm

Initiate asynchronous sends/receives
for xB
 compute A xA
make sure xB is in
compute B xB

The splitting of the matrix storage into
A (diag) and B (off-‐diag) part, code for
the
sequential case can be reused.

26

Numerical Matrix Operations

27

Sparse Matrices and Linear Solvers

Solve a linear system A x = b using the Gauss Elimination method

can be very time-‐resource consuming

Alternatives to direct solvers are iterative solvers

Convergence of the succession is not always guarateed

Possibly much faster and less memory consuming

Basic iteration: y <-‐ A x executed once x iteration

-‐1

28

Iterative solver basics
KSP (Krylov SPace Methods) objects are used for solving linear
systems by means of iterative methods.
Convergence can be improved by using a suitable PC object
(preconditoner).
Almost all iterative methods are implemented.
Classical iterative methods (not belonging to KSP solvers) are
classified as preconditioners
Direct solution for parallel square matrices available through
external solvers (MUMPS, SuperLU_dist). Petsc provides a built-‐in
LU serial solver.
Many KSP options can be controlled by command line
Tolerances, convergence and divergence reason
Custom monitors and convergence tests

29

Solver Types

30

Preconditioner types

31

Factorization preconditioner

32

Exact factorization: A = LU
L U where L, U obtained by throwing

-‐
M is the same as A)
Application of the preconditioner (that is, solve Mx = y) approx same
cost as matrix-‐vector product y <-‐ A x
Factorization preconditioners are sequential

PCICC: symmetric matrix, PCILU: nonsymmetric matrix

Parallel preconditioners

33

Factorization preconditioners are sequential
We can use them in parallel as a subpreconditioner of a parallel
preconditioner as Block Jacobi or Additive Schwarz methods
Each processor has its own block(s) to work with

Block Jacobi and Additive Schwarz
preconditioners

34

Both methods are parallel
BlockJacobi is fully parallel, Schwarz requires communications
between neighbours
Both require sequential local solver
Schwarz can be more robust than BlockJacobi and have better
convergence properties

Case Studies: Engineering
Applications and Domain

Decomposition in HPC

Case study: Engineering Applications

36

Case study: Domain Decomposition in HPC
In the HPC world, the matrices cannot be stored in a single machine
due to the limitation of the memory installed in a single node
One solution is to decompose the domain of the equations in many
subdomains (DD: domain decomposition)
The initial matrix is decomposed in many blocks, each of them can be
stored in a different node of the HPC machine
Many decomposition have been proposed in literature (for a reference see: A.
Valli, A. Quarteroni, Domain Decomposition Methods for Partial Differential Equations):

Classical Schwartz algorithm (Dirichlet Dirichlet DD)
Block Jacobi preconditioner
Balancing Domain Decomposition

 by Constraints (PCBDDC)

37

Thank you for the attention

