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Predictability from Land

L and states (namely soil moisture™) can provide predictability
in the window between determmlstlc (weather) and climate
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Sample cross correlation

Lead-lag correlation:
soil moisture and z'500 hPa (MJJ)
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Soil Moisture Controls on Evaporation

e Over many parts of the world, there

is a range of SM over which _
evaporation rates in(de)crease as o
soil moisture in(de)creases (soil ok R
moisture is a limiting factor — - B R
moisture controlled). 2 ;:}':';:.: ""Utt:esi,,smvityof eva'pf,(;aﬂo',,to
e Above some amount of moisture in & ™= g
the soil, evaporation levels off. e
. . e atness. |5 Noah (90-04W, 36-42N)
e |n that wet range, moisture is of isimiedto %
plentiful, and is no longer "ea't,“;::f'“"gié'

controlling the partitioning of fluxes e @ e G s e e m e
(it’s energy controlled). Soil Wetness
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Soil Moisture Controls on Evaporation

Slope and correlation are
measures of sensitivity

e Over many parts of the world, there

Is a range of SM over which
evaporation rates in(de)crease as
soil moisture in(de)creases (soil

moisture is a limiting factor —
moisture controlled).

1401

e Above some amount of moisture in
the soil, evaporation levels off.

Evaporation

e |n that wet range, moisture is o
plentiful, and is no longer

controlling the partitioning of fluxes
(it’s energy controlled).
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Soil Moisture Controls on Evaporation

e Over many parts of the world, there

Is a range of SM over which
evaporation rates in(de)crease as
soil moisture in(de)creases (soil
moisture is a limiting factor — = w
moisture controlled). 2
e Above some amount of moisture in S ™
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e |n that wet range, moisture is o
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controlling the partitioning of fluxes
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Climate Feedbacks: Three Ingredients

* Sensitivity
— When and where is there an active
coupling between climate components?

Z
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* Sensitivity
— When and where is there an active
coupling between climate components?

* Variability
— A climate coupling results in a significant

impact only when the fluctuations are
large enough.
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Climate Feedbacks: Three Ingredients

* Sensitivity
— When and where is there an active
coupling between climate components?
* Variability
— A climate coupling results in a significant
impact only when the fluctuations are
large enough.

* Memory
— If the coupling and fluctuation do not
persist, the impact will be short-lived:

weather, not climate.
Zz
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Climate Feedbacks: Three Ingredients

* Sensitivity
— When and where is there an active
coupling between climate components?
* Variability
— A climate coupling results in a significant
impact only when the fluctuations are
large enough.

* Memory
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Feedback Via Two Legs T Gl e

GLACE coupling strength for summer soil moisture —
to rainfall (the “hot spot”) corresponds to regions
where there are both of these factors:

|
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Feedback Via Two Legs

* GLACE coupling strength for summer soil moisture -
to rainfall (the “hot spot”) corresponds to regions

where there are both of these factors:

* High correlation between daily soil moisture and
evapotranspiration during summer [from the
GSWP multi-model analysis, units are significance
thresholds], and ;
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Feedback Via Two Legs

* GLACE coupling strength for summer soil moisture -
to rainfall (the “hot spot”) corresponds to regions
where there are both of these factors:

* High correlation between daily soil moisture and
evapotranspiration during summer [from the
GSWP multi-model analysis, units are significance
thresholds], and ;

* High CAPE [from the North American Regional }
Reanalysis, J/kg]

AP 2 ASM - AE - AP Y (s =

~
Feedback path: Terrestrial leg Atmospheric leg
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Sensitivity to Land States

* There is tremendous sensitivity
to soil moisture variations by
surface latent (top) and sensible

(middle) heat fluxes in CFS.

Dirmeyer and Halder (2016; Wea.
Forecasting, in revision).

Explained variance (%) between differences in one
day forecasts (June 1) of indicated variables when
the only differences in initial conditions are the land
states (initial atmosphere and ocean are identical).

Latent Heat Flux & 0—10cm Soil Moisture
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Latent Heat Flux & 0—10cm Soil Moisture

Sensitivity to Land States

* There is tremendous sensitivity
to soil moisture variations by
surface latent (top) and sensible
(middle) heat fluxes in CFS.

* This sensitivity propagates into
the atmosphere, e.g., PBL height
and sensible heat flux (bottom).

Dirmeyer and Halder (2016; Wea.
Forecasting, in revision).

Explained variance (%) between differences in one
day forecasts (June 1) of indicated variables when
the only differences in initial conditions are the land
states (initial atmosphere and ocean are identical).
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Latent Heat Flux & 0-10cm Soil Moisture
™ oy R S AR
L ‘o T . "o e

* For a surface flux ®, coupling to soil
wetness W we define a coupling

index: ; dP

W = LHF (ET) on left;
W = =SHF on right

* “Hot spots” evident in water cycle.

* SHF is a driver for boundary layer
growth, triggering convection.

o= _dW o, = l”(:(I),W)O'(D

Terrestrial Coupling Indices
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— Also follows the snowmelt front north <

in late spring

August
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Dirmeyer and Halder (2016; J.
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Two-Legged Coupling Indices
d(LH)/d(SM) d(CC)/d(LH) o(SM)
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April

* Follow the chains:
d|LH] d|Cloud Cover] >
dW d[LH] W
d|SH| d|PBL Depth| >
dW d[SH] v

* Now the linkage is all the way
from soil moisture to the

direct controls on precipitation

* Great Plains coupling
disappears!

Dirmeyer and Halder (2016; J.

Grand challenges in monsoon modeling: Representation | o .0 ateor i :
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+ Memory

d|LH] d|Cloud Cover] >
dW d|LH]

d|SH ] d|PBL Depth] >
dW d|SH] v

 Multiply be e-folding time of
soil moisture lagged auto-

correlation.

* [n CFSv2 not much change
except emphasizes high
latitudes (frozen ground,

weak net radiation).

d(LH)/d(SM) d(CC)/d(LH) o(SM) s,

Composite Two-Leg Coupling

o

- T -
¢ yl_“‘,
- kS,

o

Ty

W

Grand challenges in monsoon modeling: Representation
of processes in climate models — ICTP: 13 June 2016

Dirmeyer and Halder (2016; J.
Hydrometeor, in review).
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Precipitation

 Skill (pentads where
ACC p £0.05 during

1981-2008) based
on atmosphere and

ocean initialization

only (land surface
randomized across

years).

* Pentad averages get
at subseasonal
predictability and
prediction skill.
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2m Air Temperature

Precipitation
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2m Air Temperature Precipitation
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Why?
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Lead —2:27

Lead 35:37

Lead 8:3/

Lead 15:47

Lead 18:4/

Lead 25:57

 CFS Reforecasts: Model

precip does not
correlate well with
observed P (left) or with
initial soil moisture
(middle). Observed
precip correlates quite
well with initial soil
moisture (right)!

CFS precipitation
forecasts lack observed
persistence.

Dirmeyer (2013; Climate Dyn., doi:
10.1007/s00382-013-1866-x).
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Latent

The Quick Fix Hoat I

JUA |}
* To correct warm biases in CFSR, |

roots for Noah crop vegetation
type were extended to all 4 soil
layers; it transpires too freely.

- N b e TP
k v'. ., . .*...‘.o > -

RMSE: 37.61
Bias: 27.43

| - : — : | |
Green: Total and partial cropland 15 30 45 60 75 90 110 140
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Latent

The Quick Fix Hoat I

JUA |}
* To correct warm biases in CFSR, |

roots for Noah crop vegetation
type were extended to all 4 soil
Iayers it tra nsplres too freely

& * .'o » "

\.A

‘r..i

CFS Op Fest
2013

RMSE: 37.61 '
Bias: 27.43 ML W
‘ . — | |
Green: Total and partial cropland 15 30 45
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Sensible heat fluxes

e Essentially zero over much of
Midwest in CFS over crop
vegetation type.

RMSE: 20.68 50y &
Bias: —9.68

. ! ! |
15 30 45 60 75 90 110 140
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Sensible heat fluxes

e Essentially zero over much of
Midwest in CFS over crop
vegetation type.

* This seems to cause problems
for boundary layer simulation
(essentially there is none)...
perpetual fog.

RMSE: 20.68 58 &
Bias: —9.68 A

— . . j
15 30 45 60 75 90 110 140
Z
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Sensible heat fluxes

e Essentially zero over much of
Midwest in CFS over crop
vegetation type.

* This seems to cause problems
for boundary layer simulation
(essentially there is none)...
perpetual fog.

* But hey, the temperature

error was reduced! Right qust: 205500 b, T |
— : | |
reSUIt fOr WrOng reasono 15 30 45 60 75 90 110 140
P
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Focus over South Asia

 How do biases, errors, kludges impact Asian Monsoon predictability from

land surface initialization? pPueiigafnad S
] ] Forecast Lead
 Most importantly, what about drift? [70°E-90°E, 5°N-35°N]

* Soil moisture forecasts bias wet when ~ 9?°7) Dirmeyer (2013; Climate
0.27 +| Dyn., doi: 10.1007/

initialized prior to June, dry afterwards ;251 s00382-013-1866-x).

over India in CFSv2 Reforecasts (right). 0257
0.24 +

* Model’s tendency for a damped annual o231

cycle of soil moisture is one of many ng
drifts that affect monsoon prediction. 02}

0.19 +
0.18 +

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

e All following results from Halder and Dirmeyer (2016; in prep).
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* Precipitation from 1 June -«

EQ

CFSv2 (left), observations -
(center) and error (right) in
monthly (J, J, A, S) and JJAS; *
bottom shows the

interannual standard

deviations.

10N

* Dry bias prevalent over India;-]
wet over many surrounding ..

ON

dreas. ron

India — symptomatic of
incorrect BC controls?

Grand challenges in monsoon modeling: Representation
of processes in climate models — ICTP: 13 June 2016

P. A. Dirmeyer

e YNIVERSITY




Coupling Metrics

* Terrestrial coupling index
surface soil wetness and
latent heat flux (left), and
atmospheric coupling
indices between LHF and
2m specific humidity
(middle) and SHF and PBL
height (right).

* As seen before, promising
indicators of potential
predictability from the land
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Drift in Coupling Indices
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Model Variability over S. Asia

* Variability in daily soil
moisture and surface
fluxes.

* India: flux variations
appear tied to soil
moisture, potential for
predictability.
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e SE Asia, China: variability =+
is driven by atmosphere. "¢

e Deserts: variability
absent although
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Radiation Variability Biases

* Daily mean variability in surface net
radiation from (left) CFSv2 model
simulations initialized in June,
(middle) SRB observations and
(right) difference.

*Errors appear tied to poor treatment..
of aerosols: model has too much ™
variability where consistent
anthropogenic aerosols suppress
synoptic radiation variability
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salt, sporadic natural sources tied to
wind are absent.

A
Grand challenges in monsoon modeling: Representation — COLA
v 2 e P. A. Dirmeyer 36 a\gimnmm ON
UNIVERSITY

of processes in climate models — ICTP: 13 June 2016




Soil Moisture Memory

SM mem. June (JUNIC) June (MAYIC—JUNIC)

June (APRIC—JUNIC)

* Problems of drift are
evident — large changes in
memory with lead time of
forecast (L to R).

* Deserts: memory grows,
but no variability so not a
big deal.

* NW India, China: deep soil
moisture memory during
Juneis lost at longer lead == TG s : | :
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Field Significance of Initialization Impacts

Table-1: Percentage of area within the domain (65-105 °E; 5-40 °N) showing changes in

e Temperature (top) and
precipitation (bottom)

e Color where a significantly
large area over Indian region

has increase / decrease of
skill —

Precipitation sometimes increases
significantly, never decreases,

ACORR of 2m temperature due to RELIC. Significant increases (decrecases) are
highlighted in red (blue).

Verification June July August September JJAS

Hindcast Inc. | Dec. | Inc. Dec. | Inc. | Dec. | Inc. | Dec. | Inc. | Dec.
JUNIC 69 31 64 36 25 75 41 59 | 58 | 42
MAYIC 55 45 52 48 32 68 68 32 58 | 42
APRIC 72 28 59 41 57 43 23 77 | 62 | 38

Table-2: Percentage area within the domain (65-105 °E; 5-40 °N) showing changes in

ACORR of precipitation due to RELIC. Significant increases (decreases) are highlighted

shows promise. in red (bluc).
— For temperatu re ea rly increases Veriﬁcation June Ju‘y Augllst September JJAS
)
met by late season decreases — Hindcast Inc. | Dec. | Inc. Dec. | Inc. | Dec. | Inc. | Dec. | Inc. | Dec.
another symptom of drift JUNIC 59 [ 41 64 | 36 | 47 | 53 | 52 | 48 [ 62 | 38
)
compensating errors in CFSv2. MAYIC 66 | 34 | 48 | 52 | 54 | 46 | 48 | 52 | 53 | 47
APRIC 54 46 63 37 55 47 62 38 59 4]
~

Grand challenges in monsoon modeling: Representation _ — COLA
of processes in climate models — ICTP: 13 June 2016 P. A. Dirmeyer 38 \— g ON

UNIVERSITY




Model Development

* Historically land models and
atmosphere models are developed

separately (in isolation), and then
plugged together.
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Model Development

* Historically land models and
atmosphere models are developed

separately (in isolation), and then
plugged together.

* Land models become the place where
atmospheric modelers try to “hide
their sins”. Treating the symptoms of
atmospheric model errors with land

surface model “corrections” just
creates more problems —it’s a

coupled system.
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Model Development

* Historically land models and
atmosphere models are developed

separately (in isolation), and then
plugged together.

* Land models become the place where
atmospheric modelers try to “hide
their sins”. Treating the symptoms of
atmospheric model errors with land

surface model “corrections” just
creates more problems —it’s a

coupled system.
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Conclusions

* Land-atmosphere coupling is a pathway for predictability,
better prediction of precipitation.
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Conclusions

* Land-atmosphere coupling is a pathway for predictability,
better prediction of precipitation.

* There is more potential than the current US operational
forecast model is harvesting.

— Observed precipitation more correlated to antecedent soil moisture than
model precipitation.

— Model lacks known properties of nature, some appear easily correctable.
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Conclusions

* Land-atmosphere coupling is a pathway for predictability,
better prediction of precipitation.

* There is more potential than the current US operational

forecast model is harvesting.

— Observed precipitation more correlated to antecedent soil moisture than
model precipitation.

— Model lacks known properties of nature, some appear easily correctable.

* Need the developers of land and atmosphere models to work
together, just as land and atmosphere do.
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