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The ENSO-monsoon relationship on interannual and decadal time scales  
is a long-standing problem and extensively analysed.  
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ABSTRACT

Empirical evidence is presented to support a hypothesis that the interdecadal variation of the Indian summer
monsoon and that of the tropical SST are parts of a tropical coupled ocean–atmosphere mode. The interdecadal
variation of the Indian monsoon rainfall (IMR) is strongly correlated with the interdecadal variations of various
indices of El Niño–Southern Oscillation (ENSO). It is also shown that the interannual variances of both IMR
and ENSO indices vary in phase and follow a common interdecadal variation. However, the correlation between
IMR and eastern Pacific SST or between IMR and Southern Oscillation index (SOI) on the interannual timescale
does not follow the interdecadal oscillation. The spatial patterns of SST and sea level pressure (SLP) associated
with the interdecadal variation of IMR are nearly identical to those associated with the interdecadal variations
of ENSO indices. As has been shown earlier in the case of ENSO, the global patterns associated with the
interdecadal and interannual variability of the Indian monsoon are quite similar.
The physical link through which ENSO is related to decreased monsoon rainfall on both interannual and

interdecadal timescales has been investigated using National Centers for Environmental Prediction–National
Center for Atmospheric Research reanalysis products. The decrease in the Indian monsoon rainfall associated
with the warm phases of ENSO is due to an anomalous regional Hadley circulation with descending motion
over the Indian continent and ascending motion near the equator sustained by the ascending phase of the
anomalous Walker circulation in the equatorial Indian Ocean. It is shown that, to a large extent, both the regional
Hadley circulation anomalies and Walker circulation anomalies over the monsoon region associated with the
strong (weak) phases of the interdecadal oscillation are similar to those associated with the strong (weak) phases
of the interannual variability. However, within a particular phase of the interdecadal oscillation, there are several
strong and weak phases of the interannual variation. During a warm eastern Pacific phase of the interdecadal
variation, the regional Hadley circulation associated with El Niño reinforces the prevailing anomalous interdecadal
Hadley circulation while that associated with La Niña opposes the prevailing interdecadal Hadley circulation.
During the warm phase of the interdecadal oscillation, El Niño events are expected to be strongly related to
monsoon droughts while La Niña events may not have significant relation. On the other hand, during the cold
eastern Pacific phase of the interdecadal SST oscillation, La Niña events are more likely to be strongly related
to monsoon floods while El Niño events are unlikely to have a significant relation with the Indian monsoon.
This picture explains the observation that the correlations between IMR and ENSO indices on the interannual
timescale do not follow the interdecadal oscillation as neither phase of the interdecadal oscillation favors a
stronger (or weaker) correlation between monsoon and ENSO indices.

1. Introduction

The Indian summer monsoon is known to have gone
through alternating epochs of above-normal and below-
normal conditions, each lasting about three decades. The
interdecadal variability is evident in various monsoon
parameters such as the all India monsoon rainfall (IMR)
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(Parthasarathy et al. 1994; Kripalani and Kulkarni 1997;
Kripalani et al. 1997; Webster et al. 1998), the frequency
of cyclones in the Indian monsoon region (Joseph 1976),
the homogeneous monsoon rainfall based on subdivi-
sions covering the northwestern and central parts of In-
dia (Parthasarathy et al. 1993), and circulation features
such as the April position of the 500-hPa ridge (Kri-
palani et al. 1997). The mean rainfall during the periods
1871–1900 and 1931–60 was above the long-term mean
while that during the periods 1901–30 and 1961–90 was
below the long-term mean, with relatively sharp tran-
sitions around 1900, 1930, and 1960. Several recent
studies (Allan 1993; Allan et al. 1995; Kachi and Nitta
1997; Zhang et al. 1997) have shown that El Niño–
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FIG. 1. (a) Time series of JJAS seasonal anomaly of IMR (bar) and its 11-yr running mean (solid line). (b) Same as (a) but for JJAS
seasonal anomaly of Niño-3 SST. The time series are plotted in their corresponding standard deviation units. The interannual standard
deviation of IMR is 0.66 mm day�1 while the interdecadal standard deviation is 0.2 mm day�1. For Niño-3, the standard deviations of
interannual and interdecadal variations are 0.67 K and 0.15 K, respectively.

FIG. 2. Time series of low-pass-filtered JJAS seasonal anomalies of IMR, SST, and SLP indices. Signs of Niño-3, CT, and IO are reversed
for convenience of comparison. All indices are in standard deviation units.
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[1] Using ensemble integrations of an Atmospheric
General Circulation Model (AGCM) forced globally with
observed sea surface temperature (SST) anomalies it is
shown that the observed decadal variability of Indian
monsoon rainfall (IMR) can be reproduced, although
amplitudes are somewhat overestimated. A second AGCM
ensemble forced only in the Indian Ocean region suggests
that the local Indian Ocean SST forcing is contributing
significantly to the decadal IMR variability. Here, cold
(warm) equatorial SSTs cause low-level divergence
(convergence) that in turn modifies the local Hadley
circulation and strengthens (weakens) the Indian monsoon
circulation. This result is complementary to previous
findings that IMR variability is mainly determined by an
a t m o s p h e r i c t e l e c o n n e c t i o n w i t h EN SO .
Citation: Kucharski, F., F. Molteni, and J. H. Yoo (2006),
SST forcing of decadal Indian Monsoon rainfall variability,
Geophys. Res. Lett., 33, L03709, doi:10.1029/2005GL025371.

1. Introduction

[2] The decadal variability of the Indian monsoon-
ENSO relationship has been investigated in a number of
recent studies [e.g., Krishnamurthy and Goswami, 2000;
Mehta and Lau, 1997; Torrence and Webster, 1999; Kinter
et al., 2002; Clark et al., 2000; Krishnan and Sugi, 2003;
Terry et al., 2005; Ashok et al., 2004; Chang et al., 2001;
Wu and Kirtman, 2004; Lau and Wu, 2001]. This rela-
tionship has weakened in the last 30 years. A prevailing
view is that the IMR has the strongest relationship with the
equatorial eastern Pacific SSTs [e.g., Webster et al., 1998],
but Indian Ocean SSTs appear also to play a role [Terry et
al., 2005; Clark et al., 2000; Li et al., 2001; Ashok et al.,
2004; Lau and Wu, 2001]. Krishnamurthy and Goswami
[2000] (hereinafter referred to as KG2000) showed, using
observed data, that the Indian monsoon itself has weak-
ened in the period 1960 to 1990 as compared to the
previous 1930 to 1960 period and also suggested that
the inter-annual Indian monsoon-ENSO relationship holds
as well on the decadal time scale. Goswami [1998]
proposed that the way a positive (negative) ENSO influ-
ences the Indian monsoon is by modifying the local
Walker circulation close to the equator, which causes
anomalous low-level convergence (divergence) in the
equatorial Indian Ocean and thus drives an anomalous
local Hadley circulation that decrease (increase) IMR.
KG2000 found that the inter-annually weak relationship
between Indian Ocean SST and IMR anomalies becomes
significantly stronger on the inter-decadal time scale.
KG2000 speculate that the low-pass filtered Indian mon-

soon is part of a complex inter-decadal oscillation involv-
ing global SST anomalies and atmospheric teleconnections.
[3] The purpose of this paper is to analyze the reproduc-

ibility of decadal Indian rainfall variability with an AGCM
forced with observed SSTs globally and in the Indian Ocean
only and thus to shed light on the physical mechanisms
governing the decadal changes of the Indian monsoon
circulation.
[4] These investigations are carried out using ensemble

simulations performed in the context of the CLIVAR
International ‘‘Climate of the 20th Century’’ Project [Fol-
land et al., 2002] and the AGCM is forced with observed
SST [Rayner et al., 2003] from 1870 to 2002.
[5] The numerical experiments in this work are per-

formed with the International Center for Theoretical Physics
AGCM (SPEEDY for Simplified Parameterizations, primi-
tivE-Equation DYnamics), described in detail by Molteni
[2003]. The parameterized processes include short- and
long-wave radiation, large-scale condensation, convection,
surface fluxes of momentum, heat and moisture, and verti-
cal diffusion. Convection is represented by a mass-flux
scheme that is activated where conditional instability is
present, and boundary layer fluxes are obtained by stabil-
ity-dependent bulk formulae. In this study the AGCM is
configured with 8 vertical (sigma) levels and with a spectral
truncation at total wave number 30. Furthermore, land and
ice temperature anomalies are determined by a simple one-
layer thermodynamic model.
[6] Results from the current 8-level and previous 7-level

version of the model are discussed by Kucharski et al.
[2006] and Bracco et al. [2004].
[7] Two sets of experiments have been performed to

investigate the connection between decadal SST variations
and the atmospheric response in the model.
[8] . ENS1: 25-member ensemble with globally pre-

scribed observed SSTs from 1870 to 2002.
[9] . ENS2: 10-member ensemble with prescribed ob-

served SSTs from 1870 to 2002 in the tropical Indian Ocean
only (30!E to 120!E, 30!S to 30!N). Elsewhere, climato-
logical SSTs are prescribed.
[10] For each ensemble, different members are created by

randomly perturbing the initial conditions and by
performing a 1 year spin-up integration.

2. Results

[11] As a simple index indicative of the Indian rainfall,
we define the average Summer (June-to-September, JJAS in
the following) rain anomalies over land in the region 70!E
to 85!E and 10!N to 30!N, covering most of the Indian
Peninsula. To this index an 11-year running mean is applied
to retain only the decadal signal. Figure 1 compares the 11-
year filtered index from the ensemble mean of ENS1 (black)
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with the corresponding index from the precipitation data of
the Climate Research Unit (red; CRU in the following
[Doherty et al., 1999; available only over land). Overall,
the decadal variability is well reproduced, although the
modeled amplitude is about double the observed one. In
both the observations and in the model the decadal rainfall
over India has its maximum in the late 1950’s and early
1960’s and minimum in the 1920’s and at the end of the
period. The correlation coefficient (CC) is 0.77 and statis-
tically significant at the 95% confidence level. The CC of
the filtered CRU index we defined here with the filtered All
Indian Rainfall Index [Parthasarathy et al., 1995] (not
shown) is 0.79. We prefer to use the gridded data set in
our analysis, because similar diagnostics can be applied
easily to the model results.
[12] The presented correlation and amplitude are robust

across the 25 ensemble members, with the CC varying
between 0.41 and 0.84 and the ratios of the standard
deviation of individual ensemble members and the obser-
vation varying between 1.5 and 3.5.
[13] In order to generalize this result, we perform a

Principal Component Analysis (PCA) of the rainfall in an
extended Indian region (40!E to 100!E, 0!N to 30!N) for
modeled (ensemble mean) and observed CRU data for the
11-year filtered JJAS season. Figure 2 shows the first
principal component (PC) of the observed rain (red;
explaining 40.5% of the decadal variance) and the second
PC of the modeled ENS1 rain (black; explaining 12% of the
decadal variance). The CC of the first PC of the observa-
tions with the observed Indian rainfall index defined above
is 0.74, whereas the CC of the second PC of ENS1 with the
Indian rainfall index of ENS1 is 0.95. Therefore, one may
identify the first PC of observed rainfall with the observed
Indian rainfall index and the second PC of ENS1 with the
modeled Indian rainfall index of ENS1. The CC of PC1 of
observed and PC2 of ENS1 is 0.85, statistically significant
at the 95% level.
[14] Figures 3a and 3b show the regression of the rain and

SSTs onto the CRU PC1 and Figures 3c and 3d the
regression of the rain and SSTs onto the ENS1 PC2,
respectively. Thus Figures 3a and 3c represent as well the
corresponding Empirical Orthogonal Function (EOF) inside
the domain 40!E to 100!E, 0!N to 30!N. In Figure 3c the
ENS1 925 hPa wind regression onto the ENS1 PC2 is

plotted additionally. Both rain regressions (Figures 3a and
3c) show overall increased rain over India, but the spatial
patterns are somewhat different. The wind regression of
Figure 3c is indicative of an increased monsoon circulation

Figure 1. Time series of observed (CRU; red) versus
ENS1 (black) and ENS2 (green) ensemble mean Indian
JJAS rain anomalies (averaged over land points of the
region 70!E to 85!E and 10!N to 30!N). All time series
have been filtered with an 11-year running mean to retain
the decadal signal. The units are mm/day.

Figure 2. Time series of PCs from the PCA of 11-year
filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N): PC1 from observed (CRU;
red), PC2 from ENS1 (black) and PC2 from ENS2 (green)
rain. The PCs are standardized to have standard deviation
one.

Figure 3. Regressions onto the PCs from the PCA of 11-
year filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N). (a) Observed (CRU) rain
onto PC1 of observed rain. (b) SST anomalies onto PC1 of
observed rain. (c) Modeled rain and 925 hPa wind onto PC2
of ENS1. (d) SST anomalies onto PC2 of ENS1. (e)
Modeled rain and 925 hPa wind onto PC2 of ENS2. (f) SST
anomalies onto PC2 of ENS2. Units for Figures 3a, 3c, and
3e are mm/day for rain and m/s for wind, units for Figures
3b, 3d, and 3f are K.
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regression of the rain and SSTs onto the ENS1 PC2,
respectively. Thus Figures 3a and 3c represent as well the
corresponding Empirical Orthogonal Function (EOF) inside
the domain 40!E to 100!E, 0!N to 30!N. In Figure 3c the
ENS1 925 hPa wind regression onto the ENS1 PC2 is

plotted additionally. Both rain regressions (Figures 3a and
3c) show overall increased rain over India, but the spatial
patterns are somewhat different. The wind regression of
Figure 3c is indicative of an increased monsoon circulation

Figure 1. Time series of observed (CRU; red) versus
ENS1 (black) and ENS2 (green) ensemble mean Indian
JJAS rain anomalies (averaged over land points of the
region 70!E to 85!E and 10!N to 30!N). All time series
have been filtered with an 11-year running mean to retain
the decadal signal. The units are mm/day.

Figure 2. Time series of PCs from the PCA of 11-year
filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N): PC1 from observed (CRU;
red), PC2 from ENS1 (black) and PC2 from ENS2 (green)
rain. The PCs are standardized to have standard deviation
one.

Figure 3. Regressions onto the PCs from the PCA of 11-
year filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N). (a) Observed (CRU) rain
onto PC1 of observed rain. (b) SST anomalies onto PC1 of
observed rain. (c) Modeled rain and 925 hPa wind onto PC2
of ENS1. (d) SST anomalies onto PC2 of ENS1. (e)
Modeled rain and 925 hPa wind onto PC2 of ENS2. (f) SST
anomalies onto PC2 of ENS2. Units for Figures 3a, 3c, and
3e are mm/day for rain and m/s for wind, units for Figures
3b, 3d, and 3f are K.
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In the same paper we show that South Eq. IO SST anomalies 
also play a crucial role in the ISMR decadal variabolity; later 
confirmed by Roxy Mathew Koll, Nat. Comm. 2015; It could 
be that this pattern actually help AGCMs to perfrom better in 
the decadal ENSO teleconnection that in the interannual 
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Figure 1. Time series of observed (CRU; red) versus
ENS1 (black) and ENS2 (green) ensemble mean Indian
JJAS rain anomalies (averaged over land points of the
region 70!E to 85!E and 10!N to 30!N). All time series
have been filtered with an 11-year running mean to retain
the decadal signal. The units are mm/day.

Figure 2. Time series of PCs from the PCA of 11-year
filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N): PC1 from observed (CRU;
red), PC2 from ENS1 (black) and PC2 from ENS2 (green)
rain. The PCs are standardized to have standard deviation
one.

Figure 3. Regressions onto the PCs from the PCA of 11-
year filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N). (a) Observed (CRU) rain
onto PC1 of observed rain. (b) SST anomalies onto PC1 of
observed rain. (c) Modeled rain and 925 hPa wind onto PC2
of ENS1. (d) SST anomalies onto PC2 of ENS1. (e)
Modeled rain and 925 hPa wind onto PC2 of ENS2. (f) SST
anomalies onto PC2 of ENS2. Units for Figures 3a, 3c, and
3e are mm/day for rain and m/s for wind, units for Figures
3b, 3d, and 3f are K.
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Figure 1. Time series of observed (CRU; red) versus
ENS1 (black) and ENS2 (green) ensemble mean Indian
JJAS rain anomalies (averaged over land points of the
region 70!E to 85!E and 10!N to 30!N). All time series
have been filtered with an 11-year running mean to retain
the decadal signal. The units are mm/day.

Figure 2. Time series of PCs from the PCA of 11-year
filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N): PC1 from observed (CRU;
red), PC2 from ENS1 (black) and PC2 from ENS2 (green)
rain. The PCs are standardized to have standard deviation
one.

Figure 3. Regressions onto the PCs from the PCA of 11-
year filtered JJAS rain applied to the Indian monsoon region
(40!E to 100!E, 0!N to 30!N). (a) Observed (CRU) rain
onto PC1 of observed rain. (b) SST anomalies onto PC1 of
observed rain. (c) Modeled rain and 925 hPa wind onto PC2
of ENS1. (d) SST anomalies onto PC2 of ENS1. (e)
Modeled rain and 925 hPa wind onto PC2 of ENS2. (f) SST
anomalies onto PC2 of ENS2. Units for Figures 3a, 3c, and
3e are mm/day for rain and m/s for wind, units for Figures
3b, 3d, and 3f are K.
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Also current monthly mean SST anomaly shows a similar pattern 



   
 
 
 
  

In particular, the downward trend in IMR in observa-

tions and the AGCMs between the late 1950s and the early
1990s coincides with warming in the tropical Pacific and

Indian Ocean and a downturn in the AMO (Parker et al.

2007) which had also finished by the early 1990s.
As indicated by the distribution of light blue (including

GHG forcing) and black (only SST forcing) points in

Fig. 2c, the addition of GHG forcing in the AGCM simu-
lations has not a strong impact on the decadal IMR time

series. However the tropical SST warming may partially be

attributed to increased GHG concentrations as has been
suggested by, e.g. Hurrell et al. (2004) with respect to a

possible forcing of the positive phase of the North Atlantic

Oscillation that has prevailed on decadal time scale in the
late 1980s through the 1990s.

3.3 CMIP3 models

In order to assess if the increases in GHG (or other forcings)
in the twentieth century may have contributed to the decadal

variability of the IMR, we assess results from those six

CMIP3 models that have been identified previously to have

a realistic South Asian summer monsoon climatology

(Annamalai et al. 2007; see Table 2). For the control inte-
grations of the twentieth century, these models provide a

total of 19 integrations from 1902 to 1999. We perform the

same analysis as we performed for the C20C models. Fig-
ure 5 shows the time series of the ensemble mean of the

CMIP3 models compared to the CRU decadal IMR. The

decadal IMR variabilities in the CMIP3 ensemble mean and
CRU are dissimilar. Indeed the CC is negative (-0.22) and

the standard deviation is only about 20% of the CRU one.

However, this CC is not statistically significant considering
few degrees of freedom left in the decadally filtered time

series. In particular, the observed downward trend from the

late 1950s to the early 1990s is not reproduced and the
modelled IMR shows only very small changes in this per-

iod. Assuming that the CMIP3 models respond correctly to
GHG and other forcings, this indicates that the increase of

GHG in the twentieth century has had no influence on the

IMR, although the CMIP3 ensemble mean SSTs in the
tropical Indo-Pacific region (30!E–280!E, 20!S–20!N)
increase by about 0.4 K from 1950 to 1999, which is a value

similar to observations. Thus, the decadal IMR variability is

(a)

(b)

Fig. 4 Map of simultaneous
correlation coefficients (CC)
between IMR and SSTs for the
decadal components of the time
series. a CRU, b ENSL. CC
larger than 0.6 can be
considered as 90% statistically
significant
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Results could be confirmed  by C20C Project AGCMs: Correlation of an IMR index with 
SSTs 

CRU Obs 
 
 
 
 
 
 
 
 
 
Multimodel  
ensemble mean 

Kucharski et al, 2009, C20C multimodel paper, Climate Dynamics   



   
 
 
 
  

Interdecadal Pacific Oscillation (IPO; Parker et al., 2007, Folland et al. 1999) 
is the name now given to the decadal Pacific ENSO-like variability 

From Dong and Dai (2015)  

Several IPO definitions: 
 
 
a)  Second EOF of Global  
     low-pass filetered SSTs 
 
b) First EOF of Global  
     detrended SSTs 
 
c) Box definitions using area  
    averages in a tropical and  
    extratropical boxes 
 
Also note that IPO is similar  
to PDO, which is defined as  
EOF in the North Pacific (or  
again as are average SST). 

 



   
 
 
 
  

Interdecadal Pacific Oscillation (IPO) as used in our study 

The first EOF (EOF-1) of the detrended 
smoothed (3-year moving average) annual 
mean SSTAs computed over the Pacific 
basin (45°S to 60°N, 140°E to 80°W) and b 
the time series of the associated first 
principle component [PC-1; blue bars for 
annual data and the red curve is a 
smoothed time series obtained by applying 
Butterworth low-pass filter (order 4, cut-off 
frequency 21-year) to the annual bars]  



   
 
 
 
  

accelerated 
warming
 period

hiatus 
period

accelerated 
warming
 period

hiatus 
period

(a)

(b)

(c)

PDO-PDO-PDO- PDO+ PDO+

AMV+AMV+AMV- AMV-

From Farneti, 2016 

A lot of fuzz about  
IPO/PDO because  
of apparent relation to  
global warming 



   
 
 
 
  

Mechanisms for IPO/PDO variability (many theories, a few are): 
 
a)  ENSO forcing with reddening of spectrum in the North Pacific due to   
     Ocean mixed-layer interactions (Newman et al., 2003, Schneider and  
     Cornuelle, 2005) 
b) Oceanic bridge to extratropics including subtropical Cell Variability 
     (Kleeman et al. 1999; McPhaden and Zhang 2002; Klinger et al. 2002;  
     Nonaka et al. 2002; McCreary and Lu 1994)  
c) Both atmospheric and Ocean bridge work constructively together  
    (Farneti et al., 2013) 

that the wind anomalies do affect the sensible heat flux
calculation, but both SPEEDY-W and SPEEDY-TROP

point towards the prevailing role of extratropical wind

stress in the generation of equatorial anomalies.
The proposed mechanism for the ocean-atmosphere

multidecadal Pacific variability can be summarized by the

schematic diagram in Fig. 16. Suppose a negative SST
pattern is present in the equatorial Pacific, as in the case of

the decadal anomaly between the 2000–2009 and

1990–1999 period. The cooling at the equator forces an
extratropical response through an atmospheric teleconnec-

tion (depicted by a large curly arrow in Fig. 16). The

extratropical atmospheric response is imprinted mainly in
the subtropical winds, which subsequently generate a wind-

stress-curl anomaly of opposite sign with respect to the

climatological conditions, thereby weakening the STG and
Ekman pumping there (horizontal arrows in the Ekman

layer). The resulting anomalously weak downwelling

(vertical arrow below the STG) results in a weaker equa-
torward geostrophic flow (horizontal arrows below the

Ekman layer). The zonally integrated Ekman transport

anomaly in turns spins-down the STC. The reduced mass
flux in both the STG and STC also implies a weakening of

the meridional heat transport, a slow-down of the eastward-

flowing equatorial undercurrent (EUC)—partially fed from
water subducted in the subtropics—and a reduction in

equatorial upwelling (vertical arrow near the equator). A

positive SST anomaly is thus generated at the equator,
damping the initial one and giving rise to a negative

feedback on decadal time scales through tropical-subtrop-

ical interactions, with an oceanic ’tunnel’ transmitting the
anomaly back to the equator via transport anomalies. The

simulated decadal change is towards a positive PDO, i.e. an

anomaly of opposite sign to the initial one, consistent with

the overall hypothesis of a negative feedback associated
with a reversal of the initial SST anomalies.

We further studied the proposed connection between

STG, STC and ENSO with the help of an idealized model
that builds on Suarez and Schopf’s (1988) ENSO delayed

oscillator. The simple model was able to reproduce the

interannual ENSO and, through the coupling with the STG,
decadal variability also arised in the SST and STC indices.

The model points to the importance of both stochastic
ocean-atmosphere interactions and STG forcing from the

tropics as important processes in the generation of decadal

scales oscillations leading to EDV.
The idea of a connection between decadal variability of

Pacific STC and tropical SST anomalies on decadal time

scales is not new, and different mechanisms have been
proposed (e.g. Klinger et al. 2002; Nonaka et al. 2002;

Zhang and McPhaden 2006). A few studies have also used

models of different complexities to address the possible
non-local air-sea interactions involved in the generation of

EDV (e.g., Kleeman et al. 1999; Hazeleger et al. 2005) but

the relevance for the coupled ocean-atmosphere system is
still a matter of debate. We note that Solomon et al. (2003)

proposed a similar tropical-extratropical interaction in their

idealized model, in which the North Pacific develops a
damped decadal oscillation and the mode is sustained by

atmospheric teleconnections from the tropics. As in our

case, the North Pacific STC is responsible for carrying the
decadal anomalies to the equator. Here, we have employed

full ocean and atmosphere GCMs to connect the low-fre-

quency variability involving the Pacific ocean SPG, STC
and ENSO through oceanic and atmospheric teleconnec-

tions, and we have proposed a mechanism by which trop-

ical-subtropical interactions can give rise to EDV. The
results of this study could then be regarded as an extension

of the work by Solomon et al. (2003).

The fact that modeling results presented here are in
agreement and consistent with observed changes during the

period of study and the recent past (McPhaden and Zhang

2002, 2004; Hazeleger et al. 2005; Molteni et al. 2011)
adds confidence to our conclusions. It is important to stress

that the ocean-only simulation rules out the possibility of a

subtropical-tropical coupling via atmospheric teleconnec-
tions, as suggested for example by Barnett et al. (1999),

and the regionally-forced simulations confirmed the role of

extratropical wind forcing. Our results highlight instead the
oceanic role in transmitting the subtropical anomalies back

to the tropical ocean, consistent with previous studies and

estimates of multidecadal tropical oceanic variability
(Kleeman et al. 1999; Klinger et al. 2002). In Nonaka et al.

(2002), EDV is triggered by near-equatorial wind varia-

tions and only later enhanced by STC feedbacks. Further,
the origin of wind variability was attributed to atmospheric

Ekman Layer 

STC 

STG SPG TG 

Fig. 16 Schematic of the putative tropical-subtropical Pacific inter-
actions at decadal time scales. Shown are the horizontal gyres (TG:
tropical gyre, STG: subtropical gyre, SPG: subpolar gyre) and
subtropical vertical cell (STC: subtropical cell). See text for details.
Adapted from Klinger and Haine (2013)
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Abstract Interactions between the tropical and subtropi-
cal northern Pacific at decadal time scales are examined

using uncoupled oceanic and atmospheric simulations. An

atmospheric model is forced with observed Pacific sea
surface temperatures (SST) decadal anomalies, computed

as the difference between the 2000–2009 and the

1990–1999 period. The resulting pattern has negative SST
anomalies at the equator, with a global pattern reminiscent

of the Pacific decadal oscillation. The tropical SST

anomalies are responsible for driving a weakening of the
Hadley cell and atmospheric meridional heat transport. The

atmosphere is then shown to produce a significant response

in the subtropics, with wind-stress-curl anomalies having
the opposite sign from the climatological mean, consistent

with a weakening of the oceanic subtropical gyre (STG). A

global ocean model is then forced with the decadal
anomalies from the atmospheric model. In the North

Pacific, the shallow subtropical cell (STC) spins down and

the meridional heat transport is reduced, resulting in
positive tropical SST anomalies. The final tropical response

is reached after the first 10 years of the experiment, con-
sistent with the Rossby-wave adjustment time for both the

STG and the STC. The STC provides the connection

between subtropical wind stress anomalies and tropical
SSTs. In fact, targeted simulations show the importance of

off-equatorial wind stress anomalies in driving the oceanic

response, whereas anomalous tropical winds have no role
in the SST signal reversal. We further explore the con-

nection between STG, STC and tropical SST with the help

of an idealized model. We argue that, in our models,
tropical SST decadal variability stems from the forcing of

the Pacific subtropical gyre through the atmospheric

response to ENSO. The resulting Ekman pumping anomaly
alters the STC and oceanic heat transport, providing a

negative feedback on the SST. We thus suggest that

extratropical atmospheric responses to tropical forcing
have feedbacks onto the ocean dynamics that lead to a

time-delayed response of the tropical oceans, giving rise to

a possible mechanism for multidecadal ocean-atmosphere
coupled variability.
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1 Introduction

The decadal variability in the Pacific Ocean is dominated
by the Pacific Decadal Oscillation (PDO; Mantua et al.

1997; Zhang et al. 1997). The PDO, with a typical time

scale of about 20–30 years, is usually represented by the
first empirical orthogonal function (EOF1) of monthly sea

surface temperature (SST) anomalies in the North Pacific.

The ‘warm phase’ of the PDO is characterized by cold SST
anomalies in the west North Pacific encircled by warm SST

anomalies in the eastern part of the basin. The PDO is

believed to be associated with both tropical forcing,
through an atmospheric ‘bridge’, and local extratropical

atmospheric stochastic forcing (Liu and Alexander 2007).

The tropical forcing is achieved through low-frequency El
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1997; Zhang et al. 1997). The PDO, with a typical time

scale of about 20–30 years, is usually represented by the
first empirical orthogonal function (EOF1) of monthly sea

surface temperature (SST) anomalies in the North Pacific.

The ‘warm phase’ of the PDO is characterized by cold SST
anomalies in the west North Pacific encircled by warm SST
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Atmosphere 2016, 7, 29 12 of 20

Figure 10. Regression of (a) observed and (b) ATL_VAR SSTs onto the AMO index. In (b), anomalies
that are 95% statistically significant are indicated by contours. Units are K.

Figure 11. Regression of (a) observed and b) ATL_VAR SLP and low-level winds onto preceding AMO
index. In (b), SLP anomalies that are 95% statistically significant are indicated by contours, and only
statistically significant wind vector components are shown. Units are hPa for SLP and m/s for winds.

There could be even a forcing of part of IPO-like variability from the  
Atlantic Multidecadal Oscillation as shown in Kucharski et al., Atmosphere, 2016  
and Kucharski et al., Climate Dynamics, 2016 

From: Kucharski et al., 2016 



   
 
 
 
  

3348 M. K. Joshi, A. Rai

1 3

(3) negative AMO and negative IPO (1963–1976; regime 
3), and (4) negative AMO and positive IPO (1977–1993; 
regime 4).

As a summary of temporal variability as well as the mul-
tiple linear regression analysis, the warm phase of AMO 
and the cold phase of IPO are statistically related to the 
increase (decrease) of rainfall over west central (northeast) 
region and vice versa. Therefore, in order to see an inte-
grated effect of AMO and IPO on the rainfall, the compos-
ites of JJAS total, heavy, and moderate precipitation anom-
alies (relative to and in % of the 1927–1993 mean) are 

constructed for the aforementioned four probable scenarios 
based on the different combinations of AMO and IPO.

The spatial pattern of total precipitation anomalies 
induced by the AMO and IPO for the four regimes are 
shown in Fig. 8. In the case of positive AMO, above-normal 
total precipitation is limited to few HMRs, for example, 
most parts of west central, northwest, and hilly (exclud-
ing Arunachal Pradesh) during negative IPO (Fig. 8b) and 
two-thirds portion of west central (especially Madhya 
Pradesh, Vidarbha, and Chattisgarh), approximately half 
portion of hilly (east Jammu and Kashmir, Uttaranchal, 

Fig. 6  Variability of low-pass filtered a total, b heavy, and c moderate rainfall over northeast region along with the variability of low-pass fil-
tered AMO and IPO indices. The unit of AMO and IPO is °C, while that of rainfall is millimeters

Fig. 7  Combinations of posi-
tive and negative AMO and IPO 
periods. First and last 10-points 
are ignored due to end effects 
of low-pass filter (shown by 
dashed line)

From: Joshi & Rai, Climate Dynamics, 2015 

Coming back to IPO and Indian monsoon raifall 



   
 
 
 
  

1 3

DOI 10.1007/s00382-016-3210-8
Clim Dyn

Impact of Interdecadal Pacific Oscillation on Indian summer 
monsoon rainfall: an assessment from CMIP5 climate models

Manish K. Joshi1 · Fred Kucharski2,3 

Received: 11 November 2015 / Accepted: 27 May 2016 
© Springer-Verlag Berlin Heidelberg 2016

Keywords Interdecadal Pacific Oscillation · Decadal-to-
multidecadal variability · Precipitation · CMIP5 models · 
IPO-ISMR teleconnection · Tropical–extratropical Pacific 
SST gradient · Atmospheric circulation

1 Introduction

Natural climate variability at decadal-to-multidecadal time-
scales in the Pacific Ocean is termed as the Pacific decadal 
variability, which is generally referred as the Interdecadal 
Pacific Oscillation (IPO; Power et al. 1998, 1999; Allan 
2000; Folland et al. 1999) for the basin-wide pattern, or the 
Pacific Decadal Oscillation (PDO; Mantua et al. 1997) for 
the North Pacific pattern. The time series of IPO is analo-
gous to the PDO index of Mantua et al. (1997). The signa-
ture of warm (cold) phase of IPO is characterized as warm 
(cold) SST anomalies (SSTAs) in the tropical Pacific and 
cold (warm) SSTAs in the central North Pacific (Trenberth 
and Hurrell 1994; Meehl et al. 2009).

The regional climate is significantly influenced by the 
large-scale climate variability in the Pacific region. Many 
preceding studies (e.g., Power et al. 1999; Folland and 
Salinger 1995; Salinger and Mullan 1999; Dai 2013) have 
shown that the IPO acts as a modulator of climate in many 
parts over the globe. The IPO has immense impact on pre-
cipitation as well as on other climate variables. It strongly 
modulates the teleconnection between El Niño-Southern 
Oscillation (ENSO) and precipitation on yearly basis over 
Australia (Power et al. 1999) and the sub-bidecadal climate 
variations, which were also recognized in the temperature 
signal (Folland and Salinger 1995), over New Zealand 
(Salinger and Mullan 1999). The IPO-like variability also 
modulates the ENSO teleconnections on interdecadal time-
scales over North America (Gershunov and Barnett 1998). 

Abstract The present study evaluates the fidelity of 32 
models from the fifth Coupled Model Intercomparison Pro-
ject (CMIP5) in simulating the observed teleconnection of 
Interdecadal Pacific Oscillation (IPO) with Indian summer 
monsoon rainfall (ISMR). Approximately two-thirds of 
the models show well-defined spatial pattern of IPO over 
the Pacific basin and most amongst these capture the IPO-
ISMR teleconnection. In general, the models that fail to 
reproduce the IPO-ISMR teleconnection are the ones that 
are also showing a poor spatial pattern of IPO, irrespec-
tive of the extent to which they reproduce the precipitation 
climatology and seasonal cycle. The results reveal a strong 
relationship between the quality of reproducing the IPO 
pattern and the IPO-ISMR teleconnection in the models, in 
particular with respect to the tropical–extratropical as well 
as the equatorial Pacific-Indian Ocean sea surface tempera-
ture gradients during IPO phases. Furthermore, the CMIP5 
models that are capable of reproducing the IPO-ISMR 
teleconnection also reasonably simulate the atmospheric 
circulation as well as the convergence/divergence patterns 
associated with the IPO. Thus, for the better understanding 
of decadal-to-multidecadal variability and to improve dec-
adal prediction of rainfall over India it is therefore vital that 
models should simulate the IPO skillfully.

 * Manish K. Joshi 
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Table 1007 

Table 1 List of CMIP5 models along with their modeling groups and resolution. 1008 

Model Institution Resolution 
(Latitude x 
Longitude) 

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, 
China 

64 x 128 

BCC-CSM1-1-m Beijing Climate Center, China Meteorological Administration, 
China 

160 x 320 

BNU-ESM College of Global Change and Earth System Science, Beijing 
Normal University, China 

64 x 128 

CCSM4 National Center for Atmospheric Research, USA 192 x 288 
CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy 48 x 96 
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy 96 x 192 

CanCM4 Canadian Centre for Climate Modelling and Analysis, Canada 64 x 128 
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 64 x 128 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 90 x 144 
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 90 x 144 
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 90 x 144 

GISS-E2-H NASA Goddard Institute for Space Studies, NY 90 x 144 
GISS-E2-R NASA Goddard Institute for Space Studies, NY 90 x 144 
HadCM3 Met Office Hadley Centre, UK 73 x 96 

HadGEM2-AO National Institute of Meteorological Research/Korea 
Meteorological Administration, South Korea 

145 x 192 

HadGEM2-CC Met Office Hadley Centre, UK 145 x 192 
HadGEM2-ES Met Office Hadley Centre, UK 145 x 192 

INM-CM4 Institute for Numerical Mathematics, Russia 120 x 180 
IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 96 x 96 
IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 143 x 144 
IPSL-CM5B-LR Institut Pierre-Simon Laplace, France 96 x 96 

MIROC4h Atmosphere and Ocean Research Institute (The University of 
Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology, Japan 

320 x 640 

MIROC5 Atmosphere and Ocean Research Institute (The University of 
Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology, Japan 

128 x 256 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies, Japan 

64 x 128 

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies, Japan 

64 x 128 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M), Germany 96 x 192 
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M), Germany 96 x 192 

MPI-ESM-P Max Planck Institute for Meteorology (MPI-M), Germany 96 x 192 
MRI-CGCM3 Meteorological Research Institute, Japan 160 x 320 
MRI-ESM1 Meteorological Research Institute, Japan 160 x 320 

NorESM1-M Norwegian Climate Centre, Norway 96 x 144 
NorESM1-ME Norwegian Climate Centre, Norway 96 x 144 

 1009 

List of CMIP5 models (32)  



   
 
 
 
  

: 

Basic validation of Monsoon representation: Taylor diagrams  
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FIGURES 1010 

 1011 

Fig. 1 Taylor Diagram of the annual cycle of precipitation simulated in the CMIP5 models over 1012 

the monsoon core region (10°N to 30°N, 70°E to 100°E). The monthly GPCP data is used as a 1013 

reference data. 1014 
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 1023 

Fig. 2 Taylor Diagram of the spatial pattern of climatological seasonal (JJAS) mean precipitation 1024 

simulated in the CMIP5 models over the Indian monsoon region (15°S to 30°N, 50°E to 120°E). 1025 

The monthly GPCP data is used as a reference data. 1026 
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Annual cycle of ISMR                                    Spatial pattern of JJAS ISMR 

Note that none of these metrics is used to exclude models from the analysis 



   
 
 
 
  

: 

Basic validation of IPO pattern; definition such that eastern Equatorial SST anomalies 
are positive (some uncetrtainty due to this criterion); pattern not always well reproduced 
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 1034 

 1035 

 1036 

Fig. 3 Regression maps of annual SSTAs onto the standardized low-pass filtered IPO index 1037 

(units are °C per standard deviation) for observation and 32 CMIP5 models. The grey contours in 1038 

observation and CMIP5 models indicate the regions where the regression coefficient is 1039 

statistically significant at 95% confidence level, which is assessed via a two-tailed t test; whereas 1040 

in MME (computed by averaging across all models) it indicate the regions where the regression 1041 

coefficient coincides in at least 28 out of the 32 models considered. 1042 

 1043 
Deleted: Fig. 3 Regression maps of annual SSTAs 1044 
onto the standardized low-pass filtered IPO index 1045 
(units are °C per standard deviation) for observation 1046 
and 32 CMIP5 models.1047 
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Basic validation of IPO pattern; Taylor diagrams of spatial patterns correlation 
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 1049 

Fig. 4 Taylor Diagram of the spatial regression coefficients obtained by regressing annual 1050 

SSTAs onto the standardized low-pass filtered IPO index over the Pacific basin (45°S to 60°N, 1051 

140°E to 80°W). 1052 
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 1061 

 1062 

Fig. 5 Regression maps of JJAS precipitation anomalies onto the standardized low-pass filtered 1063 

IPO index (units are mm/d per standard deviation) for observation and 32 CMIP5 models. The 1064 

green stippling in observation and CMIP5 models indicates the grid point where the regression 1065 

coefficient is statistically significant at 80% confidence level, which is assessed via a two-tailed t 1066 

test; whereas in MME it depicts the grid point where the sign of regression coefficient coincides 1067 

in at least 17 out of the 32 models considered. 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

Deleted: Fig. 5 Regression maps of JJAS 1074 
precipitation anomalies onto the standardized low-1075 
pass filtered IPO index (units are mm/d per standard 1076 
deviation) for observation and 32 CMIP5 models.1077 
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Teleconnection of IPO with Indian monsoon based on linear regression 
of the normalized IPO index with rainfall in the Indian region 



   
 
 
 
  

: 

Consider area average rainfall IPO regression over Indian land mass  
to distinguish ‘good’ from ‘poor’ models 
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 1078 

 1079 

Fig. 6 a Area average of the IPO precipitation regression maps (shown in Fig. 5) over Indian 1080 

land points (i.e., area enclosed within the black boundary shown in Fig. 6b), excluding northeast 1081 

region (i.e., area enclosed within the red boundary shown in Fig. 6b). CMIP5 model’s having 1082 

negative (positive) average regression coefficient is categorized as good (poor) model shown by 1083 

blue (red) bar in Fig. 6a. b and c Ensemble means of IPO precipitation regression patterns of 20 1084 

good (MME good) and 12 poor (MME poor) CMIP5 models, respectively. The green stippling in 1085 

MME good and MME poor indicates the grid point where the sign of regression coefficient 1086 

coincides in at least 15 out of the 20 good and 9 out of the 12 poor models, respectively. The unit 1087 

of regression coefficient is mm/d per standard deviation. 1088 

 1089 

Deleted: Fig. 6 a Average regression coefficients 1090 
(units are mm/d per standard deviation), obtained by 1091 
averaging the regressed JJAS precipitation 1092 
anomalies onto the standardized low-pass filtered 1093 
IPO index, over Indian land points (excluding 1094 
northeast region). b and c Averaged regression maps 1095 
of precipitation onto the standardized low-pass 1096 
filtered IPO index for good and poor CMIP5 models, 1097 
respectively (Fig 6a).1098 
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 1100 

Fig. 7 Ensemble means of the IPO SST regressions of a good (MME good) and b poor (MME 1101 

poor) CMIP5 models, which are computed by averaging the regression maps of annual SSTAs 1102 

onto the standardized low-pass filtered IPO index (shown in Fig. 3) across all 20 good and 12 1103 

poor models that are shown by blue and red bars in Fig. 6a, respectively. The green stippling in 1104 

MME good and MME poor indicates the grid point where the sign of regression coefficient 1105 

coincides in at least 15 out of the 20 good and 9 out of the 12 poor models, respectively. The unit 1106 

of regression coefficient is °C per standard deviation. 1107 
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Deleted: Fig. 7 Averaged regression maps of 1113 
annual SSTAs onto the standardized low-pass 1114 
filtered IPO index (units are °C per standard 1115 
deviation) for a good and b poor CMIP5 models 1116 
(Fig. 6a).1117 
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Lets look at the mean IPO SST regressions of ‘good’ and poor’ models 

There are some striking featues characterizing good and poor models,  
particularly tropical-extratropical SST anomaly gradient  

Good 
 
 
 
 
 
 
 
 
Poor 
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 1118 

Fig. 8 Scatter plot of the IPO precipitation regressions (units are mm/d per standard deviation) 1119 

averaged over Indian land points, excluding northeast region versus the difference between mean 1120 

IPO SST regressions (units are °C per standard deviation) over a the tropical (15°S to 15°N, 1121 

180°E to 95°W, box over the tropical Pacific in Fig. 7a) and extratropical (25°N to 45°N, 150°E 1122 

to 140°W, box over the extratropical Pacific in Fig. 7a) Pacific Ocean and b the Niño 3.4 (5°S to 1123 

5°N, 120°W to 170°W) region and Indian Ocean (10°S to 10°N, 60°E to 90°E). 1124 
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 1131 

Deleted: Fig. 8 Scatter plot of averaged regression 1132 
coefficients of precipitation anomaly (units are 1133 
mm/d per standard deviation) over the Indian land 1134 
points (excluding northeast region) and the tropical 1135 
(15°S to 15°N, 180°E to 95°W, box over the tropical 1136 
Pacific in Fig. 7a)-extratropical (25°N to 45°N, 1137 
150°E to 140°W, box over the extratropical Pacific 1138 
in Fig. 7a) Pacific SST regression gradient (units are 1139 
°C per standard deviation).1140 

Motivates to have a look at some scatter plots 

Tropical-extratropical SST anomaly gradient provides strong relationship, but why? 
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                Motivates to have a look at some scatter plots:  IOP SST anomaly 
                   pattern correlation with obs vs mean Indian rainfall regression  
 

Overall, the IPO SST pattern matters! So, it is worth trying to  
understand why some models do not reproduce a correct IPO pattern; is it related  
to a lack of STC involvement in the IPO dynamics? This should be addressed  
indeed, we currently do with PhD student) 
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 1201 

Fig. A2 Scatter plot between the IPO precipitation regressions (units are mm/d per standard 1202 

deviation) averaged over Indian land points, excluding northeast region and correlation 1203 

coefficients (shown in Fig. 4) representing the fidelity of CMIP5 models to simulate the IPO 1204 

patterns. 1205 

 1206 
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Note that models with CC > 0.5 all 
show ‘good’ rainfall regressions  
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 1156 

Fig. 11 a Regression of JJAS anomaly of velocity potential at 150 hPa from NCEP/NCAR 1157 

reanalysis (1948–1993) onto the standardized low-pass filtered IPO index. b and c Same as in 1158 

Fig. 11a, but for the averaged regressions for good and poor CMIP5 models, respectively (Fig. 1159 

6a). The unit of velocity potential is 106 m2/s per standard deviation. The vectors represent the 1160 

divergent wind (m/s). 1161 

 1162 

 1163 

 1164 

 1165 

Lets have a look at some atmospheric features of the IPO-Indian Monsoon  
teleconnection: 150 hPa velocity potential 

Obs 
 
 
 
 
 
 
Good 
 
 
 
 
 
Poor 

Adjustment of the Walker circulation is much clearer in the good models 
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Lets have a look at some atmospheric features of the IPO-Indian Monsoon  
teleconnection: Surface Pressure 

Obs 

One speculation why tropical-extratropical SST anomaly gradient is so  
important could be that by changing baroclinicity it modifies adjustment  
of the Walker circulation by inducing a low pressure in the northern subtropics 
or it could simply be a coincidence?; a hypothesis to be tested through idealised  
AGCM simulations. 
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 1166 

Fig. 12 a Regression of JJAS seasonal anomaly of SLP from NCEP/NCAR reanalysis (1948–1167 

1993) onto the standardized low-pass filtered IPO index. b and c Same as in Fig. 12a, but for the 1168 

averaged regressions for good and poor CMIP5 models, respectively (Fig. 6a). The green 1169 

stippling in observation indicates the grid point where the regression coefficient is statistically 1170 

significant at 80% confidence level, which is assessed via a two-tailed t test; whereas in MME 1171 

good and MME poor it depicts the grid point where the sign of regression coefficient coincides 1172 

in at least 15 out of the 20 good and 9 out of the 12 poor models, respectively. The unit of SLP is 1173 

hPa per standard deviation. 1174 
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Deleted: Fig. 12 a Regression of JJAS seasonal 1181 
anomaly of SLP from NCEP/NCAR reanalysis 1182 
(1948–1993) onto the standardized low-pass filtered 1183 
IPO index. b and c Same as in Fig. 12a, but for the 1184 
averaged regressions for good and poor CMIP5 1185 
models, respectively (Fig 6a). The unit of SLP is hPa 1186 
per standard deviation.1187 
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Conclusions: 
 
q  There is a strong teleconnection from the Eastern Pacific to the Indian  
      summer monsoon on interannual to (multi-) decadal timescales. 
 
q  The physical mechanism for this teleconnection is related to a modification  
     of the Walker circulation. 
 
q  IPO (or PDO) are the (multi-) decadal counterparts of the interannual Pacific 
     ENSO variability.  
 
q  CMIP5 models reproduce on average the Indian Monsoon Climatology and  
     annual cycle reasonable well. 
 
q  CMIP5 models reproduce the observed IPO spatial pattern with varying success. 
 
q Models with a better IPO pattern also reproduce the teleconnection with the  
     Indian Monsoon better, irrespective of the models ability to reproduce the  
     Indian Monsoon climatology. Of particular relevance are tropical-extratropical SST 
     gradient and  zonal SST gradient (e.g. eastern Pacific minus Indian Ocean).    
 
q  It needs to be further investigated why some models do not reproduce the IPO  
     spatial pattern satisfactorily. 



Introducing 
 
EDITORS-IN-CHIEF: Professor Roy M. Harrison and Dr. Fred Kucharski 

npj Climate and Atmospheric Science is an online-only, open access journal, dedicated to publishing the 
most important scientific advances in climate and atmospheric sciences. 
 
The journal is now open for submissions. 
 
Led by Professor Roy M. Harrison and Dr. Fred Kucharski, npj Climate and Atmospheric Science is part of 
the Nature Partner Journals series, and is published in partnership with the Center of Excellence for 
Climate Change Research at King Abdulaziz University.  
 
Find out more: nature.com/npjclimatsci  


