
David Henty
EPCC, University of Edinburgh

d.henty@epcc.ed.ac.uk

Advanced Parallel
Programming

Mesh Decomposition:
Basic Concepts and Decomposition Algorithms

2 Mesh Concepts

Structured Meshes

Many problems can be solved on a regular grid
eg Game of Life, Image Processing, Predator-Prey model, ...
regular grid is also called a Structured Mesh

When we decompose the problem domain
aim for load balance across processors
with a minimum amount of communication

Load balance is an equal number of cells on each processor
ie each subdomain must have the same area (2D) or volume (3D)

If each cell depends on its nearest neighbours
comms happens when neighbouring cells are on different processors
want to minimise the length of the subdomain boundaries (2D)

or the area surface (3D)

3 Mesh Concepts

Example

Test problem
each cell depends on four nearest neighbours (no diagonals)
periodic boundary conditions
look at an 8x8 simulation on 4 processors

How are the load balance and communications costs
affected by different decompositions?

speed of calculation limited by size of largest subdomain
communications cost is related to the size of the boundaries

NOTE
real simulations would be MUCH LARGER than 8x8!

4 Mesh Concepts

1D and 2D Decompositions

load: 16,16,16,16
boundary: 16+16+16+16=64

load: 16,16,16,16
boundary: 12+12+12+12=48

0 1 32
0 1

32

5 Mesh Concepts

Load-imbalanced Problem

Regular decomposition
load: 16,16,16,7
boundary: 12+10+10+7=39

Mesh with a hole
a 3x3 area with no
calculation

6 Mesh Concepts

Cyclic Distribution

Try a cyclic distribution
load: 12,14,14,15
boundary: 12+14+14+15=55

Terrible communications!
want load=14,14,14,13
with minimum comms

How do we balance the load intelligently ...
with a sensible communications load?

Need to use non-square subdomains

7 Mesh Concepts

New Decomp

Statistics
load: 14,13,14,14
boundary: 12+11+12+14=49

Note
for a real (large) problem,
much less of each subdomain
would be a boundary

Problem
how do we do this automatically?
for meshes with millions of cells?

8 Mesh Concepts

Unstructured Meshes

Many real calculations cannot be done on regular grids
eg complex geometries do not have straight edges
in engineering calculations we want to deal with real objects

One standard approach is to use triangles
or tetrahedra in three dimensions
much easier to fit the mesh to an irregular shape

When we decompose for parallel computation
want same number of triangles in each subdomain
minimum number of triangles on subdomain boundaries

Will not cover how to generate these meshes
would be an entire course in itself!

Mesh Decomposition

Unstructured Meshes

How are unstructured meshes distinct from regular grids?

Regular grids are (topologically) cartesian grids
they may be represented by arrays

An unstructured mesh has no regular structure
an element in the mesh may be connected to an arbitrary number
of neighbours
hence, the mesh cannot be represented by an array
a more complex data structure must be used

Mesh Decomposition

Examples

Regular Grid Unstructured Mesh

11 Mesh Concepts

Example: Visualisation

12 Mesh Concepts

Example: Crash Simulation

13 Mesh Concepts

Example: Medical Physics

14 Mesh Concepts

Storing Unstructured Meshes

Not a simple grid
cannot be stored as two dimensional array triangle[i][j]

Solution
give each triangle a unique identifier 1, 2, 3, ..., N-1, N
for every triangle

store a list of its nearest neighbours (this list is called a graph)
store information about its physical coordinates

triangle numbering may have nothing to do with their position
depends on how the mesh was originally generated

Mesh Decomposition

Decomposition (Partitioning)

Decompose by dividing mesh amongst processors
decompose the domain into many subdomains

Decomposition has a highly significant effect on performance

eg depends on latency vs bandwidth of target parallel machine

A wide variety of well-established methods exist
several packages/libraries implement of many of these methods
major practical difficulty is differences in file formats!

Mesh Decomposition

Decomposition Quality

Load balance
elements should be distributed evenly across processors, so that
each has an equal share of the work

Communication costs should be minimised
there should be as few as possible elements on the boundary of
each subdomain, to reduce total volume of communication
each subdomain should have as few neighbouring subdomains as
possible, to reduce the impact of communications latency

ie send as few messages as possible

Distribution should reflect machine architecture
comms/calc and bandwidth/latency ratios need to be considered

eg if communications is slow, may accept larger load imbalance
e.g. map neighbouring subdomains to neighbouring cores

Mesh Decomposition

Problem Complexity

Graph partitioning has been shown to be N-P complete
this means that no exact solution may be found in any reasonable
time for non-trivial examples

Certainly complete enumeration is unfeasible
the search space is of size PN, where P (#subdomains) may be in the
hundreds and N (#elements in the mesh) in the millions

We must therefore resort to heuristics which will give us an
acceptable approximate solution in an acceptable time

Practical Methods

In practice, most decomposition algorithms:

Impose exact load balance
try to minimise boundary length / surface area with this constraint

may not explicitly consider number of neighbouring subdomians
do not suggest any mapping of subdomains to cores

Mesh Decomposition

Algorithms

Global methods
direct P-way partitioning
recursive application of some simpler technique

Local refinement techniques
incrementally improve quality of an existing decomposition

Hybrid techniques
using various combinations of above

Mesh Decomposition

Global Methods

Simple techniques

Random and scattered partitioning
very high communication cost

Linear partitioning
regular domain decomposition for unstructured meshes
for a mesh of N elements on P processors give the first N/P elements
to the first subdomain, second N/P to second subdomain, etc ...
can give good results due to data locality in element numbering

Mesh Decomposition

Global Methods

Recursive partitioning

Rather than directly arriving at a P-way partition
recursively apply some k-way technique, where k << P
typically this means recursive bisection of the mesh (k=2)
quadrisection (k=4) and octasection (k=8) may also be employed
the latter, and higher order methods, are sometimes referred to
as multi-dimensional methods

Apply same criteria separately at each stage of recursion
load balance
minimisation of boundary size

Mesh Decomposition

Global Geometry-Based Methods

Geometry based recursive algorithms
in most physical problems we have coordinate information for
each node in the mesh
ie, information about physical geometry

Can exploit this information for mesh decomposition
coordinate partitioning
inertial partitioning

Mesh Decomposition

Coordinate partitioning

Compute coordinates of centre of each element
which coordinate is used is determined by the longest extent of
the domain ie, the x-, y- or z-direction
mesh is recursively bisected based on median coordinate value

Fast and simple to implement method, but
can lead to subdomains which are not connected (not surprising
given that it takes no account of mesh connectivity information)
also suffers if the simulation domain is not aligned with any of
the coordinate directions

Mesh Decomposition

Global Methods

y

x

Reasonable
Bisection

Inferior Bisection

Coordinate partitioning

Restriction to x-, y- or z-planes may be inappropriate

Mesh Decomposition

Inertial partitioning

Project onto the preferred axis of rotation of domain

Global Methods

y

x

Reasonable
Bisection

I1

Mesh Decomposition

Inertial partitioning

Features of inertial partitioning
quality is on the whole good ...
... but may be poor in terms of local detail
no attempt made to ensure that subdomains are connected
a fast algorithm, due to its relative simplicity

Can form the basis for a competitive strategy
eg, use in combination with a local refinement technique

Global Methods

Mesh Decomposition

Dual Graphs

To make a better decomposition we need
a representation of the basic elements being distributed (eg, the
triangular elements in the case of a finite element mesh)
an idea of how communication takes place between them

A dual graph, based on the mesh, fills this role
Vertices in the graph represent the elements
Edges in the graph represent transfer of data

which may lead to communication in a parallel program

Graph depends on how data is transferred
for meshes it could be via nodes, edges or faces, so ...
... a single mesh can have more than one dual graph

Mesh Decomposition

Dual Graphs

Mesh

Edge-based
Dual Graph

Node-based
Dual Graph

Mesh Decomposition

Decomposing with the Graph

Divide the graph into subsets
one subset for each of the subdomains (ie for each of the P
processors in a parallel program)

A decomposition of the mesh is a mapping of each of the
vertices of the graph to one of the P subsets

load balance means an equal number of vertices in each subset

What about communications?
we count the number of cut edges
ie number of edges that connect vertices that are in different subsets

Graph analysis a major topic in classical Computer Science

Mesh Decomposition

Graph decomposition

e.g. recursive bisection leading to 5 cut edges

Mesh Decomposition

Greedy Algorithm

Bite successive chunks out of the mesh
take bites of the correct size to ensure load balance

Mesh Decomposition

(My) Greedy Implementation

Works purely on dual graph
only concerned about connectivity

Works by expanding in shells
find all nodes on the boundary shell of current (incomplete) subdomain

add these nodes to the subdomain
find the boundary shell of the new larger subdomain

stop when subdomain is of correct size

Need a seed point to start each subdomain
take first seed at a corner (node with fewest neighbours)
when a subdomain is complete, use next shell point as new seed

What if there is no shell (a dead-end in the graph)?
continue from a new seed point chosen at a new corner

My method does not always generate the same decomposition
if there is more than one possibility for a seed, choose at random

Mesh Decomposition

Adding Shells to Subdomains

Continue from
new seed point

at another
corner

Mesh Decomposition

Global Methods

Greedy algorithm

Advantages
it is a very fast algorithm
directly yields the required number of partitions
load balance is even
subdomains generally have good aspect ratios

Disadvantages
often generates disconnected subdomains
this may lead to high communication cost

Mesh Decomposition

Spectral Partitioning

Sophisticated but computationally expensive

First consider this mesh and graph

2
5 1 6

4 3 4 3 5 1 6

2

Mesh Decomposition

The Laplacian Matrix

Represent dual graph as a sparse, symmetric matrix

To obtain NxN Laplacian matrix L of graph with N vertices
Lij = -1 if vertices i and j are connected by an edge, 0 otherwise
Lii = the number of neighbours of vertex i

4 3 5 1 6

2

3 -1 -1 -1
-1 1

2 -1 -1
-1 1

-1 -1 2
-1 1

Mesh Decomposition

Spectral partitioning

Bisect based on values of the eigenvectors of L
compute eigenvector corresponding to second smallest eigenvalue
use this vector (the Fiedler vector) as the separator field
use the median value to split graph into two parts

One of the most popular and widely used methods
generates very good overall decompositions
generally superior to greedy, coordinate and inertial methods
local deficiencies may be tidied up, giving excellent final quality

But can take a lot of time and memory
computing eigenvectors is an extremely expensive calculation
the iterative Lanczos algorithm is often used for eigensolution

Mesh Decomposition

Spectral Partitioning

You will see that it is a good decomposition
but what is the mathematical justification?

Too complex to cover here, but the basic outline for bisection is:
formulate mathematically as a minimisation problem

try to miminise the number of cut minus uncut edges
each vertex is assigned to one of two subdomains: +1 or -1

decomposition x is a vector of length N, eg (+1, +1, -1, -1, +1, -1, ...)
ie each decomposition is a different corner of an N-dimensional hypercube
try to find the solution x that minimises H(x) = xTLx
H(x) counts the number of cut edges

cannot solve this discrete problem exactly, so
map to a continuous problem where x is a real vector: -1 <= xi <= +1
fix length of x so solution is on the surface of an N-dimensional sphere

solution of continuous problem is vector x with second-smallest eigenvalue
map back to the discrete solution by finding closest point on hypercube to
the solution on the surface of the sphere

Mesh Decomposition

Non Power-of-two Subdomains

Can extend bisection for arbitrary number of domains
at each stage, still divide subdomains into two smaller parts
parts are no longer equal; weight sizes as appropriate

For example, for 13 subdomains with RCB:
recursive co-ordinate bisection

6 7
3

3
3

4

2 1

1

22
2

211 1 11
1 1 1

1 1

1 1

1
1

Mesh Decomposition

Local Refinement

Kernighan and Lin

If we consider two adjacent subdomains, Sa and Sb, we
compute a gain associated with moving a vertex from its
current subset to the other:

the gain is simply the reduction in the number of cut edges resulting
from the swap
swap may make things worse, in which case the gain will be negative

Could just make all swaps with positive gain
but this would get trapped in the first local minimum it encounters

The Kernighan and Lin approach avoids this by also
considering swaps which make matters worse

Mesh Decomposition

Local Refinement

Kernighan and Lin

The algorithm does not find very good partitions of large
graphs unless it is given a reasonable starting point

It is therefore best used in conjunction with a cheap
global method, which provides a reasonable overall
partition but may be poor in its details

eg, recursive inertial partitioning

Mesh Decomposition

Hybrid methods

Combinations of Techniques

Features of global methods
give a reasonable decomposition when viewed on a large scale
on a small scale they are often lacking in quality

This can often be fixed using local refinement

For example
spectral decomposition may be better than inertial
when inertial is coupled with KL the result is superior to pure
spectral and may be faster to compute
coupling spectral with KL produces a better result still

Mesh Decomposition

Summary

Unstructured meshes are important for a wide class of
problems

but their decomposition onto parallel machines is non-trivial

Range of different heuristic algorithms developed
global methods: greedy, recursive partitioning (coordinate, inertial,
spectral), ...
local refinements: kernighan & lin, jostle, ...

Techniques can be combined effectively
Useful for various awkward geometries

best method is Recursive Spectral Bisection (RSB)
expensive in time and memory

