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ABSTRACT

In these notes, I describe a linear, continuously stratified
ocean model that has been successfully applied to a wide variety
of problems in wind-driven ocean circulation. The model is similar
to the inviscid model of Lighthill (1969) in that solutions are
found as expansions of vertical normal modes; however, the present
formalism also allows the vertical mixing of heat and momentum in
the deep ocean. These notes are intended to provide an introduction
to this kind of ocean modelling. Toward this end, assumptions built
into the model equations are carefully listed. Mathematical and
conceptual details, not usually dealt with in the literature, are
discussed. Finally, a number of solutions, encompassing many different
situations of geophysical interest, are found.

Due to the presence of vertical mixing in the model, low-order
and high-order modes respond quite differently to the wind. Low-order
modes are not strongly affected by vertical mixing. They tend to
adjust to Sverdrup balance by radiating Kelvin and Rossby waves from
the region of the wind. High-order modes are strongly affected by
vertical mixing. They sum to generate the Ekman flow component of

the flow field.
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FOREWORD

Dr. Julian McCreary is one of the most notable equatorial
oceanographic theoreticians in the world today. His talents are
so diverse and numerous that it would be impossible to list them
all here. (The editor would surely censor such a list, in any case.)

We had the privilege of a prolonged visit by Dr. McCreary during
the summer of 1979. He delivered a series of lectures/seminars on
equatorial dynamics. The material was so useful that we decided it
should be published as a technical report. The process of producing
it has been a long, hard one, and at times, I fear, frustrating for
Dr. McCreary. But finally most of the mistakes have been caught, and
this magnum opus is ready to go to press.

T hope the reader finds this material useful. 1In addition to
Dr. McCreary himself, special thanks are due Karena Yee, Jan Witte,
Wendy Tanaka, and Rita Pujalet for making this volume a reality.

Dennis W. Moore

Director

Joint Institute for Marine and
Atmospheric Research (JIMAR)

December 25, 1980
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INTRODUCTION

A vast number of theoretical studies consider the response of the
ocean to a driving wind stress. In many of these studies the ocean
model is similar to the linear inviscid model studied by Lighthill (1969)
in that solutions are found as expansions of the possible vertical normal
modes of the system. This approach has had considerable success in
describing transient phenomena that occur in the tropical ocean; in
particular, the approach has demonstrated the importance of equatorially
trapped baroclinic waves., The inviscid model, however, fails to produce
realistic steady ocean circulations; all steady flows are necessarily
contained in the surface mixed layer.

In this set of notes T describe an extension of the inviscid model
that allows the vertical diffusion of heat and momentum into the deeper
ocean, This viscid model retains all the mathematical advantages of
Lighthill's approach, and also produces realistic steady solutions. My
purpose is to discuss conceptual and mathematical details involved in this
type of ocean model that are not usually dealt with in the literature. I
hope that those readers who are not familiar with the subject will find
these notes to be a useful introduction and that the readers who are
familiar with the subject will find them a convenient reference source. The
notes are arranged in four major sections in the following manner.

Discussion of the ocean model

In this section T introduce equations of motlon and boundary
conditions. In order to better understand the limitations of the model,
the assumptions built inte it are carefully listed. I choose a convenient
form for eddy viscosity and diffusivity that still allows solutiomns Co
be found as sums of vertical normal modes. It is possible to introduce
a "mathematical" mixed layer at the ocean surface simply by assuming that
the background density field is homogeneous there. Properties of this
mixed layer are discussed. I define a number of terms that are useful
for describing the dynamics of the model. Finally, I point out that
high-order vertical modes can affect the solutions much more than was
suspected by previous workers.

Simple solutions

Here I find solutions to a highly simplified set of model equations.
Although solutions of this set are often not a good approximation to
those of the exact equations, they can be found with a minimum of
mathematical effort, Therefore, they serve to illustrate mathematical
techniques used in the more complicated models considered in the later
sections. T show how to find the model response to a patch of zonal
wind stress when the wind oscillates at frequency 0, and also when it



is switched on at some initial time. Sclutions are found by using
Fourier and Laplace transforms, and some elementary theorems are
derived. An important property is that low-order modes can adjust to
Sverdrup balance when the winds are steady. Another is that high-order
modes generate the Ekman drift associated with the flow field.

Equatorial sclutions

The techniques useful for finding solutions in the previous section
are again used here to find equatorial solutions. The difference is
that now solutions must be found as expansions of Hermite funections, and
algebraic nastiness results, (The algebra-to-physics ratio in this
section is uncomfortably but unavoidably high!) The model response to
both an oscillatory and a switched-on zonal wind field is again determined.
The effect of meridional continental barriers on the equatorial flow is
discussed. Solutions compare favorably with observaticns ef the
Equatorial Undercurrent (McCreary, 1980a, 1980c) and provide a possible
explanation for some aspects of El Nino (McCreary, 1976, 1977, 1978).
Again, for steady winds low-order modes of the model tend to be in
Sverdrup balance, High-order modes tend to be in Yoshida balance, and
these modes sum to generate the meridional circulation pattern
characteristic of equatorial Ekman pumping.

Eastern coastal solutions

In this section I consider another simplified model that can
describe the wind-driven ocean response in the presence of an eastern
ocean boundary (like the coast of California), Because this model is so
similar to the equatorial model, one might expect solutions to have
similar features. In fact, a meridional wind field (with no curl)
generates patterns of coastal upwelling and alongshore flow in good
agreement with observatien. In particular, the model generates a
Coastal Undercurrent (McCreary, 1980b, 1980c).



DISCUSSION OF THE OCEAN MODEL

Equations and assumptions

A complete set of non-linear fluid equations is
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Most oceanographers agree that equations (1), or a similar set, can
describe oceanic circulation. These equations, however, have some
unpleasant drawbacks., First, they must be solved numerically on a
computer with CPU-consuming routines. Second, solutions are often too
complicated to provide much insight into the underlying dynamics. The
approach that I take here is to study a simpler set of equations that
allows solutions to be found analytically. This gimplification requires
the neglect and/or modification of many of the terms of (1). So here I
give up the effort to find exact solutions for the sake of mathematical
simplicity and dynamical understanding.

The linearization of equations (1) is standard. The following
development is an expansion of the discussion in MeCreary (1980a).
Similar developments can be found in Veronis (1973), Moore and Philander
(1978), and elsewhere.

ASSUMPTION #1: Drop non-linear Cermsg from the momentum
equations. This neglect is sensible because there are linear terms that
play important {(often dominant) roles in these eguations. Moreover, only
when the linear solution is known can the effects of non-linearities be
appreciated, Nevertheless, there are numerous studies that do illustrate
the importance of these terms. For example, two recent papers that
discuss the effects of non-linearities on the Equatorial Undercurrent
are Semtner and Holland (1980), and Philander and Facanowski (1980).

So I classify this assumption as QUESTIONABLE and reserve judgment as to
its usefulness until the linear solutions are compared with observations,

ASSUMPTION #2: Drop horizontal Ceriolis force terms, Y.
There are no studies which suggest that these terms ever play an
important role anywhere in the world's ocean. I classify this assumption
GOOD,

ASSUMPTTON #3: WNeglect horizontal friction by setting E = 0.
There is little evidence that describing horizontal mixing processes with
an eddy viscosity is realistic. Models that depend critically on the
presence of E are therefore suspect. 1 classify this assumption SENSIBLE.

ASSUMPTION #4: Keep vertical diffusion of heat and momentum.
There are two good reasons for not neglecting vertical mixing as well as’
horizontal mixding. First, vertical mixing is necessary iun order to
introduce wind stress into the ocean, Second, only when heat and momentum
can diffuse into the deeper ocean do realistic steady solutions result.
I classify this assumption NECESSARY,

ASSUMPTION ##5: Impose the hydrostatic relation by neglecting
w, and (Uwz)z. The neglect of wy affects only problems where frequencies
of the order of the Vaisala frequency or above are invelved, and I am not
interested in these frequencies. The neglect of (\)wz)z filters out a very
thin boundary layer near the ocean surface which is dynamically unimpor-—
tant for the rest of the flow field, This assumption is GOCD.



ASSUMPTION #6: Impose incompressibility by meglecting the
right-hand side of (1b). With a scale analysis, Veronis (1973) showed
that for typical wind-driven ocean circulations this assumption is VERY
GOOD., Essentially the neglect of these terms amounts to making the
Boussinesq approximation. {(Veronis alsoc showed that the right-hand side
of the heat equation cannot be neglected.)

ASSUMPTION #7: Linearize the heat equation about a steady
thermohaline—-driven background state. The difficulty with the heat
equation is that it involves at least one non-linear term of well-known
importance, The vertical advection of the density field can play a
powerful role in the dynamics of equations (1)} by directly affecting the
pressure gradients in the deeper ocean.

It is possible to obtain an approximate linear heat conservation
equation that retains this key process. Assume a steady thermohaline-
driven background state ﬁB(x,y,z), pg(x,¥,2), and pp(x,y,z). Then wind-
driven departures from this background state are given by

S gy Tapeug ]
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Since the background thermohaline velocity field is not known, it is not
possible to retain the terms in square brackets. T dignore the non-
linear terms in curly brackets for the same reasons as in Assumption #1.
Finally, pp is assumed to be a function of z alone, so that the terms in
parentheses are identically zero. This linearization of the heat
equation is common; the scheme was first utliized by Fjeldstad (1933).

(2)

A large number of guesses are involved in this linearization scheme.
Non-linear terms are ignored, The flow field of the thermohaline circu-
lation is not known and so is neglected. Finally, a guess is made for
pg(z). I classify the linearization QUESTIONABLE. TIts worth can be
judged only after a careful comparison of model results to observations.

ASSUMPTION #8: Choose a mathematically convenient form for
the mixing of heat and momentum. Mixing coefficients, Vv and K, are generally
taken to be constants, but in the real ocean they precbably are not.
Moreover, there is no reason that the mixing of heat (or of momentum, for
that matter) is necessarily described by an expression 1like (sz)z.
choose depth-~dependent mixing coefficients.

J = K = AN, , (32)



and change the form of the mixing of heat to

(afi)z — Gif]aaj (3b)

The choices (3a,b) are crucial to the entire approach taken here. As we
shall see, only if these choices are made is it possible to find solutions
as expansions of vertical normal modes. Previous workers have already
recognized the mathematical convenience of (3a,b); Fjeldstad (1963), and
later Mork (1972), used them in their studies of internal waves. Choosing
V = K amounts to setting the Prandtl number to unity. Equation (3a)
states that mixing coefficients decrease wherever background
stratification is large., Because stratification does inhibit mixing in
the ocean (3a) is physically reasonable {(Turner, 1973).

After these assumptions are imposed, equations (1) reduce to
the following set:

Uy = fv o+ Te = <WA;%>%’

T - “/gj’ (4)

N”':“l& (5)

and factors of p (the average density of the water column) are dropped.

These are the equations of motion discussed in the remainder of these
notes.



Boundary conditions and more assumptions

Because there are eight z-derivatives, eight boundary conditions
imposed either at the ocean surface or at the bottom are needed to solve
this system. At the ocean surface I assume

du, = 7, vy = 7 weo f£=°
(6
@ z2=o0. )

ASSUMPTION #9: Requiring w = 0 at the surface imposes a rigid
1id. This assumption only affects the barotropic mode. The transient
response of the barotropic mode is now instantaneous rather than just
very rapid. The baroclinic modes are weakly affected to order £ = Ap/lo.
So for the low-frequency or steady problems of interest here, this
requirement does not significantly alter the model response. I rate this
assumption GOOD,

ASSUMPTION #10: Requiring p = 0 at the surface assumes that
the atmosphere is a comnstant-temperature source of heat. This choice is
unpleasant because it prochibits the ocean model from developing any sea
surface temperature changes. A more desirable boundary condition,
perhaps, would specify the heat flux at the ocean surface rather than
its temperature there. Unfortunately, in order to retain the ability to
expand solutions as sums of vertical normal modes the fixed temperature
condition is necessary, I rate this assumption UNFORTUNATE, but
NECESSARY.

At the ocean bottom T take

7};_&2:0 'J\)' = <& LI = o f"o,

) z } J

(7

ASSUMPTION #11: Requiring stress to vanish at the ocean
bottom filters out a bottom Ekman layer, This assumption will only be
a problem if solutions develop large bottom velocities, but in most
cases they do not. TFor example, McPhaden (1980) has modelled the
Equatorial Undercurrent using conditions of no-flow and also no-stress
at the ocean bottom., The choice of bottom boundary conditions has little
effect on the near-surface currents, Again this assumption is necessary
in order to expand the solution into vertical modes. I rate this
assumption NECESSARY, and also NOT BAD,.



ASSUMPTION #12: Requiring p = 0 at the ocean bottom assumes
that the bottom acts as a constant-temperature source of heat. Because
the flow field is surface-trapped, the solution is not strongly affected
by the nature of the bottom boundary condition. Again this choice is
necessary in order to expand solutions into vertical modes. As in
Assumption #11, this choice is NECESSARY, but NOT BAD.

The major point here -is that the expansion into vertical normal
modes requires specific boundary conditions as well as specific forms
for mixing coefficients. Equations (6) and (7) are the only possible
choices that allow this expansion. Most of the conditions are reasonable.
The most limiting one is the requirement that p = 0 at the ocean surface,
and as a result the model cannot genérate sea surface temperature
anomalies. An obvious topic for future research is the relaxation of
this restrictiom.

Barotropic and baroclinic modes

It is convenient to rewrite the last three equations of (4). Then
equations {4) become

]
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The first three eguations form a 3 x 3 set that can be solved for u, v
and p. With p known, the last two equations then give the w- and p-
fields.

Note the similarity of the z-operators (in parentheses). This
similarity was insured by the choices (3), and is necessary in order to
separate out the z-dependence from the problem. The similarity suggests
that we expand solutions inte eigenfunctions ¢n(z) that satisfy

! |
N; f T (E %1%)} - ?f Llln, (9a)

i



Although it is not yet apparent, boundary conditions on P _which are
consistent with (6) and (7) are o

|
—_— = (9b)
Ny 7Lna =0 @ e=0 "0,

It is useful to write the eigenfunction problem, (9a,b), in an alternate
Way,

2
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A convenient normalization of these function is

Loy = 1. | an

Since the wn's are solutions of a Sturm-Liocuville equation, it follows
that they are orthogonal. Moreover, the eigenfunctions can be ordered
so that as n increases c_ decreases; in that case c o i/n.

T now look for solutions to (8) as expansions of the form

0 0d ]
RO TR AN EE:N 33
oo oo g
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2 \ 0o 0
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~D

A practical model truncates these sums at some number n = N, N must be
chosen large enough so that the solutions are well converged.
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To find the equations governing the expansion coefficients of (12},
I use the standard technique of multiplying each equation of (8) by
For example, the left-

P, and then integrating over the water columm,
hand side of the zonal momentum equation becomes

[t
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As another example, consider the wz-field equation
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The equations for the coefficients are therefore

[
x7)

(‘;t*_:%)u‘n - ,{VH + Tnx
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<
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where

o oy

F, = O}L:J,z ) - /"}4—:{; ’ (13b)
-0 -

The first three equations form a 3 x 3 set that can be soclved for w,, v
and p,. 'With p, known, the other coefficients, w, and p,, are also
known. Equations (12) then specify the complete flow field.

Note that friction enters (13) in the form of simple drag, with a
drag coefficient A/cnz. Because c¢_ decreases like 1/n, even if drag is
unimportant for the low-order modes, eventually it will dominate the
dynamics of the high-order modes. As we shall see, the fact that drag
is mode-dependent in this model is crucial for its ability to generate
realistic flow fields.

PROBLEM #1: Carry out appropriate integrations of all the
equations of motion and show that equations (13) result.

A possible eigenvalue of (10) is e, = @, TYor this eigenvalue,

OIS

that is, the barotropic mode is depth independent. Vertical friction
has no effect on this mode since A/co2 = 0. The other eigenvalues
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are finite. Equation (10) then requires that

[O}Z,,(i')c%e = o,

Thus, for these modes horizontal transport vanishes. As modenumber, mn,
increases these modes are more and more wiggly. It is reasonable, then,
that as the modenumber increases the effect of vertical friction also
increases markedly.

A surface mixed layer

It is possible to introduce a surface mixed layer into the model
simply by assuming that NB2 = (0 for z » “H. The eigenvalue problem
defined in (10) 1is still well posed, and so the eigenfunctions as well
as solutions (12) remain well behaved. [Strictly speaking, since factors
of NB2 appear in the denominators of several quantities, one must first
take Np(z) = € for z > ~H, find the solutions (12), and then determine
the limit € + 0.]

Properties of the mixed layer. This mixed layer has been introduced
entirely in a mathematical way with no appeal to physics. We should
reflect a bit on its properties to see whether it is at all physically
meaningful. According to (10) and (12), the mixed layer has the following
properties:

1. v and Kk are infinitely large.
2. u, v, p are independent of =z,
3. w varies linearly.

4, p is identically =zero.

5, Stress, defined by % = lim vﬁz, varies linearly from a
surface value set by the wind to a value at z = -H set by
matching to the deeper ocean. Therefore, wind stress acts
as a body force in the layer. Because the normal mode
expansion for the stress is not uniformly convergent, this
property is not obvious, and no proof will be attempted here.

6. Heat flux, defined by Q = %;8 (Kp)z, is constant in the layer.
So whatever heat is absorbéd (lost) at the interface is lost

{absorbed) at the surface,

All of these properties are those we might expect in a real well-mixed layer.
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Relationship to the inviscid model. Now the analogy with
Lighthill's inviscid model can be seen most clearly. Lighthill assumed
2 well-mixed surface layer just as I have done here, but took the deeper
ocean to be inviscid. As a result, stress in his surface layer varies
linearly from a surface value set by the wind to zero at the base of the
mixed layer, It is interesting that Lighthill's model is just (13) with
& (the measure of viscosity in the deepe} ocean) set to zero.

Although the inviscid model has successfully described a number of
time~-dependent ocean circulation problems, it cannot describe steady flows
at all, Reasons for this failure are evident in (13). When 3, = 0 and
A = 0, equations (13a) imply that w, = 0; thus, w = 0 and the inviscid
model cannot describe steady upwelling. Furthermore, in these limits the
first three equations e¢f (13a} can be summed exactly. They imply that
steady inviscid flow is all contained in the surface mixed layer. There
is no vertical structure that in any way resembles the observed steady
equatorial or coastal flow fields.

Limjtations. The mixed layer introduced in this way has the
unpleasant property that it can generate density inversions at the base
of the mixed layer. TFor example, in the steady state whenever there is
downwelling of fluid out of the layer a density inversion occurs. To
see Lhis, [lrst realize thatl

2

}é%‘»o) /}ch!a L0 @ 2= -H.

- D

Then, according to (12) and (13a),

Because of the linearization of the heat equation, such distortions
of the density field are expected, Equation (14) occurs because the
linearizarion keeps the depth of the mixed layer fixed during upwelling
and downwelling. We can, perhaps, interpret a region of density
inversion at the base of the mixzxed laver as a deepening of the mixed layer
there.

Useful definitions

One of the benefits of theory is that it provides a language that
can subsequently be used to describe the real world. For example, the
terms "Ekman flow" and "Sverdrup flow" are commonly used to discuss ocean
circulation, Yetf neither of these terms is capable of describing the
baroclinic structure of the circulation (because they emerged from the
study of ocean models that ignore that structure), An adequate language
does not vet exist with which haroclinic flows can be discussed., As a
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result it is difficult to describe the dynamics of this continuously
stratified model. I have found it useful to introduce the following
definitions,

SYERDRUP BALANCE: A vertical mode in which the dominant
balance of terms is

*~{V? + e T F
J(cc,, + ‘th’ = GH, (15)

is said to be in Sverdrup balance. An ocean flow in which all the modes
are in Sverdrup balance is a Sverdrup flow. These definitions are
appropriate because (15) is just the balance of terms of the "classic"
depth-averaged Sverdrup theory, now applied to each mode.

EKMAN BALANCE: A mode in which the dominant balance of terms

[Au]) - v, = F

is
)

(Al fun = g, ae)

is said to be in Ekman balance. An ocean flow in which all the modes are
in Ekman balance is an Ekman flow. These definitions are appropriate
because the solution converges to a flow field very much like the classic
Ekman spiral at mid-latitudes. Note that at the equator the response of
the barotropic mode is undefined, demonstrating the singularity of mid-
latitude Ekman theory as f » 0.

PROBLEM #2: Assume that N_ is a constant. Then the vertical
normal modes are cosines, and v and E are constants. Assume that all
modes of the model are in Ekman balance and find the solutions In the
form (12). Finally, sum the series (a useful reference is Jolley, 1%961),
and show that the solutions are exactly the classic Ekman spiral.
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PSEUDO-EKMAN BALANCE: 1In this balance the terms in square
brackets in (16) are absent. An ocean flow in which all the modes are
in pseudo-Ekman balance is a pseudo-~Ekman flow, The mid-latitute
solution no longer counverges to an Ekman spiral, Instead, all motion
is contained in the surface mixed laver, and the layer moves as a slab
at right angles to the wind. If there is no surface mixed layer, the
solution does not converge., Pseudo-Ekman flow is undefined at the
equator because the barotropic mode has no solution there.

YOSHIDA BALANCE, X-INDEPENDENT FLOW: Ar interesting balance of
terms occurs when the driving wind stress is assumed to be x-independent.
The flow field is therefore also x-independent and in steady state is

—c&’:“‘" - f\/w = F:,,

[Lv] v S g = 6, an

& ?Dn + VY, = a,

[
n N

Away from the equator this balance is essentially the Ekman balance.
Equations (17} differ fundamenrally from the simpler Ekman balance in

that the baroclinic pressure gradients, Ppy» are retained. As a
consequence, strong equatorial zonal jets are in geostrophic balance,

and the equatorial Rosshy radius emerges as a natural width scale. 1T
refer to equations (17) as the Yoshida balance, and an oceanic flow in
which all modes are in Yoshida balance as a Yoshida flow. [Yoshida, 1959,
was first to apply a system of equations like (17) in a wiand-driven model
of the Equatorial Undercurrent.] A Yoshida-balanced barotropic mode is
undefined at the equator.

PSEUDO-YOSHIDA BALANCE: In this balance the term in square
brackets in (17) is absent. An oceanic flow in which all modes are in
pseudo-Yoshida balance is a pseudo-Yoshida flow. At mid-latitudes this
balance is the pseudo-Ekman balance, At the equator the respounse of the
barotropic mode is undefined.

LOCAL DYNAMICS: A balance in which the effects of radiation are
not important. In such a dynamics the response of the mode looks very
much like that of the driving wind. More precisely, if T = TOX(X)Y(y),
then the model response is local provided that it is proportional to
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X(x)Y(y). (An example iz a model in which all modes are in Ekman
balance.) Along ocean bhoundaries and the equator I relax thig definition
to include one or the other of X(x) or Y(y). In other words, along a
meridional coast the dynamics is said to be local provided the model
response is proportional to Y(y), but not necessarily X{x). At the
equator the dynamics is local if the response is proportional to X{(x),
but not necessarily to Y(y}.

NON-LOCAL DYMAMICS: A balance in which radiation can occur
and plays a strong role, The response of a particular mode does not
look like the driving wind. (For example, in the Sverdrup balance the
response of u, and p, involves zonal integrals of X, and v_ involves
Y..) If the forcing is confined to a wind patch of limited extent then
tﬁere is a significant response outside the region of the wind.,

The importance of high-order modes

Previous workers have argued that only the lowest—order vertical
modes are needed to describe the response of ocean models (Lighthill,
1969). They assume that a measure of the amplitude of the response of
each mode is simply F,. Since F, decreases rapidly with n for realistic
choices of pB(z) (McCreary, 1977), their conclusion follows. The flaw
in this argument is that the model response is not simply measured by
F alone. 1In fact, in the ocean model discussed here, high-order modes
are highly visible in the solutions.

There are two major reasons for this visibility. First, the response
of the model depends on c, as well as F,. For example, in some of the
solutions a measure of the response, q,, 18

Because c, & 1/n, these measures weaken much more slowly with n than
does F, alone (Merrill and Geisler, 1980). Second, for steady winds the
presence of radiation in the model allows low-order modes to come Iinto
Sverdrup balance. If the wind has no curl then there 1s no flow
associated with these low—order modes and they never appear in the flow
field.
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SIMPLE SOLUTIONS

In this gection I discuss a popular simplification of (13) that
ignores both the drag and acceleration terms in the momentum equations of
(13). The equations of motion reduce to

~fv, o« Poc = I:;)

fu, + Ty = <, (18a)
AL —'L; + U, * \/ﬂfj = CJJ
c"ﬂ

where

n

[

4
>

4

(18b)

For convenience, T ignore meridiomnal winds throughout this section.

Many of the variables in subsequent equations should he labelled
with a subscript n., TFor notational simplicity T dgnore this subscript
whenever possible, I rvetain it only if confusion might result from its
absence.

Are equations (18) a reasonable simplification to make? To discuss
this question, I compare equations involving v alone. The exact v-
equation resulting from (13) is

(:) <:> C:) ffz

. % .
2 Y o+ ¥ A } - AW TV o+ v
[ u)( . 33> + C:L v C:L /fg » (19)
= 2 —F - F
C-Ll j)c.

The approximate v-equation resulting from (18) is

-

—'A.-oJ-—Jg-_-v +/5Vx = —4&)_{7}:" ]——jv.. (20)

Equation {(20) differs from (19) in the absence of the terms in square
brackets. So, equations (18) will be a useful approximation only if the
neglect of these terms does not seriously alter the nature of the solutions.
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Clearly, the approximation is valid only if term C:) << term (:).
This property will hold provided that

J = L a A
£ T~ f an o < f -

The first inequality requires that the time scale T of the forcing is
much longer than the local imertial period. Thus, equations (18) cannot
describe the generation of inertial or gravity waves in the oecean. In
fact, these waves are completely filtered out of this model. The second
inequality cannot always be valid. TFor the low-order modes it is true
that Afc? < f, but eventually for the high-order modes the sense of this
inequality is reversed. This error is simply an indication that the high-—
order modes of (18) are in pseudo-Ekman balance, whereas those of (13)

are in Ekman balance, Therefore, the distortions caused by the absence of
term are well understood; its neglect is not serious.

It is also necessary that term << term @, which requires that

- )
L?< > &£ and Lj > %

where a”! = ¢/f. 1In other words, the horizontal length scales of solutions

to (18) must always be greater than the local Rossby radius, o~ . Solutions
almost always fail to satisfy one or the other of these requirements., For
example, near an eastern ocean boundary, solutions develop narrow coastal
jets for which Ly S a~!. Even in the ocean interior, well away from ocean
boundaries, these inequalities are not always satisfied [see discussion
following (25)1. Therefore, we can expect that distortions caused by the

abgsence of term will be quite severe, and the use of (18) to model
the real ocean 1s suspect,

Oscillating winds

I show here how to solve (18) when the wind field has the fo;m
2t
= %X V) e
) (21)
- F - 7 X0 YY) aat o st
w /‘3}%1-4% € = Ton X6 y(ﬁ) e ,
-

where Top 18 obviously defined. The functions X(x) and Y(y) are assumed

to be zero for both x and v sufficiently large, so this wind field describes
a wind patch of limited extent. Note that with this choice of wind field
iw is no longer an operator; rather it is just the complex number

,;,UJ:;(S'-‘E—A,

S
Cﬂ

(22)
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A straightforward method of solution is to solve (18) by taking
Fourier transforms in x. Denote any transformed variable by a tilde,

that i1s, the Fourier transform of q(x) is q(k). Then according to (20)
¥ is given by

= F **’ng (23)

To invert this Fourier transform I use the easily proved theorem

7 L XL lax
—If-—a > AeM/ e § dx. (2
. _

The choice of lower limit, L, is not specified in (24). We must appeal
to the physics of the problem to set this lower limit [see discussion
of (28)]. With the aid of (24) it follows that

-

| § N P
ve awd JF) TFTRL
L

. , >
| ,L-“;)—OCY- -

N,
‘Fe/g e s mel (25)

a

It is easy to see that (25) is not accurate for sufficiently large
values of X or y. For example, assume that the ocean is inviscid and

that £ = By. I rewrite the exponential in the alternate ways
. = e -d‘x)
i Loix (ﬁ ) (Y
e = a
) . _ ay. - ox
Thus, (25) oscillates with wavelengths lx = 21/ o) and Ay = 2/ (g o)

in the zonal and meridional directions, respecrlvely. If x > c/ag, then
L, < a~'; if y > c/g, then L, < @', The distance c¢/0 need not be too
large, A typical value of c for the n = 2 vertical mode is 100 cm/sec.

At the annual frequency, then, ¢/0 is just 5000 km. Schopf et al. (1980)
discuss this breakdown of (25) in greater detail.



22

Evidence of radiation. Each term of the solution (25) has the form

Rk 2k +aat
(cansﬁ) f X 4 x* (26)

€ X <
L 3

where

k: Ll = a’oc:--n ;A—-i (27)
N I

Equation (26) describes a wave with amplitude given in curly brackets.

The wave number of the radiation, {(o/f)a®, is just that of a nondispersive
Rossby wave. In contrast to the case of inviscid models, the radiation
damps as it propagates with an e-folding scale, (Re?)/(Ac?) . Since the:
integral in the amplitude need not be zero outside the region of the wind
patch, (26) describes the excitation and radiation of a damped Roasby
wave from the patch. Note that (26) still exists when o + 0. In this
steady limit radiation does not propagate away from the wind patch, but
simply decays away from it. It is useful to continue to refer to such
steady solutions as Rossby waves.

The choice of lower 1limit in (25) can now be made. The group
velocity as well as decay direction of the Rossby waves 1s westward., To
insure that no radiation shows up east of the patch, L must be chosen to
be any position entirely to the east of the wind patch. In this unbounded
ocean it is sufficient to take

L = + o, (28)

Dynamics. Consider the steady weak-drag (A/c? + 0) limit of (25).

e — T
—

-
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In this limit the e-folding decay scale of the Rossby waves, |k_1[, is
nuch longer than the width scale of the wind stress, Lx; that is,

lkl Lx e« |,

This situation is shown schematically in the diagram for a "top hat" wind
stress distribution., The solid curve shows the locally driven response,
and the dashed curves show the form of the Rossby waves excited at the
edges of the wind patch. In this case, the integrals of (25) can be
approximated by

KL = [ Xde oY), ey

L]
-]

Ignoring the small correction term, (25) reduces to

V=dﬁi_fo,%"‘i"=‘£y‘ (29"

jg }

Consider the steady strong-drag (A/e? > ») limit of (25). As is
shown in the figure,

which is just the Sverdrup balance.

e
s
~

f

1
\\l
N

.—(—-———L!'—'—-'—b-

#&,qu*‘

the Rossby waves now decay before they can cross the region of the wind.
As a result,

kL >>
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and the integrals of (25) reduce to

/K;!“Falx i :E_ . O(ﬁi;)- | (30)
- |

Again ignoring the small correction term, (25) becomes

W ol F (31)
which is just pseudo-Ekman balance.

Recall that the size of A/c? increases markedly with modenumber, n.
Therefore, in steady state the high-order meodes are always in pseudo-
Ekman balance, and only the low-order modes have the possibility of belng
in Sverdrup balance, It is possible to choose a value for A so large
that none of the low-erder modes are ever in Sverdrup balance; however,
for realistic choices of eddy viscosity (where 1 < v = 100) a few of the
low—order modes (n £ 5-10) always tend to be in Sverdrup balance.

PROBLEM #3: I have shown here how to solve (18) to obtain the
v _~field, Find the u - and P -fields using similar techniques. Show
that these fields are also in Sverdrup balance when drag is weak and in
pseudo-Ekman balance when drag is strong.

Transient foreing

T show here how to solve (185 when the forcing is a patch of wind
turned on at time t = 0. That is, the wind has the form

75 = X YR HAY
X4 Y() HED

" /%44, ’

Hy =

(32)

where
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A straightforward way of solving (18) in this case is to take Fourier
transforms in space and Laplace transforms in time. Denote any Laplace-

transformed variable by a carat, that is, the Laplace transform of q(t)
is G(s). Then according to (20), ¥ is given by

R
S(S+ —;——,«.k,é-) ’

It is useful to rewrite this expression as

- —

2
v

~ A
s - _ N X Y Y R X (
_V 7o ﬁ s § ﬁ)s(Sr-ﬁ}_ﬂ-;hé) y 33)

<
The Laplace inversion of (33) is easy with the aid of the transform pair,

s+b L h-a —at
—_— > _ e
S'(S+¢L) a. a_

*

y o A A kAt -4t
Ve mpleghe - g (Y-4) LTt et
A =r I

or, after rewriting,

. kAt -4
-Z-&XH&) ~ (-—]cZ )%{P) < H(t)
jg ikv‘%t - Ay (34)

Y YN A - e
"7;()‘ f#')xc"‘ A - Sk Bl e

To complete the solution I now find the inverse Fourier transform
of (34).

Appropriate transform pairs can be found by using the convolution
theorem of Fourier transforms

<1
Il

s

F& —w Fr G- [ Fee)gond, (3%)

oo

Consider the following examples.
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1. Suppose that
F= e —> F:-'A_(K'rad:))

and G = X, Then (35) gives

S X o> XGeit), (362)

2., Suppose that

= !

F-

R K
k-sa ) ¢ -we My,

and G = X, Then (35) gives

U S ST

Rotdo (36b)

- -}

) ’
. ax X
= —«a / e X dx,
P
Equation (24) is a slightly different version of this transform pair.

3. Suppose that

~ ~ Akk —~ fv- )
F = e X, G R
Then according to (35),
f;—kL L ax o ’
- aw
e X — i e e UG A, (60
ke v ia X

With the aid of (36a,b,c) the v—=field is easily shown to bhe

_ A
v - 7‘;%— X0y H(t) - 7;(—)}.5~ %{r—-) X(x+ t) e &t ua
A 3 Y ! A:{x _Ai”g‘cl ’
-}- 'y ?:(\—?—--ﬁ'-?-) e F SN R COP N 16 37
< - Ag
e ©F X(Kf'?éf)cl,x H(-&)
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Lighthill (1969) obtained this solution for the case A = 0,

Dynamics. Does (37) reduce to pseudo-Ekman balance when drag
is strong? In this case A/c? + © and I make the approximation

A m? 45.ﬁ£ = C)
e?FK/e < F X dx' e _jffj_
o0 C. f

Lim = -xgu«xwa) 7 (- %) X(""?’zf)e ey

~X{x) #i
CAF (L R[EE  Lea 4y,
o SF

7a T}‘ X{xy HE), (38)

(
!

So, the high-order modes come instantly into pseudo—Ekman balance after
the winds turn on, and thereafter remain in that balance. The set-up
of pseudo-Ekman flow occurs instantly because inertial waves have been
filtered out of this model.

Does {(37) reduce to the Sverdrup balance for low-order modes where
drag is weak? In the limit A/c? -~ 0 (37) reduces to

7 2 X6 HEE) - 7, (%— %r) X(cr A HE., @

/Z&.M v = -
A/c.l.—)D

Just after the winds turn on {(that is, when t = 0+), (39) is just the
pseudo-Ekman balance. At later times, however, the radiation of Rossby
waves becomes important. The last term of (39) propagates westward as

a packet of non-dispersive Rossby waves. The second term is just the
expected Sverdrup balance. So (39) describes the set-up of Sverdrup
balance via the radiation of Rossby waves from the wind patch. The mode
comes into Sverdrup balance only after these transient waves have passed
out of the system. The following diagram illustrates schematically

this response for a wind patch confined to the region 0 < x < L,. The
response is shown initially (dashed curve) and also at a later time t
{solid curves).
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initial pseudo-Ekman flow

final Sverdrup flow
transient waves

PROBLEM #4: Find the u,~ and py-fields generated by a switched-
on wind, Again show that the solution consists of a local pilece and a
propagating piece; however, show that the propagating piece advances as
a front {rather than as a blob separate from the locally forced region).
Show that the weak—- and strong~drag limits are again the Sverdrup and
pseudo-Ekman balances, respectively. Draw a schematic diagram of the
solution,
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EQUATORIAL SOLUTIONS
In this section I find solutions to the full set of mode equations

) w, - ]CVV, + 'an = FH

}

iovy ¥ fu, Try = @ (40a)
Aw:E-E_ + U, ¥ \'Jy'j = o,

and also another simpler "filtered" set
AW, = an t Tu = En
fu” - T%j = o, (40b)
A;.J-;L: + U \/M'7 = 0o,

where iw is the operator given by (18b). Both sets differ fundamentally
from (18a) in that they retain the term iwu,. Keeping this term aveids
singularities at the equator, In the remainder of this section I show
how to find solutions to these sets of equations on the equatorial
B-plane, that is, when :

f= Ay

In this case, the solutions can be written in a mathematically convenient
form and in the tropical ocean they are insignificantly altered. Again,
for convenience I ignore meridional winds. T retain the subscript, n,
only when confusion might result from its absence.

To see the conditions under which (40b) is a sensible description
of the ocean, I again compare v—-equations. The exact v—equation is

s
. I f
AV e L =V + 4w -5 Vv *'/g‘-’x
LSS

{(41a)
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whereas {(40b) gives

. f s
wi) - Vv + gv = lwLF+ Fy. (41b)
A j'j | - /é X C}_ +

Equation (41b) differs from {(4la) in that the terms in square brackets
are absent, and will be a useful approximation only if this absence does
not seriously alter the character of the solutiomns.

Just as before, I compare term (@) and @ to term @ « In order
to carry out this comparison I need a measure of the gize of the operator
in curly brackets. That measure is B/c [see discussion following (47)]}.
So, the approximation is valid provided that

—_ —~1
T < W } -f%_ < anj I-K > ey |
where Wy = YBc is the equatorial inertial frequency, and a, = ¥B/c is

the reciprocal of the equatorial Rossby radius. The first and third
inequalities require that the wind forcing is low-frequency and large-
scale, Yor sufficiently large values of n, the sense of the first two
inequalities can reverse, These errors are minor at mid-latitudes and

are associated with the replacement of an Ekman flow by a pseudo—kkman
flow. An analogous distortion of the solution cccurs at the equator in
that the Yoshida balance is modified to a pseudo-Yoshida balance. Near

an eastern ocean boundary, sclutions can develop coastal jets for which
Ly € ap +3 a consequence of this error is discussed further in the last
part of this section. Note that there is no longer any limit on the meri-
dional length scale, Ly, and so (40b)} can describe the typically narrow
equatorial jets,

Much of the material in this section summarizes mathematical
techniques introduced in greater detail in other papers. The response
of the equatorial ocean to oscillating and steady winds is considered by
McCreary (1980a). The response to switched-on winds is discussed by
Lighthill (1969), Moore (1974), Cane (1974), Cane and Sarachik (1976,
1977} and Moore and Philander (1978). A number of examples of cceanic
response to various transient wind fields are found in McCreary (1976,
1977, 1978). All of these studies also consider the effects of meridional
boundaries on the flow field. Studies which explicitly consider such
effects are Moore (1969) and Anderson and Rowlands (1976}.

The Hermite functions

Solving (41a) or (41b) is now wmore difficult because the equations
involve y-derivatives; the operator in curly brackets, however, does not
involve x or t. This property suggests that it is possible to separate
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out the y-dependence of the problem just as the z-dependence was
separated out. I look for solutions as expansions in the eigenfunctions
of the operator in curly brackets. These eigenfunctions satisfy

kS

g, - =4

g9

kN
-, ¢M R (42a)
subject to the boundary conditions

%(3) =0 as oy > *oeo, “z

One representation of the solutions to (42) is

/S @

_ 1"
Qi'(?) ) [;”'m:/{;T]y; < J?f‘ e

kS

E
a(h = a{oczn\'f'l)' M=o 1 2 ¢

d:=-%—, 7=og7,

The functions are normalized so that

42{:47 = (44)

These eigenfunctions are convenient to work with because they have
simple recursion relations. With the aid of (43) it follows that

GO O A o
Fém? = - Y[;ifr géL+, ¥ ngj g{‘—l.

(45)
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Let q [nq] and [q ]m be the Hermite expansion ccefficients of the
functlons q(n), ngq, U respectively. That is,

(GRS R X VR AN NCUNE FEE R /3 0]
Then the coefficients are related by

(221, = (=5 e+ {5 e,
1], = V% e = 5 e 0

PROBLEM #5: Show that properties (44), (453), and (46} are
valid. They all follow directly from (43).

Equation (43) shows that a characteristic width scale for these
functions is a =1, Because c varies roughly inversely proportlona} to n,
ao”l decreases Wlth increasing vertical modenumber roughly like n™ 2.
Typically for n = 1, a,"! % 350 km; for n = 8, a,™' = 350 / V8 x 125 &km,
We can expect that DuldtJ_OﬂS found as series l::ALJ&ub]_O"i.':: of LhEbe functions

will have features with these narrow meridional scales,.

Oscillating winds

I choose the wind stress as in (21), so that iw is now just a
complex number given by (22), and loock for a solution to the exact
v—equation (4la} as an expansion of the form

Ve Z v, 8.0 47
M=o .

A practical model must truncate this series at some number m = M, M must
he chosen large enough so that the solutions are well converged.

At this point it is easy to see why B/c is an appropriate measure
af the operator in curly brackets in (4la} or (41b). According to (42)
and (43) it follows that

2 " =0
B T B AN Y
me s Bt =0 =
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1 find the equation governing the expansion coefficients, Vm(X),
by multiplying (41a) by ¢m(n) and integrating from — « to + &

/ﬁ[vu+ f);v * {":w“g}\’ 3 %Vx

R A

It is necessary to integrate the term, Vyys by parts twice., These
integrations are simple because of the boundary conditions (42b).
Equation (48) becomes

\/ ™
mxx T 7:é" Vix =~ Ky —
AL

(48)

<Yy,

EAACIRES- 1 ARS)

To solve (49) I Fourier transform the equation and solve alge—
braiecally for v to get

[LL + - (%,- “’)] = Zn%(‘i{’(ﬂm‘ ;)I‘L[y,l]m)g')

5 o= %[7}’]“— %—[Y?]M ~ (50)
Ton %a (k- b,m)(k-_kf) X,

(49)

where

1

kz{) Z_%[f ¥ \fl - ‘f?’;@(:— %‘) } (51)

I now expand the denominator of (50) into partial fractions. A
useful theorem is

J{f’ a_J-Ck)j N ,Zm a.(b)j N
Voo TS o ) (b T e
gr (k- 5)

,e¢4)
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Equation (52) states mathematically the following simpie rule. To find
the coefficient of the term 1/(k -~ bp) in the expansion, replace k with

b£ everywhere else that it appears, The particular case of (52) appro-
priate here has N = 2, n = 1, so that

Ay + qll?- X, + A,y L: d, + a,,lbl_

(kb k- b) (k-bYXb b)) (k- b.Xb b)Y

i1

I

£ %t a,b; i ] (53)
it M :
y=t (k-bjxgj-bj,)

With the aid of (53), (50) becomes

¢.o= - jz;t' Po Ty (54a)

where

¥

. vl - By, .
J -« MMZ?_ - [’zlﬁ, j'qé j (54b)

g

[

The inverse Fourier transform of (Séa) is now easily found with the aid
of the transform pair (24), The result is

r

2 P’“[x _,;,hg‘x _,},l{?x +art
j:

Vi, () = -4 E € Xdx e 065

b

where

L(;_',) = =+ oo) (56)

and L. is chosen to satisfy the appropriate radiation conditions for the
problem (see below).
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PROBLEM #6: Find the u - and p -fields as expansions in the
Hermite functions by using simila¥ techniques. Show that

w0 = V2R + V=5 o+ §.T

2 L Rl X LT el
me Z __fj____ / —-Akj x .&kJ x + a5t
= 1T s ;;m W L e Xde e
Z im ={ x m=1 -1
= & —ik; x 2be x + a6t
/ A A X+
- e 12 7" b, e ' Xde e !
“ 5
% —L%&-ﬁ* ~6T
M/f e , (57a)
L,

where R, S and T are obviously defined, and

u, = = u, B.(7).

wm=o

Also show that

»fymcx) = c(-{:: FS + S T}} (57b)

-where
—Fn = nﬁfa T%” §é1(7]-

HINT: For convenience, drop factors of v , o , ¢, B. Then solve (40a)
for a single equation in u (use the firs? and third). Show that

Canad L d
~r . Ll | Vip+i _ J, id Ve — . YM

Uy = ~ ¥ 2 k- 1w Z Rre e (= wo Yot w)

o
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Plugging (50) into this expression gives

[72\/],%_” i[y’g’]m-ﬂ 3 [_72‘}/],“-" %[y-,z] o
-~ SR v ae N5 e ek <

Hm CERY TR TR

ym i
Ve X

e+ — . ne~| ~

__{_,, R X . e ,!.ﬂ v ﬂ X }
= N-M_w . _ By p Mo 2 = il W
j =y lp_J k }a.j j ! b‘) - lf. }?—

Lot

iy 2= Dl K e [ [ (Yol X
(Cd l’:vﬂxw hm-ﬂ) l‘l W (u)+ EM-‘X“J ki‘ll) k"f'“')

LY}Z’

3

qn-_‘_;._.________"' -
2 Lo X

where
f@ 7= D

is related to the familiar Kronecker d-function by €o = 1 - 6mo' L

w o xow (R k) + kRS

£
1o
have also used the relations

(we kY wz k) =
b (it
= ) g Czm+t —w) = )

2. tin

With the aid of these identities ﬁm becomes
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The reasen for intreoducing €me 18 evident in term C). All factors of m
cancel out, and without €,  we could easily forget that term (@) should
be zero when m = 0. The expression for the pn—field is found similarly.

Evidence of radiation. Each term of the solution, (55) and (57),

has the form
X . ' f
——ul{ ,Ark A t
{(Cons-l:) / o xxc\x } e xF A
+

b

and so describes a wave with amplitude given in curly brackets and wave-
number, k. The wave numbers are either k = -(W/c) or set by (51). In the
Inviscid model, then, the waves are the familiar undamped, equatorially
trapped Kelvin and Rossby waves. In the present viscid model the waves
also damp as they propagate out of the wind patch. Again solutions still
exist when 0 + 0. In this steady limit the solutions do not propagate

but simply decay away from the wind patch. They have the same meridional
structure as the inviscid waves. T will continue to refer to these steady
solutions as equatorially trapped Kelvin and Rossby waves.

The choices of lower limits of integration in (56) govern whether
radiation appears to the east, west, or on both sides of the wind patch.
Waves with eastward (westward) group velocity can only appear east (west)
of the patch. Equivalently, in the steady state, waves which decay
eastward (westward) can appear only east {(west) of the patch. The choices
(56) satisfy these requirements.,

Dynamics. Consider the steady strong-drag (A/c? > ) limit of (55).
In this 1limit the roots of (51) are

—_—> wl o EQ:
Lz('z) FAY

and it follows that

“«T Lx»l) “g: ]_x >> ])

for geophysically appropriate choices of parameters, After 1T approximate
integrals as in (30), equation (55) reduces to

V6 = X % _PJ; o Tanoe X {%[W]M = 4/ M 0 ) _Lﬁ_lm}
3=t kg sz“-la:‘ kb w e

e X [k - ~
= k:"j{k"‘ [,_Mkw [7% = T OX [7)’:}:
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This v ~field results from the solution of (17).
of the"model are in Yoshida balance,

PROBLEM #7:

Find the limits of u
that
C-‘L
Un = '7E-(q57zvh + F;)
- .,Eiu
TL - A Y

" and 1

So, the high-order modes

as Afc? + =, Show

which are the u - and pn—fields that result from the Yoshida balance.

Consider the steady weak-drag (A/c? - 0) limit of (55).

limit the roots of (51) are

2

[e___@__o( — O {?z"‘"’

In this

£ n

()

So, eventually for sufficiently small values of the drag

RTIL <=

After T approximate integrals with the aid of beth (29) and (30),

equation (55) reduces to
X
Vea () = '"J-le/ Xdx +
+ w0
_ -{w] 'g”* Yl
f ]‘._éj + 00 /9

0 (w)
Only the 0(l) term remains, and so

V() o= -

Lig]

|
oQ)/S

I 15
k. 8

"”/;A; Yo«

X

ol - A%

B g

+ O(wY) - ().

" [.y%;]m ><)
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Just as for the solutions to (18), the low-order modes can be in Svérdrup
balance. For realistic choices of eddy viscosity a few of them (n < 5-10)
always tend to be in Sverdrup balance.

PROBLEM #8: Find the limits of u and Py (from PROBLEM #6) as
A/c? = 0. Show that

u,,r.?__ix}:gclx + {%ﬁ"XLwXJK}
Th=£X(F‘jG)Jx + i"?:h X/w)(clx_

—_— ol

(58)

Equations (58) differ from the "classical" Sverdrup balance by the presence
of the terms in curly brackets. These terms describe a geostrophic x-
independent jet. WNote that the jet is x-independent regardless of the
shape of the wind patch X(x)! This interesting current did not appear in
Sverdrup's original solution because he chose a boundary condition of no
normal flow at an eastern ocean body, rather than the radiation conditions,
{56), adopted here.

Boundaries. " Here I show how to include the effects of simple
meridional barriers at x , and/or x,. (The ocean will still lack
northern and southern boundaries.) ~It is not necessary to discard the
interior solution we have just found. Rather it is sufficient to add to
the solution approptriate free waves that prevent flow into the boundaries.

The appropriate boundary conditions for an ocean with both meridional
barriers are

“ = 0 @ >(=‘-x’a’)<|_ (59a)

The ccean is still unbounded in the y-direction. What are the correct
boundary conditions to impose at y = #=? C(Clearly we wish the only source
of energy in the solution to be the interior wind patch. So, the correct
boundary conditiom is
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There are no sources of energy at
high latitudes, that is, at y = %, (59b)

When A = 0, but ¢ # 0, condition (59b) has a simple physical inter-
pretation, In this case, at high latitudes the boundary solutions

look like coastally trapped Kelvin waves, Condition (59b), then, requires
that no energy is brought into the cocean by a high-latitude western
boundary source of Kelvin waves.

If there is just a single western (eastern) boundary then (59a) Is
replaced by

u,=o0 @ x= X, (K;)) (59a')

and (59b) becomes

There are no sources of energy at
high latitudes, or at x = 4o (x = —=), (59b1)

Equation (59b'} requires that western boundary waves all have
eastward group velocity or decay to the east; that-is, they can involve
only the wavenumber k@, These waves, designated by a prime, are

“n: Am[ ¢mH _ C,k-:“'i‘ W VMT.H ﬁh,, ] e“:kz@"“‘a)

It

k™ ,
N L)
oo ekl g 4 ik Gemx) (602)
2

ol e en B e g ] M

]

where m = 0, 1, 2 ..., and Ay is (for the moment) an unspecified constant.
The wave with m = 0 is called the Yanai wave. There is another free
solution of (40a) for which the v—field is identically zero. For conve-
nience I assign this solution the label m = -1, Then

I
’ — (e~ %,) ’ 7
I . v s
-t A-‘ s ¢ ) f RS - -2, (60b)
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and A . is (for the moment) an arbitrary constant. This wave is the
equatorially trapped Kelvin wave. :

Waves appropriate at an eastern ocean boundary all have westward

group velocity or decay to the west, and so only involve the wavenumber,
kl' These waves, designated by a double prime, are

» AR - x
“p = B [(_}g"“.,.w Fgémﬂ gjm—'] € ,( J)

)

v,” _ _L clz - w B ¢m .4.11 (K Ki)

T ed, \{_ . (61
T": = < B, [cw‘ F ngmﬂ /@’m-l] c—«}ig, (x- %)

)

where m = 1, 2, 3, ..., and Bm is (for the moment) arbitrary.

PROBLEM #9: Show that (60) and (61) are the homogenecus solu-
tions of the complete equations of motion, (40a). One way to do this is
by plugging them back intc the homogeneous form of (40a). Alsooshow that
the m = 0 eastern boundary wave is not well defined (because ck; + w = 0).

Therefore, it is not a physically realistic solution and is not included
in (61).

Now suppose I want to bring the u-field to zero all along the
western boundary. T require the u-field to vanish for each Hermite com—
ponent. The contributions of zonal velocity proportional to ¢ (n) at
the western boundary (x = x ) are

Am

a1 ) from (60),
A ckl 4 e JM+Z
Wtz cb:+1-w m+3
B ek, = w  fmrr —-skTd
" Ckr1+ w " ¢ from (61},

HAEQM"‘-Z_
- B e d

M+

M3M+,(Ko) , from the unbounded solution (57a);
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d = x. - x is the separation between boundaries, These contributions
must 411 add to zero, and yield the equation

M+ L] M
o My Ckl o o _ m+ ) (IQT“-'LQ -.&klol
Am - JM+3 C!L”“""_-_w AM-H. ( i Ck:“-a»w e BM
1
n+2
»qikl d (62a)
+ & B - u CKoB

A - (] }

where m = Ql, 0, ., ..., and Bo =B _ = 0, Similarly, cancellation of
the component of zonal velocity propdrtional to ¢ _l(n) at the eastern
boundary (x = x;) requires that m

W -1 ™ ]
g = fm..; ckR, — w ? _ m c.]Q,_-f-w .A.izza‘
™ m—2 C’Q,M-L'F'UJ o mE T o e Am
sy M
o d + w (%) (62b)
+ e Am-z. mor L) L
where m = 1, 2, 3, ..., and again BO = B__l = 0.

In principle an infinite number of boundary waves are needed at
both boundaries. In practice the series must be truncated at some upper
limit, M. 1In that case equations (62) can almost be written down concisely
in a gquare matrix form

Ax = F (63)

The figure below shows (63) written out in compoment form for the case
M= 9. Only the terms indicated by x's are non-zero.
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The circled terms in the upper left-hand corner arise from western
boundary waves with amplitudes Apso and AM+1’ and prevent the matrix
from being square, I now set both of these terms to zero. The neglect
of these terms insures that the boundary conditions (59b) are satisfied.
As a result, (63) now does have the form of a single square matrix
equation. The equation is sparse and so can be solved economically on
a computer.

PROBLEM #10: To solve (63) directly by Gaussian elimination
requires a large number of steps of the ordex M®. Because the matrix is
sparse it is possible to solve the equation much more efficiently.
Devise a scheme that will solve the system in a number of steps of the
order M2,

Having determined the coefficients Ay and B, we can finally
write down the solutions for the ocean response in an ocean basin with
two zonal boundaries. Let g be any of the fields u, v or p. Then

M M M, P
- / 7 (6&)
ZH m%o ‘gm sém ()Z) + zm + M‘E, Zm 5

m= -

where the coefficients q are given in (55) and (57), qm' are from (60),
and q,'"' are from (61). This procedure can be easily modified to
describe the model response if the ocean basin has a single westerm oT
eastern boundary. Simply set the terms By or A to zero, respectively,
and repeat the procedure indicated above.

Transient forcing: inertial oscillations

It is well known that at mid-latitudes, abrupt changes in the wind
field excite inertial oscillations with a frequency set by the local
value of the Coriolis parameter, A similar phenomenon exists at the
equator even though £ + 0 there. To illustrate the nature of equatorial
inertial oscillations, I choose an x-independent wind field of the form

e m Yy R& F = 7 Y @), (65)

where H(t) is the step function defined after (32). I solve (4la) by
taking the Laplace transform of the equation, and expanding intc Hermite
functions as in (47). Since the foreing is x—-independent so is the
solution, and all x-derivatives can be ignored. The Gmffield is
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Ihe Laplace transform pair appropriate here is
a
‘ : —at(cos bt + G sinbt
% -~ i ——
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The response has a steady component that is in Yoshida balance. A number
of terms oscillate at the discrete frequencies, v 2mt+l W,, and decay with
an e-folding time scale, c?/A., These terms describe the equatorial
inertial oscillations.

Moore (Moore and Philander, 1978) studied this x-independent spin-
up problem with A = (0, and described the response in detail. In contrast
to the situation at mid-latitudes, the pressure field assoclated with
equatorial inertial oscillations is not small. As a result, these oscil-
lations can strongly affect sea level and thermocline depth. One component
of the zonal velocity fieid is an accelerating jet strongly confined to
the equator, This flow is commonly referred to as the Yoshida jet.

Transient forcing: wind patch

Here I consider the response of the equatorial ocean to a wind
stress patch of the form (32), but now find solutions only to the
approximate equations (40b). To solve (41b) I Fourier transform the
equation in x, Laplace transform it in time, and expand into Hermite
functions as in (47). The result is

L Gea i ], v
& " s(s-;—A/é--ikf?/.,(:) ) (68)

a
m



or, more conveniently,

(69)

2 s (s A/ — ik /oc’-)

Equation (69) is very similar to (33). The necessary Fourier and Laplace
inversions go through just as they did in that case. In analogy with (37),
then, the solution is

) %{Lﬁm Iyl S g

. - Ay
o= 20 DhL) X e £4) £ ¥ g,

Y,[]M} % (79)

Vi
f;x il —-%:5;x' /it
x e°f/e°/g X(x'+ u;{?é_')"'"é‘c Hey @,

Lighthill (1969) first found this solution for the case A = 0. MNote that
there are no inertial oscillations in this solution. So one effect of
studying equations (40b) is that inertial oscillations are filtered out.
The solution involves only the radiation of packets of non-dispersive
Rossby waves to the west. Thus, another effect of the approximate set

is that eastward-propagating dispersive Rossby waves are also filtered
out of the model.

In the strong-drag limit, (70) reduces to

I o0 [_ o
/euw- \/ = i’:‘ 2::0 z:fz’:! K(K) H('{‘\ ¢
A/C — oo ﬁ
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This north-south flow occurs for a mode in pseudo-Yoshida balance.:- So,
the high~order modes of the model come instantly into pseudo~Yoshida
balance when the wind turns on, and thereafter remain in that balance.

In the weak-drag limit, (70} reduces to

fin v, =~ 7 Bty -
oo " ).

- 0“/5 Pt a

Just after the wind is turned on this expression is just the pseudo-
Yoshida balance. Because damping is weak, however, radiation subsequently
affects the balance., The expression describes the set-~up of the Sverdrup
balance after a packet of non-dispersive Rossby waves has passed through
the model.

2 (2220 - 1) Xt £ WD

Zmpy

PROBLEM #11: Find the uy~ and p -fields as expansions of
Hermite functions by using similar technlques. Piscuss the limits of
these fields just as above. TIn particular, show that in the limits Afc?
+ 0 and t + « {so that all transient wave packets have passed through
the system) the solutions reduce to the form (58). The model describes
the set-up of the x-independent equatorial jet via the radiation of wave
packets of equatorially trapped Kelvin and Rossby waves. McCreary (1977,
1978) traced the adjustment of a single baroclinic mode to Sverdrup balance
in this way. Lighthill (1969) missed the generation of the x-{ndependent
jet because he failed to include the equatorially trapped Kelvin wave in
his solution.

HINT: For convenience, drop factors of t,, 05, ¢, B« Find u_in a
. . m
similar way to that of problem #6. We have

k
1 = - \’ mt [W:lhc-hh 3[Y?1m+l
L{m Ck ”)(k ‘qm“) g

Fwy]m-fa-tvﬂm-lg. b i Y
N2 (kroYk- ™) s Cereo) ko)

" lxg

where

m

k= (zme)o o =-dlsrA).

Expand these expressions into partial fractions and simplify. As in
Problem #6, many cancellations occur.
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Reflection of an equatoxrially trapped Kelvin wave from an eastern
ocean boundary

Moore (1968) first showed how to reflect a sinusoidal Kelvin wave
_from an eastern boundary. Anderson and Rowlands (1976) extended Moore's
work to consider the reflection of a Kelvin wave of step-function form.
Here I show how to reflect a Kelvin wave of arbitrary shape, but find
the reflection only for the simpler system of equations (40b).

Consider a wind patch that is turned on at time t = 0 in the ocean

\\\\\\\\\\\\1::\\\\\\
Y
i}
=

interior. Subsequently, a packet of Kelvin waves leaves the locally
forced region and travels toward the eastern ocean boundary. Such a
packet is pictured in the diagram. Let that packet be described by ! . ,

A _ . K

w(y,t) = U,(x—ct) e ¢ % . (71)

Then, evaluated at the coast (x = xl), ity amplitude is just a function
of time, that is,

A

-t
w,(a,q,t) = e CUK-DB ) = T {G)  o»

i
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= a” B —?CSJ SZ{O (7) 73)

In order to cancel this flow field, T add to the solution additional free
solutions of equations (40b). Rossby waves allowed by this set have a

particularly simple form because they satisfy the simple dispersion relation

i jg o= _%§' (2J“+'). (74)

There are no eastward-propagating dispersive Rossby waves in this system.
The westward propagating waves, (61), reduce to

+ AY Zier) -
“:” = BAM[% ¢m+fﬂ 55,,“-!] eCS CLXZ X K’)/C

i

A
A — S CS*'T? ZM+IXK“KJ
m = D Z'JZV""‘:):/Q{{me 2 )/C v

<
|

+'ll m¥i =X :
Tm i} Cé\m[ f;,‘gziﬂ‘" ﬁ ] e(s C:.XZ )( 1)/6

| )
where I have made the replacement, i0 + s. The analog of (62b) in
Laplace transform space is therefore
A w2 A
(76)
B = D = 0,

A matrix formulation is not necessary in order to see how to solve this
set of equations. By inspection

A A A A A
B, T, By=y&£T, B,=yxVwg T

A A
= O = .
= , By o . }
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To summarize the solution I introduce the quantity:

3
[

)
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so that

A A
BM: RMT_) m=l)1)3)“‘ : (77)

The boundary waves are now uniquely specified. To find them I plug (77)
back into (75) and find the Laplace inversion of each term. The inversions

cant be accomplished easily with the convolution theorem for Laplace
transforms.

It follows from (77) and (73) that at the coast the s-dependence of
each boundary wave is just T(s). Therefore they all have the same time
dependence. Physically this property means that there is instantaneous
propagation of signals poleward along the coast, that is, the phase speed
of coastally trapped Kelvin waves is infinite! This is a major, and

unavoidable, distortion introduced by solving the simpler system of
equations (40b).

EXAMPLE: Suppose that-the shape of the u-field is the linear
segment shown in the diagram.

\\\\\\\\\\\\i:;\\\\\\
>~
i
x
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For simplicity, I assume that the ocean is inviscid. Then

A=o | w-= [c,’c - ("“Kl*'a[)]ﬁ[ct - (z-x,+c1)] Q;(y).

At the coast this u~field is

“wli g, = (- h(t-N B0 = T o
cl.

—S-—-—

’\_C c
= T T T e

To find the Laplace inversion of (75) T use the transform pair

_]’}. es(Zm+|IK-K,)/C. e—- S/ [A - (zmriXx-x)]

L
® (78)
T 1 { - s i | T~ N 1 - N
e Lct - d 4+ (Zm-nlz—x,)_, H Lct —d + (lm-l-!Xx—x,)]
The individual boundary waves are therefore

u: = Rm[{gﬁiﬂ_ ’@:1—;] fn,H(E».),
v =z Zm R, 2, H(E.), (79)

o= R D+ 2] ucs)

where

?m = ¢t -4 + (Zu4+n)(x—-<,)‘
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McCreary (1977) built up his eastern boundary solutions out of linear
components like (79).

PROBLEM #12: Do a case with A # 0., Assume that the incoming
Kelvin wave has the form

_ A
- L,,t[ct_(x-x,_ar)]H[ct-(,{,x,_J)] 3

n

Describe the response of each eastern boundary wave.
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EASTERN CCASTAL SOLUTIONS

In this section T study a filtered version of (13) that neglects
the terms u_, and (A/e?)u_ in (13), This simplification allows solutions
to be found without the use of Hermite functions, but the solutions are
no longer valid near the equator, The equations are

-fvn+THx = o)

sy, v Ju, + o = G (80)

J

! n

“ =

w_% T Uy F an = O,
C’n

where iw is the operator defined in (18h), Since it is well known that
the coastal ocean responds most strongly to alongshore winds, zonal
winds are subsequently ignored. It is not necessary to restrict solutions
to the equatorial B~plane, so in the remainder of this section I take

= " . SL
0=4/R, f=znac5ng £ =S ws 6, e

where 2 = 2n/day and R is the radius of the earth,

Again I neglect
subseripts n for the sake of notational simplicity,

To see whether equations (80) are a reasonable approximation to the

exact equations, I again compare v-equations, The exact v-equation is

® & @ -
AL [\/5134-%\/] FoAWY -Lu)—;-:v +/§V,(
9
- [¢] + 6.

(82a)

2

whereas (80) gives

AWV - AL -V o+ vV =
% & /g x G (82b)
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The simplification deletes the terms in square brackets. These terms
are negligible provided that terms @ and @ are << @, and that @ is
not a significant driving force. The approximation is valid provided that

_’If":«~ JC) 'A;Z'*’-‘-JC, L >>o<“‘.
c

The first and third inequalities require that the wind field is low—
frequency and has a large meridional length-scale., When the wind forcing
is low-frequency the factor of w¥/c? insures that term C) is not signifi-
cant, For significantly large modenumber the second inequality does not
hold, This error is due to the fact that Ekman flow is replaced with
pseudo~FEkman flow. In the ocean interior, well away from its eastern
boundary, the third inequality need not always be satisfied [[the discussion
"after (25) is applicable here]. There is no limitation on zonal length-
scales, and so (80) can describe narrow coastal jets. However, solutions
to (80), as well as to the exact system (13), can produce unrealistically
narrow western boundary currents [see discussion following {87)]. So,

we can expect that equations (80) can describe a wide variety of physically
realistic problems that occur near north-south oriented eastern ocean
boundaries.

The material in this section summarizes several other studies. The
coastal response to steady alongshore winds is discussed in McCreary
{1980b). The interested reader should also consult Yoshida (1967):
although the algebra is needlessly complicated, there is a wealth of
information in this paper. The coastal response to oscillatory winds 1is
considered by MeCreary (1977, 1978).

Oscillating winds

I show here how to find the response of the extra—equatorial
eastern ocean to an oscillating band of wind of the form

a6t

| it
7= 7 Yy e ) G, = Ton Y(g;)e(f} (83)

where Ton 18 defined in (21). Since the wind field is x-independent, it
has no curl., T assume that the band does not extend to the equator, but
has an equatorward edge, y,. I proceed by first rewriting equations (80}
to get an equation in P alone,

. o 4
Awaz - ) - 'r + ﬁ'f’x = ](GXE < (84a)
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The U and vn—fields, in terms of P, are

. G _ oA
A

(84b)

where now iw is the complex number given in (22).

I solve (84) including the effects of an eastern ocean boundary at
X = x,, As in the equatorial solutiom, it is useful to split the total
solution into two pieces: an unbounded piece that is wvalid in the
absence of boundaries, and boundary reactions that satisfy the homogeneous
form of (84). The boundary solutions must be chosen to satisfy (59b"),
and the total solution must satisfy (5%a').

Because there is no wind curl and the forcing is independent of x,
Wwe can ignore the operator 9 in (84), Then the interior solution,
indicated by a prime, is x

W = — vV = © T=OJ w =0, (85)

This solution is nothing more than a drift to the right of the wind stress
confined to the surface mixed layer, That is, it is just a pseudo-Ekman
flow. '

The boundary reactions must be composed of the homogeneous solutions
to (84) since the interior solution is already in balance with the wind
foreing, I indicate the boundary field by a double prime, and assume

’F” - P(lj) ealu,e()(- X,) (86a)

J

so that

Lklx-x)
= —-i(9~—5%)F e
Y ’ (86b)

, o ak ik (x-%,)
Ve Pe .
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The value of k is specified by {(84a) to be either one of the roots of

£

2-
——,;u)k. —.iud-ﬂf:- + Aekjg = O(}
c- N

and the boundary condition (59b') requires that k be the root

L=J£[P-J!—%%L£]. NEH!

Compare (87) to (51). There is an obviocus close relationship between
these mid-latitude waves and the equatorially trapped ones,

It is now easy to see why western boundary solutions can be unrealis-—
tically narrow. At a western ocean boundary waves must reflect energy
eastward, and the appropriate root has a plus sign in front of the radical
in (87). This root can hecome very large. For example, assume that the
wind field is steady so that w = -iA/c®. A typical value for A is
10" cm?/sec® (McCreary, 1980a); a typical value of ¢ for the n = 1
vertical mode is 200 cm/sec. Therefore, |k|"‘1 ¥ w/B = 25 km; that is,
the width of the western boundary current of this model Is only 25 km.

There can be no flow'through the eastern boundary., I adjust the
amplitude, P{y), so that this condition is met. That is,

R P ik(}("x,j
M=a+u=-§n—-3;-@f%)?e =0 @ x=x

: LJ!( (88)
= (Dﬁﬂ 'ET)F = G.

Equation (88) is easily solved by introducing the integration factor eA,
where
)
A'—“/ 7 dy. (89)

The choice of lower limit, V. in (89) is arbitrary. The solution to
(88) is :

7
eA<e*AF)=C7 = [P = eA/ e_AGch. (90)
4,
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The choice of the lower Ilimit in (90} is crucial, and amounts to
gpecifying a radiation condition for the problem. There are no free waves
at an eastern ocean boundary that can carry signals equatorward. Choosing
the lower limit to be Vos the equatorward edge of the wind band, insures
that no signals are ever found equatorward of the wind band.

Finally, the complete solutions are

ik (x-x,) ¢ a0t A/j -4
'F“ = 7;n a o &

Tty
» e (x-x)+4ft A ! .
VH = 7::: _J(_IS— dk ) & 'j/ = Ay‘:j) (91a)

[}

A ik(x~x,)+ a6t A/Ef -Ay

o = 7, —x € ¢ € dy .

and with the aid of (91a) and (84b) the u-~field is

.L[QCX-X, 4
u = _(i-'_ - J_ wk){ e_éo

=?Q”"”“?""‘3?~*}’“Mw[(" 7 /e )

C_ ‘ C; Aﬂ ]

or

e -Lf%kj‘r.,. (91b)

Evidence of radiation. Here I assume that friction is weak, so that
w = 0d. Then, since o = f2/c is zero at the equator and B is zero at the
poles, the radical of (87) must become zero at some intermediate latitude,
Ocys the critical latitude., According to (87), ©_. is given by

cY
. W - e
! = ’7L°(_ - =2 ¢ = dn 2R - (92)

I or

Note that ecr is a strong function of both n (through its dependence on c)
and O.
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At the annual frequency ecr occurs at mid-latitudes for the first
vertical mode. A typical value of c for this mode is 200 cm/sec; it
follows that QO = 389 (the latitude of San Francisco). A typical value
of ¢ for the second vertical mode is 100 cm/sec, and for this mode Bcr =
11°, TFor modes with n > 2 values of ecr are even closer to the equator,

Ocr splits the boundary respomse into two dynamically different
regions. Boundary waves possible in each regilon are quite different.

Poleward of O _, where @ >> @ _, (87) shows that
cr cr

/éfm [:L = ;é__ - el . (93)

g s> 62,

I choose Y, s° that yC/R >> 0. Then, with the aid of (93),

g>> 7
o

[ <

&

So for © >> ecr boundary waves have the form

0y ;Cx_ﬂ‘) e,;%??x eﬁo'“(twj/c) (o4)

p

where D(y) is a slowly varying amplitude. Equation (94) describes B~plane
Kelvin waves [first discussed by Moore (1968)1. These waves propagate
poleward at speed ¢ and decay offshore in o~!. In contrast to f-plane
Kelvin waves they also propagate offshore at the speed a?/B.

Equatorward of Gcr, where O << Ocr’ {87) gives

/E.Mm L = _q:— D’.'_.;L_
& ¢< &

cr

Sor for O << O . boundary waves have the form
c

J.d'[%. -~ h{(f“x‘-}
Dly) e f ]

(95)
P

where D{y) again is a slowly varying amplitude. Eguation (95) describes
non—-dispersive Rossby waves. The boundary response below the critical
latitude propagates rapidly offshore back inte the ocean interior.

y | S .
o [ OE [T En)
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These properties have important implications for the modelling of
the annual eycle in eastern oceans. Off Oregon all baroclinic boundary
effects remain trapped to the coast, since © > Q,, for all values of n.
Off Baha California the baroclinic effects associated with the first
baroclinic mode can radiate offshore as Rossby waves, since O < ecr for
n = 1. All other modes remain trapped to the coast, since @ > Ogy for

n > 1,

Dynamics. Just as in the models previously discussed, the character
of flow associated with each mode changes markedly with increasing mode-
number because drag plays an increasingly important role in the dynamics.
Low-order modes essentially have an inviscid dynamics and are inherently
non-local in nature. High-order modes are dominated by drag and are
local along the coast. It is this change in character that allows the
model to develop a realistic flow field. TFor example, the model generates
a coastal undercurrent in good agreement with observations (McCreary,
1980b) .

The solutions simplify considerably in the weak-drag steady limit,
where w -> 0. According to (87) the value of k reduces to

>

/e;m k = g-¢:'('_, —> O,
W => 0 ‘/5
Consequently,
W =>o ! R ) *

So for the low-order modes the solutions (91) become

: J
'fn =-‘7;nJ[ )Tg)éj )
Jo (96)
un — o) \/n —> O; ""’; — Q0.

There is no flow associated with this balance; rather a pressure gradient
exists everywhere that exactly balances the wind. This oceanic state is
just the Sverdrup balance for this wind field since there is mo wind curl.
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The solutions again simplify in the strong-drag steady limit where

w + o, According to (87) the value of k reduces to

2.
Lot o = K b s —ds
, 97

45 L

= 0, and in that case A becomes

I choose yc =
J .
/él’ﬂq& = o= Ai =-_-._,....;.AL,
[EFN -k — -

L =5 oa

and

I
fa & o
e 4 € yc“j i Y. - (.98)

So for the high-~order modes

v o= -:rf u,l: = g'r’m} (99)

The flow field in this limit is strongly trapped to the ceast, except for
the zonal velocity field, The zonal flow vanishes there and converges to
pseudo-Fkman flow back in the ocean interior.
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CONCLUSIONS

It is essential to understand the limitations of any ocean model.
The list of assumptions in Section 2 of these notes points out the
limitations of the present one. It is equally essential to understand
clearly the usefulness of a model, To conclude these notes, then, T
list the advantages of the present one. :

1. Solutions are found analytically, rather than numerically. As in

' - similar inviscid models, they are expanded into sums over vertical
normal modes. This expansion allows an insightful way of discussing
the dynamics. Rather than describing the dominant balances which
govern the total flow field, it is possible instead to describe those
balances which occcur for individual modes. In this way the three-
dimensional dynamics of equations (1) can be understood by using

concepts appropriate to the simpler two-dimensional dynamics of
equations (13).

2. Vertical friction affects the dynamics of each vertical mode simply
by introducing a linear drag. The drag coefficient is mode dependent,
and increases roughly like the square of the modenumber. This
property is perhaps the single most important aspect of the model
dynamics. As a result, high-order and low-order modes respond quite
differently.

3, For the low-order modes drag is weak. The effects of radiation are
apparent. For example, if the wind stress is switched-on the locally
forced region radiates patches of Rossby and Kelvin waves, and
eventually the mode adjusts to Sverdrup balance.

4, For the high-order modes the drag dominates the dynamics. Waves are
strongly damped before they can propagate out of the region of the
winds, and so the dynamics is local, The high-order modes always sSum
to create the Ekman drift component to the flow field,

5, Finally, the model has been applied with success to a wide variety of
problems, For exsmple, the model generates a realistic Equatorial
Undercurrent, and provides a possible explanation for the poleward-
flowing Coastal Undercurrent found along most eastern ocean boundaries,
It is currently being used to investigate the annual cycle of equatorial
and coastal currents (McCreary, 1980c), and also the effects of wind
curl in the tropical ocean.
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