Advanced Parallel Programming

Mesh Decomposition: Basic Concepts and Decomposition Algorithms

> David Henty EPCC, University of Edinburgh d.henty@epcc.ed.ac.uk

- Many problems can be solved on a regular grid
 - eg Game of Life, Image Processing, Predator-Prey model, ...
 - regular grid is also called a Structured Mesh
- When we decompose the problem domain
 - aim for load balance across processors
 - with a minimum amount of communication
- Load balance is an equal number of cells on each processor
 - ie each subdomain must have the same **area** (2D) or **volume** (3D)
- If each cell depends on its nearest neighbours
 - comms happens when neighbouring cells are on different processors
 - want to minimise the length of the subdomain boundaries (2D)
 - or the area of the subdomain's surface (3D)

Example

lebcc

• Test problem

- each cell depends on four nearest neighbours (no diagonals)
- periodic boundary conditions
- look at an 8x8 simulation on 4 processors
- How are the load balance and communications costs affected by different decompositions?
 - speed of calculation limited by size of largest subdomain
 - communications cost is related to the size of the boundaries
- NOTE
 - real simulations would be **MUCH LARGER** than 8x8!

1D and 2D Decompositions

- load: 16,16,16,16

- load: 16,16,16,16

– boundary: 16+16+16+16=64 – boundary: 12+12+12=48

Load-imbalanced Problem

- Mesh with a hole
 - a 3x3 area with no calculation

- Regular decomposition
 - load: 16,16,16,7
 - boundary: 12+10+10+7=39

Cyclic Distribution

- Try a cyclic distribution
 - load: 12,14,14,15
 - boundary: 12+14+14+15=55
- Terrible communications!
 - want load=14,14,14,13
 - with minimum comms

- How do we balance the load intelligently ...
 - with a sensible communications load?
- Need to use non-square subdomains

|epcc|

• Statistics

- load: 14,13,14,14
- boundary: 12+11+12+14=49
- Note
 - for a real (large) problem, much less of each subdomain would be a boundary

Problem

- how do we do this automatically?
- for meshes with millions of cells?

-7

- Many real calculations cannot be done on regular grids
 - eg complex geometries do not have straight edges
 - in engineering calculations we want to deal with real objects
- One standard approach is to use triangles
 - or tetrahedra in three dimensions
 - much easier to fit the mesh to an irregular shape
- When we decompose for parallel computation
 - want same number of triangles in each subdomain
 - minimum number of triangles on subdomain boundaries
- Will not cover how to generate these meshes
 - would be an entire course in itself!

• How are unstructured meshes distinct from regular grids?

- Regular grids are (topologically) cartesian grids
 - they may be represented by arrays
- An unstructured mesh has no regular structure
 - an element in the mesh may be connected to an arbitrary number of neighbours
 - hence, the mesh cannot be represented by an array
 - a more complex data structure must be used

Examples

Regular Grid

Unstructured Mesh

Example: Visualisation

11

Example: Crash Simulation

Example: Medical Physics

Fig 3: A knee joint consisting of the lower femur, the upper tibia and fibula and patella: (a) Gouraud shading and (b) tetrahedralization

13

- Not a simple grid
 - cannot be stored as two dimensional array triangle[i][j]
- Solution
 - give each triangle a unique identifier 1, 2, 3, ..., N-1, N
 - for every triangle
 - store a list of its nearest neighbours (this list is called a graph)
 - store information about its physical coordinates
 - triangle numbering may have nothing to do with their position
 - depends on how the mesh was originally generated

Decomposition (Partitioning)

- Decompose by dividing mesh amongst processors
 - decompose the **domain** into many **subdomains**
- Decomposition has a highly significant effect on performance
 - arriving at a "good" decomposition is a complex task in itself
 - "good" may be problem/architecture dependent
 - eg depends on latency vs bandwidth of target parallel machine
- A wide variety of well-established methods exist
 - several packages/libraries implement of many of these methods
 - major practical difficulty is differences in file formats!

Decomposition Quality

- What makes a "good" decomposition?
- Load balance
 - elements should be distributed evenly across processors, so that each has an equal share of the work
- Communication costs should be minimised
 - there should be as few as possible elements on the boundary of each subdomain, to reduce total volume of communication
 - each subdomain should have as few neighbouring subdomains as possible, to reduce the impact of communications latency
 - ie send as few messages as possible
- Distribution should reflect machine architecture
 - comms/calc and bandwidth/latency ratios need to be considered
 - eg if communications is slow, may accept larger load imbalance
 - e.g. map neighbouring subdomains to neighbouring cores

Problem Complexity

- Graph partitioning has been shown to be *N*-*P* complete
 - this means that no exact solution may be found in any reasonable time for non-trivial examples
- Certainly complete enumeration is unfeasible
 - the search space is of size P^N , where P (#subdomains) may be in the hundreds and N (#elements in the mesh) in the millions
- We must therefore resort to heuristics which will give us an *acceptable* approximate solution in an *acceptable* time

• In practice, most decomposition algorithms:

- Impose exact load balance
 - try to minimise boundary length / surface area with this constraint
- Assume an "ideal" homogeneous architecture
 - may not explicitly consider number of neighbouring subdomians
 - do not suggest any mapping of subdomains to cores

- Global methods
 - direct P-way partitioning
 - recursive application of some simpler technique
- Local refinement techniques

- incrementally improve quality of an existing decomposition

- Hybrid techniques
 - using various combinations of above

- Simple techniques
- Random and scattered partitioning
 - very high communication cost
- Linear partitioning
 - regular domain decomposition for unstructured meshes
 - for a mesh of *N* elements on *P* processors give the first *N*/*P* elements to the first subdomain, second *N*/*P* to second subdomain, etc ...
 - can give good results due to data locality in element numbering
 - ... but may give terrible results!

- Recursive partitioning
- Rather than directly arriving at a *P*-way partition
 - recursively apply some k-way technique, where k << P
 - typically this means recursive *bisection* of the mesh (k=2)
 - quadrisection (k=4) and octasection (k=8) may also be employed
 - the latter, and higher order methods, are sometimes referred to as *multi-dimensional* methods
- Apply same criteria *separately* at *each stage* of recursion
 - load balance
 - minimisation of boundary size

- Geometry based recursive algorithms
 - in most physical problems we have coordinate information for each node in the mesh
 - ie, information about physical geometry
- Can exploit this information for mesh decomposition
 - coordinate partitioning
 - inertial partitioning

- Compute coordinates of centre of each element
 - which coordinate is used is determined by the longest extent of the domain ie, the x-, y- or z-direction
 - mesh is recursively bisected based on median coordinate value
- Fast and simple to implement method, but
 - can lead to subdomains which are not connected (not surprising given that it takes no account of mesh connectivity information)
 - also suffers if the simulation domain is not aligned with any of the coordinate directions

- Coordinate partitioning
- Restriction to *x*-, *y* or *z*-planes may be inappropriate

Mesh Decomposition

Project onto the preferred axis of rotation of domain

Mesh Decomposition

|epcc|

Inertial partitioning

Features of inertial partitioning

- quality is on the whole good ...
- ... but may be poor in terms of local detail
- no attempt made to ensure that subdomains are connected
- a fast algorithm, due to its relative simplicity

Can form the basis for a competitive strategy

- eg, use in combination with a local refinement technique

Dual Graphs

- To make a better decomposition we need
 - a representation of the basic elements being distributed (*eg*, the triangular elements in the case of a finite element mesh)
 - an idea of how communication takes place between them
- A *dual graph*, based on the mesh, fills this role
 - Vertices in the graph represent the elements
 - Edges in the graph represent transfer of data
 - which may lead to communication in a parallel program
- Graph depends on how data is transferred
 - for meshes it could be via nodes, edges or faces, so ...
 - ... a single mesh can have more than one dual graph

Dual Graphs

Mesh Decomposition

Decomposing with the Graph

- Divide the graph into subsets
 - one subset for each of the subdomains (ie for each of the *P* processors in a parallel program)
- A decomposition of the mesh is a mapping of each of the vertices of the graph to one of the *P* subsets
 - load balance means an equal number of vertices in each subset
- What about communications?
 - we count the number of *cut edges*
 - ie number of edges that connect vertices that are in different subsets
- Graph analysis a major topic in classical Computer Science

Graph decomposition

• e.g. recursive bisection leading to 5 cut edges

Greedy Algorithm

- Bite successive chunks out of the mesh
 - take bites of the correct size to ensure load balance

(My) Greedy Implementation

- Works purely on dual graph
 - only concerned about connectivity
- Works by expanding in shells
 - find all nodes on the boundary shell of current (incomplete) subdomain
 - add these nodes to the subdomain
 - find the boundary shell of the new larger subdomain
 - stop when subdomain is of correct size
- Need a seed point to start each subdomain
 - take first seed at a corner (node with fewest neighbours)
 - when a subdomain is complete, use next shell point as new seed
- What if there is no shell (a dead-end in the graph)?
 - continue from a new seed point chosen at a new corner
- My method does not always generate the same decomposition
 - if there is more than one possibility for a seed, choose at random

Adding Shells to Subdomains

Mesh Decomposition

- Greedy algorithm
- Advantages
 - it is a very fast algorithm
 - directly yields the required number of partitions
 - load balance is even
 - subdomains generally have good aspect ratios
- Disadvantages
 - often generates disconnected subdomains
 - this may lead to high communication cost

Spectral Partitioning

- Sophisticated but computationally expensive
- First consider this mesh and graph

- Represent dual graph as a sparse, symmetric matrix
- To obtain NxN Laplacian matrix L of graph with N vertices
 - L_{ii} = -1 if vertices *i* and *j* are connected by an edge, 0 otherwise
 - $-L_{ii}$ = the number of neighbours of vertex *i*

Spectral partitioning

- |epcc|
- Bisect based on values of the *eigenvectors* of *L*
 - compute eigenvector corresponding to second smallest eigenvalue
 - use this vector (the Fiedler vector) as the separator field
 - use the median value to split graph into two parts
- One of the most popular and widely used methods
 - generates very good overall decompositions
 - generally superior to greedy, coordinate and inertial methods
 - local deficiencies may be tidied up, giving excellent final quality
- But can take a lot of time and memory
 - computing eigenvectors is an extremely expensive calculation
 - the iterative Lanczos algorithm is often used for eigensolution

- You will see that it is a good decomposition
 - but what is the mathematical justification?
- Too complex to cover here, but the basic outline for bisection is:
 - formulate mathematically as a minimisation problem
 - try to miminise the number of cut minus uncut edges
 - each vertex is assigned to one of two subdomains: +1 or -1
 - decomposition x is a vector of length N, eg (+1, +1, -1, -1, +1, -1, ...)
 - ie each decomposition is a different corner of an *N*-dimensional hypercube
 - try to find the solution x that minimises $H(x) = x^T L x$
 - *H*(*x*) counts the number of cut edges
 - cannot solve this discrete problem exactly, so
 - map to a continuous problem where x is a real vector: $-1 \le x_i \le +1$
 - fix length of x so solution is on the surface of an *N*-dimensional *sphere*
 - solution of continuous problem is vector x with second-smallest eigenvalue
 - map back to the discrete solution by finding closest point on hypercube to the solution on the surface of the sphere

Non Power-of-two Subdomains

- Can extend bisection for arbitrary number of domains
 - at each stage, still divide subdomains into two smaller parts
 - parts are no longer equal; weight sizes as appropriate
- For example, for 13 subdomains with RCB:

- Kernighan and Lin
- If we consider two adjacent subdomains, S_a and S_b, we compute a gain associated with moving a vertex from its current subset to the other:
 - the gain is simply the reduction in the number of cut edges resulting from the swap
 - swap may make things worse, in which case the gain will be negative
- Could just make all swaps with positive gain
 but this would get trapped in the first local minimum it encounters
- The Kernighan and Lin approach avoids this by also considering swaps which make matters worse

- The algorithm does not find very good partitions of large graphs unless it is given a reasonable starting point
- It is therefore best used in conjunction with a cheap global method, which provides a reasonable overall partition but may be poor in its details
 - eg, recursive inertial partitioning

|epcc|

- Combinations of Techniques
- Features of global methods
 - give a reasonable decomposition when viewed on a large scale
 - on a small scale they are often lacking in quality
- This can often be fixed using local refinement
- For example
 - spectral decomposition may be better than inertial
 - when inertial is coupled with KL the result is superior to pure spectral and may be faster to compute
 - coupling spectral with KL produces a better result still

- Unstructured meshes are important for a wide class of problems
 - but their decomposition onto parallel machines is non-trivial
- Range of different heuristic algorithms developed
 - global methods: greedy, recursive partitioning (coordinate, inertial, spectral), ...
 - local refinements: kernighan & lin, jostle, ...
- Techniques can be combined effectively
- Useful for various awkward geometries
 - best method is Recursive Spectral Bisection (RSB)
 - expensive in time and memory