Advanced Parallel
Programming

Mesh Decomposition:
SIC Concepts and Decomposition Algorithms

David Henty
EPCC, University of Edinburgh
d.henty@epcc.ed.ac.uk

Structured Meshes

* Many problems can be solved on a regular grid
— eg Game of Life, Image Processing, Predator-Prey model, ...
— regular grid is also called a Structured Mesh

* When we decompose the problem domain
— aim for load balance across processors
— with a minimum amount of communication

* Load balance is an equal number of cells on each processor
— ie each subdomain must have the same area (2D) or volume (3D)

* If each cell depends on its nearest neighbours
— comms happens when neighbouring cells are on different processors
— want to minimise the length of the subdomain boundaries (2D)

— or the area of the subdomain’s surface (3D)

1 Mesh Concepts

Example

* Test problem
— each cell depends on four nearest neighbours (no diagonals)
— periodic boundary conditions
— look at an 8x8 simulation on 4 processors

* How are the load balance and communications costs
affected by different decompositions?
— speed of calculation limited by size of largest subdomain
— communications cost is related to the size of the boundaries

* NOTE
— real simulations would be MUCH LARGER than 8x8!

'} Mesh Concepts

‘3 e
‘J

1D and 2D Decompositioh‘:s:

— load: 16,16,16,16 — load: 16,16,16,16
— boundary: 16+16+16+16=64 — boundary: 12+12+12+12=48

"1 Mesh Concepts

-

Load-imbalanced Problerﬁ

> Mesh with a hole * Regular decomposition
— a 3x3 area with no — load: 16.16.16.7
calculation aoa

— boundary: 12+10+10+7=39

"1 Mesh Concepts

Cyclic Distribution

* Try a cyclic distribution

— load: 12,14,14,15
— boundary: 12+14+14+15=55

* Terrible communications!

— want load=14,14,14,13
— with minimum comms

> How do we balance the load intelligently ...
— with a sensible communications load?
> Need to use non-square subdomains

<o il T BN "1 Mesh Concepts

New Decomp

e Statistics

— load: 14,13,14,14

— boundary: 12+11+12+14=49
* Note

— for a real (large) problem,
much less of each subdomain
would be a boundary

» Problem
— how do we do this automatically?
— for meshes with millions of cells?

"1 Mesh Concepts

Unstructured Meshes

* Many real calculations cannot be done on regular grids
— eg complex geometries do not have straight edges
— in engineering calculations we want to deal with real objects

* One standard approach is to use triangles
— or tetrahedra in three dimensions
— much easier to fit the mesh to an irregular shape

* \When we decompose for parallel computation
— want same number of triangles in each subdomain
— minimum number of triangles on subdomain boundaries

* Will not cover how to generate these meshes
— would be an entire course in itself!

1 Mesh Concepts

Unstructured Meshes

* How are unstructured meshes distinct from regular grids?

* Regular grids are (topologically) cartesian grids

— they may be represented by arrays

* An unstructured mesh has no regular structure
— an element in the mesh may be connected to an arbitrary number
of neighbours
— hence, the mesh cannot be represented by an array
— a more complex data structure must be used

Examples

Regular Grid Unstructured Mesh

Mesh Dco.mpsi

"~ Mesh Concepts

'

tic

{ﬁ'g

-
.

Y
’

: Crash Si

Example

VAN,

A

S

2
-
Q.
)
o
c
o
O
L
n
)
=

..

(a) (b)

Fig 3: A knee joint consisting of the lower femur, the upper tibia and fibula and patella:
(a) Gouraud shading and (b) tetrahedralization

Mesh Concepts

'

Storing Unstructured Meshes

an

* Not a simple grid
— cannot be stored as two dimensional array triangle[i] [j]

e Solution
— give each triangle a unique identifier 1, 2, 3, ..., N-1, N
— for every triangle
— store a list of its nearest neighbours (this list is called a graph)
— store information about its physical coordinates
— triangle numbering may have nothing to do with their position
— depends on how the mesh was originally generated

'} Mesh Concepts

Decomposition (Partitioning)

* Decompose by dividing mesh amongst processors

— decompose the domain into many subdomains

* Decomposition has a highly significant effect on performance

— arriving at a “good” decomposition is a complex task in itself
— “good” may be problem/architecture dependent
— eg depends on latency vs bandwidth of target parallel machine

* A wide variety of well-established methods exist

— several packagesl/libraries implement of many of these methods
— major practical difficulty is differences in file formats!

Decomposition Quality

* What makes a “good” decomposition?

* Load balance

— elements should be distributed evenly across processors, so that
each has an equal share of the work

* Communication costs should be minimised
— there should be as few as possible elements on the boundary of
each subdomain, to reduce total volume of communication

— each subdomain should have as few neighbouring subdomains as
possible, to reduce the impact of communications latency

— ie send as few messages as possible

* Distribution should reflect machine architecture

— commes/calc and bandwidth/latency ratios need to be considered
— eg if communications is slow, may accept larger load imbalance
— e.g. map neighbouring subdomains to neighbouring cores

Mesh Decomposit B Y (™

Problem Complexity | N ol

* Graph partitioning has been shown to be N-P complete

— this means that no exact solution may be found in any reasonable
time for non-trivial examples

e Certainly complete enumeration is unfeasible

— the search space is of size PN, where P (#subdomains) may be in the
hundreds and N (#elements in the mesh) in the millions

* We must therefore resort to heuristics which will give us an
acceptable approximate solution in an acceptable time

Practical Methods

* In practice, most decomposition algorithms:

* Impose exact load balance

— try to minimise boundary length / surface area with this constraint

* Assume an “ideal” homogeneous architecture

— may not explicitly consider number of neighbouring subdomians
— do not suggest any mapping of subdomains to cores

Algorithms

* Global methods
— direct P-way partitioning
— recursive application of some simpler technique

* Local refinement techniques
— incrementally improve quality of an existing decomposition

* Hybrid techniques

— using various combinations of above

Global Methods

* Simple techniques

* Random and scattered partitioning
— very high communication cost

* Linear partitioning
— regular domain decomposition for unstructured meshes

— for a mesh of N elements on P processors give the first N/P elements
to the first subdomain, second N/P to second subdomain, etc ...

— can give good results due to data locality in element numbering
— ... but may give terrible results!

Global Methods

* Recursive partitioning

* Rather than directly arriving at a P-way partition

— recursively apply some k-way technique, where k << P
— typically this means recursive bisection of the mesh (k=2)
— quadrisection (k=4) and octasection (k=8) may also be employed

— the latter, and higher order methods, are sometimes referred to
as multi-dimensional methods

* Apply same criteria separately at each stage of recursion

— load balance
— minimisation of boundary size

Global Geometry-Based Méih’b’dm

* Geometry based recursive algorithms

— in most physical problems we have coordinate information for
each node in the mesh

— Ie, information about physical geometry

* Can exploit this information for mesh decomposition

— coordinate partitioning
— inertial partitioning

Coordinate partitioning

* Compute coordinates of centre of each element
— which coordinate is used is determined by the longest extent of
the domain ie, the x-, y- or z-direction
— mesh is recursively bisected based on median coordinate value

* Fast and simple to implement method, but
— can lead to subdomains which are not connected (not surprising
given that it takes no account of mesh connectivity information)

— also suffers if the simulation domain is not aligned with any of
the coordinate directions

Global Methods

* Coordinate partitioning

* Restriction to x-, y- or z-planes may be inappropriate

Reasonable
Bisection

I
Inferior Bisection

> ¥

Mesh Decomposi B) 1 *

gl LA

Global Methods

> Inertial partitioning

> Project onto the preferred axis of rotation of domain

I

Reasonable
Bisection

Mesh De co.mpsit

Global Methods SN el (Sl eleie]

> Inertial partitioning

> Features of inertial partitioning
— quality is on the whole good ...
— ... but may be poor in terms of local detail
— no attempt made to ensure that subdomains are connected
— a fast algorithm, due to its relative simplicity

» Can form the basis for a competitive strategy
— eg, use in combination with a local refinement technique

Mesh D co'mpositi

Dual Graphs

* To make a better decomposition we need

— a representation of the basic elements being distributed (eg, the
triangular elements in the case of a finite element mesh)

— an idea of how communication takes place between them

* A dual graph, based on the mesh, fills this role

— Vertices in the graph represent the elements
— Edges in the graph represent transfer of data
— which may lead to communication in a parallel program

* Graph depends on how data is transferred

— for meshes it could be via nodes, edges or faces, so ...
— ... a single mesh can have more than one dual graph

Dual Graphs

Mesh

Edge-based
Dual Graph

Node-based
Dual Graph

Decomposing with the Gﬂfaphml

* Divide the graph into subsets

— one subset for each of the subdomains (ie for each of the P
processors in a parallel program)

* A decomposition of the mesh is a mapping of each of the
vertices of the graph to one of the P subsets

— load balance means an equal number of vertices in each subset

* \What about communications?

— we count the number of cut edges
— ie number of edges that connect vertices that are in different subsets

* Graph analysis a major topic in classical Computer Science

Graph decomposition

* e.g. recursive bisection leading to 5 cut edges

{% 2

Greedy Algorithm TSN (S oo

* Bite successive chunks out of the mesh

— take bites of the correct size to ensure load balance

(My) Greedy Implementaiion’m

* Works purely on dual graph
— only concerned about connectivity

* Works by expanding in shells

— find all nodes on the boundary shell of current (incomplete) subdomain
— add these nodes to the subdomain

— find the boundary shell of the new larger subdomain
— stop when subdomain is of correct size

* Need a seed point to start each subdomain
— take first seed at a corner (node with fewest neighbours)
— when a subdomain is complete, use next shell point as new seed

* What if there is no shell (a dead-end in the graph)?
— continue from a new seed point chosen at a new corner

* My method does not always generate the same decomposition
— if there is more than one possibility for a seed, choose at random

Continue from

new seed point

at another
corner

Mesh Dco.mpsi

Global Methods WARAG

* Greedy algorithm

* Advantages
— it is a very fast algorithm
— directly yields the required number of partitions
— load balance is even
— subdomains generally have good aspect ratios

* Disadvantages
— often generates disconnected subdomains
— this may lead to high communication cost

Spectral Partitioning “’“‘“‘m

e Sophisticated but computationally expensive

* First consider this mesh and graph

2\ 2
4§VA — z;;J;

Mesh De co.mpsit

The Laplacian Matrix et “m

* Represent dual graph as a sparse, symmetric matrix

* To obtain NxN Laplacian matrix L of graph with N vertices

— L,-j = -1 if vertices i and j are connected by an edge, 0 otherwise
— L;; = the number of neighbours of vertex i

[3 -1 A1)
-1 1
2
I 2 -1 -1
—o—o ® -1 1
4 3 5 1 6 -1 -1 2
k'1 1)

Spectral partitioning

* Bisect based on values of the eigenvectors of L

— compute eigenvector corresponding to second smallest eigenvalue
— use this vector (the Fiedler vector) as the separator field
— use the median value to split graph into two parts

* One of the most popular and widely used methods

— generates very good overall decompositions
— generally superior to greedy, coordinate and inertial methods
— local deficiencies may be tidied up, giving excellent final quality

* But can take a lot of time and memory

— computing eigenvectors is an extremely expensive calculation
— the iterative Lanczos algorithm is often used for eigensolution

Spectral Partitioning

* You will see that it is a good decomposition
— but what is the mathematical justification?

* Too complex to cover here, but the basic outline for bisection is:

— formulate mathematically as a minimisation problem
— try to miminise the number of cut minus uncut edges

— each vertex is assigned to one of two subdomains: +1 or -1
— decomposition x is a vector of length N, eg (+1, +1, -1, -1, +1, -1, ...)
— ie each decomposition is a different corner of an N-dimensional hypercube
— try to find the solution x that minimises H(x) = x"Lx
— H(x) counts the number of cut edges

— cannot solve this discrete problem exactly, so
— map to a continuous problem where x is a real vector: -1 <= x; <= +1
— fix length of x so solution is on the surface of an N-dimensional sphere

— solution of continuous problem is vector x with second-smallest eigenvalue

— map back to the discrete solution by finding closest point on hypercube to
the solution on the surface of the sphere

Non Power-of-two Sudema’im

* Can extend bisection for arbitrary number of domains

— at each stage, still divide subdomains into two smaller parts
— parts are no longer equal; weight sizes as appropriate

* For example, for 13 subdomains with RCB:

— recursive co-ordinate bisection

Local Refinement

* Kernighan and Lin

* If we consider two adjacent subdomains, S, and S;, we
compute a gain associated with moving a vertex from its
current subset to the other:

— the gain is simply the reduction in the number of cut edges resulting
from the swap

— swap may make things worse, in which case the gain will be negative

* Could just make all swaps with positive gain
— but this would get trapped in the first local minimum it encounters

* The Kernighan and Lin approach avoids this by also
considering swaps which make matters worse

Local Refinement

* Kernighan and Lin

* The algorithm does not find very good partitions of large
graphs unless it is given a reasonable starting point

* |tis therefore best used in conjunction with a cheap
global method, which provides a reasonable overall
partition but may be poor in its details

— eg, recursive inertial partitioning

Hybrid methods

* Combinations of Techniques

* Features of global methods

— give a reasonable decomposition when viewed on a large scale
— on a small scale they are often lacking in quality

* This can often be fixed using local refinement

* For example

— spectral decomposition may be better than inertial

— when inertial is coupled with KL the result is superior to pure
spectral and may be faster to compute

— coupling spectral with KL produces a better result still

Summary

* Unstructured meshes are important for a wide class of
problems
— but their decomposition onto parallel machines is non-trivial

* Range of different heuristic algorithms developed

— global methods: greedy, recursive partitioning (coordinate, inertial,
spectral), ...

— local refinements: kernighan & lin, jostle, ...
* Techniques can be combined effectively
e Useful for various awkward geometries

— best method is Recursive Spectral Bisection (RSB)
— expensive in time and memory

