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Climatological wind forcing

Reversing cross-equatorial winds Equatorial westerlies
a) ECMWF Windstress [N/m?] in January b) ECMWF Windstress [N/m?] in April
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As a result, the IO monsoon winds
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Relatively steady southeast tradewinds



Wind-forced thermocline response

Durmg the NEM, the thermocline 10° Durmg the SWM, upwelling

deepens due to alongshore winds off favorable winds lift the thermocline
" Somalia and Oman and to surface 20" off Somalia and Oman, on the Indian
~cooling in the northern AS. 30°g Ccoast, and around Sri Lanka.
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There is a thermoclme ridge in a band from 5-10°S. It is driven by Ekman 1
pumping associated with the northward weakening of the Southeast Trades, and ;2
is stronger in northern summer when the Trades are stronger. 1993)



Wave radiation

Janwuary July

The upwelling and downwelling responses do not remain confined to their r,, s
forcing regions. Rossby and Kelvin waves radiate away from the forcing
regions, thereby impacting the ocean remotely.
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Goal

To provide an introduction to the dynamics of wind-
driven circulations in the North Indian Ocean (NIO),
both for its mean state and climatic variability.

Approach

Our approach is to split the complete IO response into
smaller pieces in the interior, equatorial, and coastal
oceans. We then discuss simple solutions that illustrate
the dominant processes at work in each region. These
simpler solutions provide the “language” needed to
discuss more complex problems.



Questions

What types of ocean models are useful for studying

NIO phenomena?
model hierarchy: OGCMs, LCS model, layer models

What types of ocean waves impact NIO phenomena?
gravity & Rossby waves; Kelvin waves; (shelf waves)

How does the wind drive ocean circulations?
Ekman flow; Ekman pumping; excitation of Rossby and Kelvin
waves; adjustment to Sverdrup balance

How do wind-driven dynamics differ in the interior,
equatorial, and coastal oceans?
They are very similar, differing primarily in the types of waves
that are generated.



References: ITCP and Dropbox

This lecture, TTAlecture.pptx, and other files can be obtained
from the ITCP website at:

http://indico.ictp.it/event/7666/

They can also be found at the Dropbox link:
https://www.dropbox.com/home/Trieste2016

at least for the next month.

Today’s talk focuses on physical concepts, rather than
mathematical solutions. There are additional slides at the end of
TTAlecture.pptx that derive some of the solutions discussed
today, as well as other supportive material.



References: NIOSS (2010)
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The content & organization of this lecture were inspired by a set
of lectures I gave at a summer school held at NIO in 2010
(NIOSS). An overview of NIOSS can be found at the web site:

http://www.nio.org/index/option/com newsdisplay/task/view/tid/4/
sid/23/mn1d/255




References: NIOSS (2010)

All of the movies that I show were prepared during NIOSS, and
they are stored in the Tutorials folders at the website

http://www.nio.org/index/option/com eventdisplay/task/view/tid/4/
sid/114/e1d/143

They can also be obtained from the ICTP web site. I recommend
that you download all of these movies onto your own computer.

A description of each movie is given in ExperimentList.docx,
located in the Tutorials folders at the NIOSS website, as well as at
the ICTP website.



References: INCOIS winter school (2015)
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This lecture is a 1%-hour version of a set of lectures I gave
during a winter school held at INCOIS in 2016. The complete
set of lectures can be downloaded from the web site:

http://www.incois.gov.in/portal/ITCOocean/course materials.jsp



Organization

1)Hierarchy of ocean models
2) Midlatitude-ocean waves
3)Interior ocean

4) Equatorial ocean
5a) Equatorial waves
5b) Wind-forced solutions

[6) Coastal Ocean]
7) Summary



Hierarchy of ocean models:
OGCMs, LCS and layer models



Simpler ocean models

OGCMs are remarkably good at simulating oceanic phenomena.

At the same time, it is often difficult to isolate basic processes at
work in OGCM solutions. Instead, basic processes are illustrated
better in simpler systems. The simpler systems provide a language for
discussing phenomena and processes in the more complicated ones.
Moreover, OGCM & simple solutions are often quite similar to each
other and to observations.

Here, I introduce equations for the linear, continuously stratified
(LCS) and 1%%-layer models, which are simpler equation sets that allow
for analytic solutions. Most of our understanding of ocean dynamics
arises from analytic solutions to these simpler equation sets.



OGCM equations

The following set of equations are the equations of motion that are
solved in many OGCMs.

1
ug + uty + vuy, +wu, — fo+ =p, = (vu,), + v, V2u,
P

1
U + uv,; + v, + wu, + fu+—-p = (1) 4+ 1. V20
P Many OGCMs adopt the

hydrostatic approximation.
In most physical situations,

L N
Ti + uT, + 0T, +wT, = (,@.,12 Szafll ],i,:z(vCEjI"L NT one

Sp+uS, +vS, +wS, = (kgS.), + v, V28,
V.v=0,

p=p(S.T,p)




LCS model: mode equations

The LCS model linearizes and simplifies the OGCM equations
until it 1s possible to express the u, v, and p fields as the expansions

o0 o}
u = E un@/}m vV = E ’Un’L/)n, — § pn@/}nv

n=0 n=0 n=0

wt The resulting equations for u,, v,, and p, are ,
A T:E 2 ns—1 f Z( )d7
<()t + 72l ) Up — f/Un + Pna = H_n + th U, Hn m

A TY 9

()t Up + fun + pny H + Vh,v Up, (A)
| A Pn Pn
(dt + (_2) (_2 + Upy + Upy = VhVQ?

Th See additioﬂal slides and HIGNotes.pdf for a deri\;a_tion (;f (A).
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in the values of , the Kelvin-wave speed for each mode.



LCS model: baroclinic and barotropic modes

The functions are the baroclinic and barotropic modes of the
ocean. They require that the ocean bottom is flat at and that
depends onlv on z. They are then solutions
o 1 1 1
az_az Yn = | 775 ¥nz — ——W¥n 1
(o0) 0= () = W
subject to the boundary conditions and normalization
2/)n,z (_D) — ,é/}nz (O) — Oa ,(/)n (O) =1 (2)

Integrating (1) over the water column gives

0
1 1
- —?/an) dz = — —Z/an
[.(s w

z

0

1 0
=0 = Y / P dz (3)
Ch J=D

-D

Constraint (3) can be satisfied in two ways. Either in which
case (barotropic mode) or is finite and its value is
set so that the integral of vanishes (baroclinic modes).



LCS model: baroclinic and barotropic modes

When decreases with

/b
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and c,, is finite, solutions to (1) are
similar, except their wavelength
increases and amplitude decreases
with depth.

The values of ¢, are different from,
but are similar to, those for constant
density.

When ¢, is infinite, the solution to
(1) that satisfies boundary conditions
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the barotropic mode of the system.
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1'2-layer model

If a particular phenomenon is surface trapped, it is often useful
to study it with an upper-layer model that focuses on the surface
flow. Such a model is the 1%-layer, reduced-gravity model. In its
linear form, its equations are

™ A 0
174
Unpt — fvn + Pnz = 7 — —5 Un + 1,V Un,
H” Cn
TV A,
2
Upt + fun + Pny — - 7”71 + th Up,
Hn (”n

A,
Pnt + C?L (un:c + Uny) — _C_Qpn + VhVQpn

Most of the NIOSS movies are numerical solutions to the LCS
model for a single (n = 1) baroclinic mode or, equivalently, to a
1'4-layer model. A few movies are LCS solutions that are a sum of
a number of baroclinic modes.



Midlatitude-ocean waves:

dispersion relations



equaﬂon

To focus on the free waves, we neglect forcing, damping, and
friction terms in the equations for a mode of the LCS model (or 1'2-
layer model) to get

(at_|_ Unpt — fvn T Pna = 07 %Zum

(&t + Unt - fun T Pny = 0, %2%,

Pnt

Waves associated with a superposition of vertical modes

N N N
n=0 n=0

n=0

propagate both horizontally and vertically.



equation

Solving the unforced, inviscid equations for a single equation in
v,, and for convenience dropping subscripts n gives

1 f2
Vpat T Uyyt — C_‘thtt — gvt —+ /B’Ux =} (1)

Solutions See additional slides for a derivation of (1). 1se f is a
function of y and the equation includes y derivatives ( term).
There are, however, useful analytic solutions to approximate
versions of (1).



Dispersion relation of free waves

The simplest approximation (mid-latitude f-plane approximation)
simply “pretends” that f and f are both constant. Then, solutions to

(1) have the form of plane waves,

exp (ikx + ily —iot) .

Then, we can set , , and in (1), resulting in the
dispersion relation,

c2 c?

2 "2
Vgt | O <k2 22 j—) = —k3. = 0.

The dispersion relation provides a “biography” for a model. It
describes everything about the waves it supports.



Gravity and Rossby waves

For convenience, the figure plots ,
curves when £ = 0.

When ¢ # 0, the disp. rel. is a
circle for each 6. So, the two
curves become circular bowls.

The top bowl (bottom bowl)
describes the gravity waves
(Rossby waves) of the system.




Kelvin waves

To derive the dispersion relation
for GWs and RWs, we solved
for a single equation in v. So,
we missed a wave with v =0,
the coastal Kelvin wave.

See the additional slides for a o/

derivation of the Kelvin wave.
Kelvin waves along zonal

boundaries. KWs also exist
along meridional boundaries.

The coastal KW propagates
along coasts at speed ¢ with the
coast to its right (in the NH),
and decays offshore with the
scale ¢/f = R, the Rossby radius
of deformation.




Phase and group speed

The figure shows the wave types
that we have discussed. (
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The phase speed of a wave with
wavenumber k and frequency o

is the slope of the line that

extends from to .9

The group speed of a wave with 1
wavenumber k and frequency o

is the slope of the line parallel

to the dispersion curve at the

point

Movies A1, A2, A3b #?




Interior ocean:
Ekman pumping &
adjustment to Sverdrup balance



Interior-ocean equations

Equations of motion for the , , and fields of a single
baroclinic mode are

N |
( —fo+gh=1"/H, &
( fu+dgh,=71Y/H, 3
h + H (u, +v,) = —r(h— H)

This approximation is useful because it filters out the gravity-wave
response. Thus, it only describes the slowly varying parts of the
response, that is, its Ekman-drift, Ekman pumping and Rossby wave
(if § # 0) parts.
ocean, and are only retained to represent western boundary currents.



Ekman pumping ( ) with =0 forced by

Suppose the ocean is forced by a zonal-wind stress switched on
at , that is constant ( ), and that there is no damping (= 0).
Then, the solution is

Tx
h,:H—wekt:H+7yt

so that /4 thickens (thins) continuously where >0(<0).

Wlth }1 lrnavam the zanal and meridianal vvelacitiec are

See additional slides for a derivation of this solution.
L, T L,
—Y ha: - U = ——(g hy

f fH’ f

a superposition of Ekman and geostrophic currents.

v =

Note that, although the geostrophic flow grows linearly in time, the
Ekman flow switches on instantly at # = 0 and thereafter remains
constant. It switches on instantly because the interior-ocean equations
filter out gravity (inertial) waves.



Ekman pumping ( ) with =0 forced by

Thickness Anomaly (m) and Total Velocity Field
T T T 1 1

Zonal Wind Stress (dyn/er?) 2600
2500 : ‘ ‘ ‘ ‘ ‘
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For this wind, north of 2000 km and 4 thins, and the
opposite change happens south of 2000 km. The constant Ekman drift
shifts water continually from the northern to the southern half of the
domain. Counter-rotating geostrophic gyres spin-up in response to 4.

How long does it take for the layer bottom to upwell to the surface?

min (7.7 " 2A
win(m),  mom, L 20
f 2Ay f T,

which for the above wind, H= 100 m, and /= 10~* s™! is 7= 368 days.

H




Ekman pumping ( ) with # 0 forced by

Suppose the ocean is forced by a zonal wind (i.e., ) and there
is damping (x # 0). Then, the solution is

1 — ,— Kt 1 — ,—kl T
h=H-——°% o, =H+-—°

K K 7

SO that h StOpS gl'OWillg- Thickness Anomaly (m) and Total Velocity Field

Zonal Wind Stress (dyn/er?) 2600|

2500

See additional slides for a derivation of thic enlnt: D .

z SRR
(@ Movies C1 '
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km
In steady state, Ekman drift still flows from the northern to the
southern half of the domain. Water entrains into the layer in the north
to provide a source for the Ekman drift and detrains from the layer in
the south to provide a sink, forming an overturning cell.



Adjustment to Sverdrup balance (

Consider the response to a switched-on

The initial response is the
same as on the f~-plane.
Ekman flow switches on
instantly because gravity
waves are filtered out of the
system, and wind curl drives
Ekman pumping.

f-plan
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patch when
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Adjustment to Sverdrup balance (

Consider the response to a switched-on

Subsequently, westward
radiation of Rossby waves
extends the response west of
the forcing region, and
adjusts the circulation to
Sverdrup balance.

See additional slides for a
derivation of this solution.

) forced by

patch when

ﬁ _plane Thickness Anomaly (m) and Total Velocity Field for Zonal Winds
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£ 2000E
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Adjustment to Sverdrup balance ( ) forced by

Consider the response to a switched-on patch when

ﬁ _plane Thickness Anomaly (m) and Total Velocity Field for Zonal Winds
T T

At any longitude, Ekman 2500 ey .
pumping continues until the ‘
passage of Rossby waves.

Because they propagate § 200
slowly, the Ekman pumping
can be large enough for the

bottom of the layer to rise
to the surface (light blue 50

area). In that case, the

solution breaks down, and
there must be upwelling & amor
from the deep ocean.

1500 | 1 L L L | 1 |
-500 -400 -300 -200  -100 0 100 200 300 400



Adjustment to §verdrup balance z ; forced by

Consider the response to a switched-on patch when

f-plane

The initial response is the
same as on the f~-plane.
Ekman flow switches on
instantly because gravity
waves are filtered out of the
system, and wind curl
drives Ekman pumping.
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Adjustment to Sverdrup balance (

Consider the response to a switched-on

Subsequently, the Rossby
waves radiate westward
across the wind patch, but
after their passage the
adjusted response remains
confined to the forcing
region.

Movies C3 & C2a

) forced by

patch when
f-plane
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Equatorial ocean:

equatorially trapped waves &
wind-forced solutions



Questions

What forcing mechanisms drive equatorial currents?
zonal and meridional wind stress

What are equatorial waves?

equatorial gravity, Rossby, and Kelvin waves;
mixed Rossby/gravity (Yanai) wave

How do they differ from midlatitude waves?

dynamically very similar; extra Yanai wave;
discreteness

What are the key differences between 2-d and 3-d
theories of equatorial circulation?
Yoshida Jet; establishment of to balance

How do equatorial waves reflect from basin
boundaries?
Kelvin- and Rossby-wave reflections



Equatorial ocean:
equatorially trapped waves



Equatorial-ocean equations

Equations for the , , and for a single baroclinic mode are

A .
(8t -+ C—2> Up — fUn + Pz = T/ Hp + v VU,

n

A .
<8t+ C_2> 'Un+fu‘n +pny :Ty/,Hn+th27)na (1)

n

Because f vanishes at the equator, no terms can be dropped that allow
for mathematically simple solutions near the equator.

A useful assumption, though, is to set , known as the

equatorial -plane approximation. As a result, one can look for
solutions as expansions in Hermite functions.



Equatorial gravity and Rossby waves

Equatorial waves are unforced ( ) solutions to (1) of the
form, , and without damping (4 = 0). For
convenience, we drop the subscript n. The resulting v equation is

3

1%

ok’ — —v — g0’
C2

((’9,7,, — 7}2> v+ kv =0 (2)

o

The mathematical ¢ See additional interior-ocean 2rsion relation from
(2) 1s that, because f'v glides for a derivation. tor, 1t is not possible
to set , like we did for the interior ocean. Rather,

is the set of solutions (eigenfunctions) that satisfy

(37777 - 772) Ge = Aepe = —(20 + 1)y, ()

and vanish as , where £ =0, 1, 2, .... They are referred to as
Hermite functions.
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“Is71 its value is R, = 331 km.



Equatorial gravity and Rossby waves

The solutions to (2) can be represented as expansions in Hermite
functions

v ="> v(x)pe(n)e* ", 3)
(=0

where  is a wave amplitude. Each term in expansion (3) is an
individual equatorial wave.

Inserting term  in (3) into (2) and using (2 ) gives
3
o
ok*v, — — Ve + oo (20 + 1) v, + kBv, = 0,
c

which provides the dispersion relation

2
a</€2+a£2,—0—) + kB =0, af =a’(20+1),

for equatorial, Rossby and gravity waves.



Equatorial gravity and Rossby waves

For each ¢ > 1, there is a gravity
wave (large o) and a Rossby
wave (small o). The plot shows
waves for £ =1, 2, and 3.
continuously for midlatitude
For ¢ = 0, there is a new type of
wave, the mixed Rossby-gravity
(Yanai) wave, which behaves
like a Rossby (gravity) wave for
k positive (negative).

See additional slides for a deriv.
of the Yanai-wave relation.

disperson curves.
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2
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Theoretical equatorial waves

To derive the dispersion relation
for GWs and RWs, we solved
for a single equation in v. So,
we missed a wave with ,
the coastal Kelvin wave with
the dispersion relation

2
0(/{:2+a%—%>—|—k58—0, o=kc

3

See additional slides for a deriv.
of the equatorial KW.
and a Rossby wave (small o). /o,
The plot indicates waves only
for =1, 2, and 3. In addition,
there is the Yanai wave for
, and the equat. Kelvin
wave with




The u, v & p fields foran £ =1
Rossby wave when ¢, =250
cm/s and P =360 days. For
this P, 6/, = .03 and 4 = 240°.

100E  150E  160W
Courtesy of Francois Ascani



The u, v & p fields for an £ =2
Rossby wave when ¢, =250
cm/s and P =360 days. For
this P, /6, = .03 and 1 =140°.  '5S 7,77, 0c "60E s0E 100 120E 140E

Courtesy of Francois Ascani




Observed equatorial waves

Wavelength (degrees longitude)

A lot of mathematics led to this set of
dispersion curves. Do any of these
waves actually exist?!

10°

[

The first equatorially trapped waves to
be discovered were gravity waves

with periods of O(10 days) (Wunsch 0.25% b /-
and Gill, 1976; Deep-Sea Res.). g ~ -

Movies E

The equatorial Kelvin wave was
discovered after it was predicted
(Knox and Halpern, 1982, JMR).

Freq (days™)
(shep) pouag

1b & E2b.

0.15]

The mixed Rossby-gravity (Yanai)

wave was first observed in the A

atmosphere by Yanai. In the ocean,

it was (probably) first detected in o

the Indian Ocean by Reverdin and

Luyten (1986) using altimeter data. . . = laes
—0.05 [0} 0.05 0.1

Wavenumber (deg_1) ’

Who first detected an equatorial

R b 9 0 0.4 0.8 1.2 1.6 2 24 28
0SS y wave: Log10 of spectral density (cmzlcpd/deg'1)



Equatorial ocean:

wind-forced solutions



x-independent (2-d) Yoshida Jet

Kozo Yoshida wrote down the first solution for an x-independent
(2d) equatorial current driven by zonal winds. The (more complete)
theoretical solution developed somewhat later (Dennis Moore) has come
to be called the “Yoshida Jet” (Jim O’Brien).

The basic dynamics of the Yoshida Jet can be understood from the
zonal-momentum equation. Neglecting the (the flow 1s assumed
to be -independent) and mixing terms in the zonal momentum equation

gives
(at +>§ Uni {g: T@ +Mn
Cn
Offshore, Ekman balance ( ) holds, whereas at
the equator u, continues to accelerate ( ). The

switch from one dynamical regime to the other occurs aty = a,, " = (f/
=7
c,) .



Bounded (3-d) Yoshida Jet

In reality and models, equatorial zonal flows (Yoshida Jets) don’t
continue to accelerate. Why not?

Because in the real world either the wind forcing or the ocean basin
is zonally bounded, which introduces x-dependence into the solution.
(An exception is the Southern Ocean, but we will not consider that case
here.)

For convenience, we can still drop the mixing terms in the zonal
momentum equation, and at the equator the Coriolis term vanishes.
The boundaries, however, introduce x-dependence so we cannot neglect
the p, . term

A :
(8t +>Cﬁ U Unt @Jz — Tx/H7z + ML

In this case, the system stops accelerating by adjusting to a state
where the pressure gradient balances the wind. It does so by radiating

equatorial Kelvin and Rossby waves.




Bounded (3-d) Yoshida Jet

4500
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km
1500 %
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1500 |-

o 10,000

“"Equatorial jet

In response to forcing by a patch of easterly wind, an accelerating
Yoshida Jet initially develops in the forcing region. Subsequently, KWs and
RWs radiate from the forcing region. They generate a steady, eastward,
equatorial current both east and west of the forcing region: the bounded YJ.



Eastern-boundary reflections
What happens when basin boundaries are included?

At low frequencies, the incoming Kelvin wave
reflects as a packet of Rossby waves (Moore, 1968).
with the waves corresponding to larger ¢ values

propagating offshore more slowly. 3

The zonal current of the Kelvin wave divides at
the Rossby-wave front to flow along the edges of
the wave packet.




Adjustment to steady state

In response to forcing by a
patch of wind in the interior
ocean, KWs reflect from the
eastern boundary as a packet
of RWs creating a characteristic
wedge-shaped pattern. In
addition, wind-generated RWs
reflect from the western
boundary to return to the
interior ocean.

After multiple reflections,
the solution eventually adjusts
to a steady state of Sverdrup
balance.

Movies F1b & F2
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Kelvin wave
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Multi-mode response to switched-on

How does the LCS model
adjust when many baroclinic
modes are included?

With damping, the n > 1
responses are increasingly
damped for larger n, since v
= A/c,?. In that case, waves
that radiate from the forcing
region are increasingly
weakened for larger n.
propagation speeds of eq.
waves are slower ( and
c, < C.
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Multi-mode response to switched-on

With damping (vertical mixing), the LCS model produces a realistic steady
flow field near the equator with an EUC.
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Multi-mode response to periodic

In the 10, the steady component of equatorial is weak. Instead,
tends to oscillate at annual, semiannual, and other (e.g., intraseasonal)

__ _ McCreary (1981)
-400bs a —400 " 2

g & i L L
~400 equator 00 5000 0 5000

In response to periodic forcing, equatorial waves from a number of
baroclinic modes superpose to form beams that propagate vertically as well
as horizontally. Kelvin (Rossby) beams extend downward and eastward
(westward) from the forcing region. Phase propagates upwards (downwards)
across downward-extending (upward-extending) beams.



pward phase propagation in the
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Above 200 m, the phase of
u propagates upwards,
indicating that it is remotely
forced (wave) signal!
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Masumoto et al. (2005)




Coastal ocean:

2-d and 3-d solutions with
constant ( )orvariable ( )



Summary



Indian Ocean phonomena

a) ECMWF Windstress [N/m?] in January b) ECMWF Windstress [N/m?] in April
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The Indian Ocean winds differ markedly from the those in the Pacific
and Atlantic Oceans in that there are no quasi-steady trades along the
equator.



Wind-forced thermocline response
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Indian Ocean phonomena

a) ECMWF Windstress [N/m?] in January b) ECMWF Windstress [N/m?] in April
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c) ECMWEF Windstress [N/m=] in July “) ECMWF Windstress [N/m?] in October
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variable because of the monsoon. As a result, there are no steady
currents, and the propagation of remotely-forced waves around the
basin is apparent.






Additional slides



Hierarchy of ocean models:
derivation of LCS model equations

See HIGNotes.pdf for a detailed discussion.
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Linearize the equation of state to

L LI\ Lot VAN

1

Then, set x, e JU Epm = vus), v Viu. btain a
single densi 1  density
effects in th v+ fu+ =p, = (vv,), + v, V20, K¢ deletes
double diffy P enomena
considered 1 D, = —pg DOD.

pr+ upy +vpy + wp, = (kps), + 1 Vop

V.ev=0
V-.v=0,

p=p(S,T,p)




moae

1

w — fo+ pr = (ru,), + v, V2,
1

v+ fu+ Epy = (vv,), + v, V20,

Pz = —pPY

Do

5
pl P w Ny = (). Vi Py

V.-v=0

The derivative p,, is related to a fundamental ocean frequency, the
Vaisala frequency, the square of which is

)
sz (2) = _prz
Replace p,_ with V,2.



LCS model

1

u — fv 4 —=p, = (vu.), + V;LV2U,
P
1

v+ fu+ Epy = (vv.), + v, V3,

Pz = —pPyg

pPr — ngbQ : v, V2p

Uy + vy +w, =0

Modify the form of vertical diffusion from (xp,)_ to (xp),.. This
assumption is essential to allow the expansion of solutions into
vertical (barotropic and baroclinic) modes. Since the precise form
of vertical diffusion is not known, it is OKAY.



LCS model

1

uy — fo+ —p, (VUZ)Z + VhVQUa
p
1

v+ fu+ =p, + (vv,), + vy V30,
p

Pz = —py

P
P — w;Nb2 = (kp)., + v V?p

Uy + vy +w, =0

Wind stress enters the ocean in a surface mixed layer. To simulate
this process in a simple way, we introduce wind as a “body force”
with the vertical profile Z(z). The body force differs from an actual
mixed layer in that its profile is uniform in space and constant in
time. This representation is CONVENIENT and SENSIBLE.



LCS model

z
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Rewrlte equatlons (1) (3). F1rst solve (1) for p and 2) for w in
terms p.. Then, insert both expressions into (3).
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time. This representation is CONVENIENT and SENSIBLE.



LCS model

1 1
—fv+5px =77 (2)+ A, ((9 N2d ) u+ v, Vu,

1 1
fut+fu+5py:TyZ(z)+A,, (8 NQ(?)UJthV v,

1 1 2 1

NZ N? Ny p
1
w = _ﬁ_]\[bz [pzt - (/fpz)zz - thzpz]
1
e

g
Finally, assume that v = A, /N2, r=A,/N?
— b AR b

In which case all the z-operators have the same form, a property
necessary to represent solutions as expansions in vertical modes.



Mid-latitude ocean waves:

derivation of equation



~ Derivation of v, equation

unt_fvn+pn$:0 untl’_fvnm_l_pnmazzo

v, . Pntt
t 4+ fun + Dy =0 (1) 5 Ut Vgt = 0

pnt + -
— u —_—
2 naz + Uny = 0

Drae — Pntt
nrx 2 — Unyt + f/Unx

n

9 1
xw gatt DPn = Unyt + f’Unm



Herlvallon OI vV, equallon

B _ 1

Unt fvn + Pne = 0 (a:cx - _Qatt) Pn = Upyt + fv”x
C

Unt + fUpn + Pny =0

(_l/cnz) U’ntt — fvnt + pna:t — O

Pnt
Cn 2 + Ungzx + Unyx =0
Ch
Untt /
Unpga G _gvnt T vnyx

1 /
<a:m: - gatt) Up = _C_2vnt — Unya



Berlvallon OI vV, equallon

unt_fvn +pnx:0

vnt"‘f“n +pny =0
Pnt

5+ Ung + Uny =0
C'I’L

1

(a:mc -

1

<aa:ac — gatt) Pn — Unyt + fvnac
1, f

(a:c:c - Edtt> Up = _6_27}7175 — Unyax

f
gatt> Ut + f (_E’Umﬁ — Unpya + <vnyt + fvn:c)y =0

1 #2
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Mid-latitude ocean waves:

derivation of coastal Kelvin wave



" Derivation of KW solution

uf Unt + poz =0 |0 (=) Unte + Praw =0
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" Dervationof KWsolution

Upt + Pnae =
t TP 0 Pntt — C2pnxx =0
f Uy + Pny = 0

ny
DPnt + 0 i
o Upgy =
c -1 funt + Pnyt — 0

I Dz = Pnyt



Derivation of KW solution

2
Unt + Pne =0 Pntt — € Pnaa — 0
Pt T, =0 Look for solutions proportional to exp
2 " (ikx —ict). Set 0t = —io and ox = ik.

Pntt — Czpna:x =0 = 0_2 = C2k2 — o = +ck

JDna = DPnyt = kfp, = —OPny = Jon = +CPny

Pn = Po €XDP (:Fafy) exp [Zl{ (CE + Ct)] : o = é




Interior ocean:
Ekman drift and inertial oscillations



Ekman drift and inertial oscillations (8 = 0)

The most fundamental forced motion in the ocean is Ekman drift. In
an inviscid, single-mode (or 1'2-layer) model, Ekman drift occurs at
an angle of 90° to the right (left) of the wind in the northern
(southern) hemisphere.

To illustrate this response as simply as possible, we assume that the
ocean is unbounded, f'is constant, and the forcing is by a spatially
uniform 7°. Then, the equation (1) simplifies to

1

zxt — z% — C—Q’Uttt Vgt + fQU = —fF % — (%%t + %2

Why is it “okay” to consider spatially uniform winds? Because the
typical scale of wind the wind forcing (~500—1000 km) is much
greater than the Rossby radius of deformation (R ~ 25—50 km).



Ekman drift and inertial oscillations (8 = 0)

Suppose the wind switches on at 7= (0. We split the solution into a
time-independent, particular solution

%+f2’0p:—fF = vp:—§

and a homogeneous solution that satisfies (2) with F =0
— U + fPu = —>€' = v, = Asin ft + Bcos ft
The total solution is then

F
v = —7 + Asin ft + B cos ft

and 4 and B are determined by applying initial conditions.



Ekman drift and inertial oscillations (8 = 0)

Assume that the ocean 1s at rest before the wind switches, so that
appropriate initial conditions are u =v=0atz¢=0.

We use the v momentum equation to write the boundary condition
for u in terms of v. We have

v+ fu=0 = |vy,=0 @ t=0]/,

/

Applying the initial conditions gives
F F
v(0)=—-—=+B=0 = DB=-—
D=7 7
v (0)=fA=0 = A=0

so that

v = —? (1 — cos ft)




Ekman drift and inertial oscillations (8 = 0)

The steady-state solution is
Ekman drift, but GWs at o =f v = - (1 —cos f1)
are also generated to satisfy the
initial conditions.

Because £ = 0 and there are no
coasts, only GWs are possible. d/f
Because the wind is spatially
uniform, only GWs withk=¢=
0 can be excited. According to
the disp. rel., the waves with
zero wavenumber are inertial
waves with o = f.

If the wind is not spatially R/Re
uniform, GWs with £ > 0 and ¢ o
> f'can are also excited. 1

klo 1



Ekman drift and inertial oscillations (8 = 0)
To summarize, the solutions for # and v when f'is constant are

v F F
u=—— = —sin ft, V= —— 4 —cos [t
fof

a steady, southward, Ekman drift plus an inertial oscillation in which
the velocity vector rotates clockwise at a single frequency f.



Ekman drift and inertial oscillations (S # 0)

To summarize, the solutions for # and v when f'is constant are

Uy F F F
u=—— = —sin ft, v =—— 4 —cos ft
o f o f

a steady, southward, Ekman drift plus an inertial oscillation in which
the velocity vector rotates clockwise at a single frequency f.

Q: How does this simple response change when £ # 0?

A: Frequency f and hence the clockwise rotation of the velocity
vector differ at each latitude. Very quickly, convergences
(divergences) develop between different latitudes, requiring water to
downwell (upwell). This process excites gravity waves with £ # 0, and
is known as f-dispersion.

Movies B



Interior ocean:
derivation of Ekman pumping (B8 = 0)



Ekman pumping

Written in terms of a 172-layer model, the interior-ocean equations are

-y
fu+g'h, = I

) =~ (h— H)

,7_17
_ 'h, = —
fuo+gh 7
he + H (u, + v,

where

pn—9g (h—H), E—gH H,—H r=A/

and the damping corresponds to entrainment into or detrainment from
the layer.

Solving for a single equation in / gives

ht—[%%zx—} ht+li(h—H):—’wek ;) ] = — W,

where w,, is the Ekman-pumping velocity, the rate at which wind curl
raises or lowers subsurface isopycnals.

| =



Ekman pumping

When there 1s no damping ( ), the solution is

,7_:18
h=H —w,t=H+ -t

f
so that # grows continuously in time. With damping ( , 1t 1s
1 —e "t 1 —e " 7]
h=H— ——w, =H+ —+—-%
K K f
so that /& stops growing.
With 4 known, the zonal and meridional velocities are
1, T 1
v=—=gh, — —, u=——qgh

a superposition of Ekman and geostrophic currents.



Interior ocean:
adjustment to Sverdrup balance (8 # 0)



Adjustment when B#0and k=0

Suppose the model ocean allows f* to vary (f # 0) and there is no
damping (x = 0). Then, 4 satisfies

g H g H
£2 - ?

We obtain the solution by splitting it into steady-state (particular,
forced) and transient (homogenous, wave) parts

hy — 5 ht - Crhfar — —Wek, Cr = —Wek

1 €T
hp—H—/ wer d’ = x (x,9)|, h, = A(x+ ¢t y)
C”" w

where A(x,y) is an as yet unspecified function.

To satisfy the initial condition that 7 = H at t = (0, we must choose A
(x) = —x(xy), so that

h=h,+h,=H+x(x,y) — x (v +ct,y)




Initial adjustment

To determine the response a short time after the wind switches on,
we expand the Rossby-wave term in a Taylor series about t =0 to get

limh = H + x (2, y) = lim x (x + 1, y)

= H+x(@,y) = [x(@,y) +ex (xy) ¢+
=H—c¢X (v,y)t+-=H—wgt + -

Thus, at small times, the response is just Ekman pumping!
The response does not change from Ekman pumping until the Rossby
waves have time enough to propagate significantly westward.



Final adjustment

At longer times the solution for all the fields is

where
T TY T
curlT =77 — 77, curl = = (_) _ (_)
o P \7). \7),
A packet of Rossby waves propagates westward.

After their passage, the solution adjusts to a steady-state Sverdrup
balance.



Interior ocean:

western boundary currents



Western-boundary currents

When long-wavelength Rossby waves (LWRWs) propagate to a
western-ocean boundary, zonal flow associated with them is channeled
into a western-boundary current (WBC).

Without momentum mixing, the LWRWs reflect as a packet of
short-wavelength Rossby waves (SWRWs) that continuously thins.

Movie MassSource(300days).fli



Western-boundary currents

When long-wavelength Rossby waves (LWRWs) propagate to a
western-ocean boundary, zonal flow associated with them is channeled
into a western-boundary current (WBC).

Without momentum mixing, the LWRWs reflect as a packet of
short-wavelength Rossby waves (SWRWs) that continuously thins.

Movie MassSource(300days).fli

With momentum mixing, the WBC thinning stops (or never appears
at all) and its offshore structure adjusts to steady-state profile.

Movies D



Western-boundary currents

To find the structure of the western-boundary current, neglect time-
dependent and vertical-mixing terms and forcing terms in the
equations of motion, and for convenience drop subscripts n.

@ —fo+p, = —vu+ v, Vu,
E fu+p, =—vv+ N0, o,

Uy +v, =0

Solving for a single equation in v then gives

—Bu, = vV + 1, Vi




Western-boundary currents

— By = D + VpPiega (1)

Adopting that boundary-layer assumption that L ? » L *, we drop
all y-derivative terms from the right-hand side of (1).

With only Laplacian mixing (v = 0), then the solution to (1) is

1

( x ) (V3 Up '\ ?
v=1vexp| —— |Smm | —— |, I'm =\ =%
TTTL 2 74771, /[3

a Munk layer. This layer oscillates, as well as decays, offshore.
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In Solutions D1 — D3, the WBCs are Munk layers that decay and
oscillate offshore.



Equatorial ocean:
derivation of Yanai-wave dispersion relation



Mixed Rossby-gravity (Yanai) wave

The curious form of the Yanai-wave dispersion curve happens because
it factors into two parts when £ = 0. We have

2
o <k72 +ai — U—2> + k5 =0
c

AT
(kQ %—%>+kt/’5:0
2
0<Ar2—0—2> /3(k+i):0

(£



Mixed Rossby-gravity (Yanai) wave

The curious form of the Yanai-wave dispersion curve happens because
it factors into two parts when £ = 0. We have

(k_g+§) () — 0

The second factor describes a wave that travels westward at the speed
of a Kelvin wave. It can be shown that this wave blows up at +oo, and
so it must be discarded.

The single dispersion relation for the Yanai wave is then

3
k_g+/_:O
C 0}

For small and large values of &, the relation simplifies to,

3 o
lim bk = ——, lim k= —
o—0 g 0—00 C

the same properties for Rossby and gravity waves, respectively.



Equatorial ocean:

structures of Hermite functions and
equatorial gravity & Rossby waves
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For large ¢, the Hermlte functions resemble cosine or sine curves
near the equator. They begin to decay at latitudes higher than the
“turning latitude.” So, the Hermite functions are equatorially
trapped.
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Equatorial gravity and Rossby waves

The v, u,, and p, fields for equatorially trapped Rossby and gravity
waves are

v = V0 eXp (zk’f:c — z'at) ,

. (+1 ¢ [C ¢, \ . .
Uy = —1icogVy ( 5 ck‘feila — 5ck‘f£7+10¢8_1 exp <zk:f:1: — wt) ,
J J

(+1 ( o \
Pe = —iCQCkng ( + Pt + f Oc1 Ge—1 | exp (Z/{me — iO‘t) ,

2 cki—o §cktf +o
whereV, is a constant amplitude, is a Hermite function,
e __P o [ 5 0O
k1,2__% 1:F\/1—4E (QE_C_Q

and j = 1 (2) corresponds to the — (+) sign.
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The u, v, and p fields for a
Yanai wave when ¢, =250
cm/s and P =360 days. For
this P, 6/, = .03 and 4 = 0.64°.
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Equatorial ocean:
derivation of equatorial Kelvin wave



Equatorial Kelvin wave

The equatorial Kelvin wave has v = (), and so was missed in the
preceding solutions. To find it, set v=A4 =0 in (1), and look for a free-
wave solution of the form

With these restrictions, equations (1) reduce to

—iou + tkp = 0, Ju+p, =0, —ia% + tku = 0.
c

The first and third equations imply

o k
k=4—, u = —p,
c o

and the second then gives

. k /
py=—fu=—f—p=F_p=Fagyp 4)



Equatorial Kelvin wave
The solution to (4) is
/ ]‘ 2 2 . .
P = Po exp $§aoy exp (Zk:b‘ — zat) .

The solution that grows exponentially in y, which corresponds to the
root, k = —o/c, is physically unrealistic in an unbounded basin and
must be discarded. Therefore, the only possible wave is

p=Paowes [iZ@—c)|, o=te | @

which describes the structure and dispersion relation for the equatorial
Kelvin wave. In (5), [ have used the property that

1
do(y) = 77 exp (—§a§y2) ,

and redefined the arbitrary constant amplitude to be P, = n/4P’,.



Equatorial ocean:
eastern-boundary reflection



Eastern-boundary reflections
Cycle 21 (April 13, 1993)

Remarkably, the characteristic
wedge shape and westward
propagation is visible in
satellite data. The figure shows
global maps of filtered sea level
from TOPEX/Poseidon on April
13 and July 31, 1993. It sho
Rossby-wave packet gener Movies F
by the reflection of an 20
equatorial Kelvin wave forced
by intraseasonal winds in the 10
western ocean. (After Chelton
and Schlax, 1996.) 20

Sea level (cm)

Fedorov and Brown, 2007



Equatorial ocean:
Vertical propagation



Vertical propagation
Recall that the vertical structure of waves in the LCS model satisfy

1 1

n

Rather than to look for solutions as expansions in vertical modes, v, (z),
another way of studying solutions to the LCS model is to look for
approximate solutions of the form,

Yn o exp [tm(z)z]

under the restriction that the background stratification, /V,(z) varies
slowly with respect to the vertical wavelength of the wave, m(z) (the
WKB approximation). In that case,

1 m> 1

n

and c, can be replaced by




Vertical propagation (KW beams)

With this change, the dispersion relation for equatorial Kelvin waves is
k
oc=c,k — o=N,—.
Im|

Group theory states that a packet of Kelvin waves (that is, a superposition
of several waves associated with different k£ and m values) propagates at
the “group” velocity

Ny, k
Cgz = Op = FNy— m 2 0

C
m?2’

gr — Ok

ml’

Thus, the energy of the packet propagates to the east with the slope

dz ¢ o o

gz m
a1 = = = = :FF7 m Z 0
X Cyx O b

Since coastal Kelvin waves have the same dispersion relation as
equatorial ones, they propagate vertically in the same way.



Vertical propagation (YW beams)

The dispersion relation for Yanai waves becomes

o [ ) 3
k__+/_:0 wmg+/_:0
c o N, o
Group theory states that a packet of Yanai waves (that is, a superposition of
several waves associated with different k and m values) propagates at the

“group” velocity

, 3 | B\t
I—MO},—/—O‘]‘::O = Cgm:Uk:: <I7n‘ _|_/_>

N, 02 N, o2
02 Im)| I6; 0 = o [ m N BN
~—~ — 5 O0m — —S0m = Cogr = Oy = ~ |\ * D)
+ Nb Nb 0'2 g :I:Nb Nb 0'2

Thus, the energy of the packet propagates to the east with the slope

dz ¢y __ 0O

o0 = =+
dr Cye N’

the same slope as for Kelvin waves!



Vertical propagation (long-wavelength RWs)

™
=

O

For the RW dispersion curves, ><
as o tends to zero so does k. 7 o? 20+ 1

So, in the low-frequency limit
the RW disp. curves are non-
dispersive. This limit is known
as the long-wavelength
approximation.

In this limit, RWs propagate olo,
vertically with a slope

dz o o

= (2041

dx O Nb ( + )
with a steeper slope, and in the
opposite direction from, KW
and YWs.




Coastal ocean:

2-d and 3-d solutions with
constant ( )orvariable ( )



Questions

How does wind drive coastal currents?
across-shore Ekman flow driven by alongshore winds

What waves are generated at coasts?
Kelvin and Rossby waves; (shelf waves)

What are the key differences between 2-d and 3-d
theories of coastal circulation?
wave radiation; establishment of to balance

Why do eastern-boundary currents exist at all?
vertical mixing; (shelf trapping)



Coastal-ocean equations

A useful set of equations for the coastal ocean is

( _fv+g/ha::()7 ’
( v+ fu+gh,=7Y/H — v, |

he + H (u, +v,) = —k (h — H)

As for the interior-ocean equations, this approximation is useful
because it filters out gravity waves. Thus, it only describes the slowly
varying response, that is, its directly forced & Rossby-wave (if § # 0)
parts.

llllAlllg LOL LIS, 111 UL Wa_y, LLIC alUllnglUlC LIUYY 1D 111 gCUDtl Uplll\,

balance, a property consistent with observations.



Forcing by a band of alongshore wind

All the coastal solutions discussed below are forced by a band of
alongshore winds of the form,

T (z,y,t) = 7,Y (y)T(t).

Since this wind field is x-independent, it has no curl. Therefore, 1
the response is entirely driven at the coast by onshore/offshore
Ekman drift. The time dependence

1s usually switched-on 3

T(t) = 0(t),

except for a few solutions
when it is periodic

T(t)= et




2-d response to switched-on
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— h

;< ’n

W,

A
A
A
A

Consider the 2-dimensional (x, /) coastal response of a 1':-layer
model when the wind is independent of y.

If the alongshore winds are directed southward, they force offshore
Ekman drift. Since there can be no flow through the coast, the
thermocline must rise to conserve mass. It rises until it intersects the
surface mixed layer, and then subsurface water entrains (upwells)
into surface layer.

The offshore decay scale of the circulation is the Rossby radius of
deformation, R. There is a geostrophic coastal current v in the
direction of the wind.



2-d response to switched-on

The solution to the 2-d coastal equations with 1S
7Y
h=H+—te/R
Rf
For southward winds ( ), h thins at the coast, and the coastal

response weakens exponentially offshore with width scale R.

How long d See additional slides for a derivation of (3). € coast? For
the parameter choices

H=100m, f=10"*s"' R=25km, 7Y=1dyn/cm’

the time is 29 days.



3-d response to switched-on ()

Two-dimensional coastal upwelling is altered dramatically when 3-d
processes are included. Specifically, the propagation of Kelvin waves
along the coast stops the rise of A.

See additional slides for a J-plane

derivation of this response. alter 23 days alter 46 daye p——.
upwelling, coastal Kelvin L
waves extend the response | "
north of the forcing region. |
The pycnocline tilts in the
latitude band of the wind,
creating a pressure force that
balances and stops the
interface from rising further.

10000

Movies Hla and H1b




3-d response to switched-on B0

When f # 0, Rossby waves f-plane
carry the coastal response alter 35 days
offshore, leaving behind a state
of rest in which balances

everywhere.

after 69 days

The RW speed is

C2

A
So, RWs propagate faster
closer to the equator (

).

Cr =

after 104 days after 139 days

Movie Hlc




Multi-mode response to switched-on ()

A fundamental question of f-plane
coastal dynamics is: Since Rossby e 85 e afer 69 daye .
waves propagate offshore, why do ,
eastern-boundary currents exist J il e .
at all? /.~ A

A possible answer is that many
baroclinic modes contribute to the equator
coastal response, and that the RWs
associated with them are damped
before they can propagate offshore.

after 104 days after 139 days

J2000 m

equator




Multi-mode response to switched-on )

The plot shows the response of
the n =1 mode without damping.
But, it also illustrates the n > 1
responses: the difference is that
currents propagate offshore more
slowly, since the RW propagation
speed 1s and ¢, <c,.

With damping, the responses of
the n > 1 modes are increasingly
damped since v = 4/c,2. In that
case, the Kelvin and Rossby waves
that radiate from the forcing
region are weakened for larger n.
For sufficiently large n, then, the
response is confined to the forcing
region.

f-plane

after 35 days

after 104 days

after 69 days

after 139 days




Multi-mode response to switched-on ()

e — — — — T—1
"

McCreary (1981) obtained a
steady-state, coastal solution to
the LCS model with damping.

The model allows Rossby waves S
to propagate offshore. A steady A\
coastal circulation remains, it

however, because they are damped — * .
by vertical diffusion.

O/fj—_k‘(—(—(~¢—(—(—(—(—<—<—&§
. A \ i

- o AN s e bt
There is upwelling in the band of L+ S A NRRRNNRRSZE S L oo T anttt
wind forcing. There is a surface R R e R R !
current in the direction of the W BiPERL R e g

;;;;;;;;;;;;;;;;;;;;;;;;;
>>>>>>>>>>>>>>>>>>>>>>>

wind, and a subsurface CUC. A TR R D e Gt oG d By

>>>>>>>>>>>>>>>>>>>>
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;;;;;;;;;;;;;;;
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Movies 2cand 3¢ = ... i

<<<<<<

20 30 40



Observed eastern-coastal circulation

0

km

Mittelstadt et al. (1975), Huyer (1976)

The agreement with the McCreary (1981) model is striking. Do
eastern-boundary coastal in the real ocean exist due to diffusive
damping?

a poleward undercurrent, and coastal upwelling.



Multi-mode response to periodic ()

For a switched-on , Kelvin
waves (Rossby waves) radiate
poleward (offshore), leaving behind a
steady-state coastal circulation.

For a periodic , coastal KWs
and RWs are continually generated.

Kelvin-wave packets associated
with a number of baroclinic modes
form a “beam” that carries energy
downward. There is upward phase
propagation across the beam.

Se . des
fora Movies Kle & K1d ;

of Kelvin waves.

DEPTH (m)

DEPTH (m)

DEPTH (m)

o =27/200 days

&

~o

Philander and Yoon (1982




Coastal ocean:
derivation of 2d coastal response



2-d response to switched-on

It i1s easy to solve the coastal equations for the initial rise of the
thermocline. At that time, the response is inviscid, and the coastal
equations written in terms of a 2-d, 1’2-layer model are

—fv+g'h, =0,

/

Unt + 7Y %
: 2ilrt+fu: E; ?

1 ! >p€

c2 hi + Hu, =0 [

n

Solving for a single equation in /2 gives

2 )
hy — Ry = —756 =0, (1)

where R* = g'H/f? is the square of Rossby radius of deformation. The
forcing term vanishes because 7’ is independent of x.




2-d response to switched-on

The general solution to (1) 1s

h=Hh=H+ A(t) ot/ B~/

The coast is at x = 0 and the ocean lies in the region x <0, so we have
to drop the B term to ensure the solution is bounded as x — —oo.

To evaluate 4, we impose the boundary cond. that u =0 at x = 0.
Using the v-momentum equation to write u in terms of / gives

/

7Y 7Y ,
fu:—thrﬁ:—%hquﬁ:O Q x=0
and then '
g A, 1Y TV f TV 2 ¢t TY

Iyl L0 = (A=l R =l g =y
IR H He ' " Hqg 'J RS




2-d response to switched-on

The solution is then

Ty
h=H+ —te"/"
+Rf€

For southward winds (z <0), & thins at the coast, and the coastal
response weakens exponentially offshore with width scale R.

There is a meridional geostrophic current associated with 4,

/ !~y Yy
g gT - T &
v==h, te/ Mt — e/ B

frore H

a coastally trapped jet flowing in the direction of the wind.

How long does it take for / to thin to the surface at the coast? For
the parameter choices

H=100m, f=10"*s"!, R=25km, 7Y=1dyn/cm’

the time is 29 days.



Coastal ocean:
derivation of 3d (B = 0) coastal response



3-d response to switched-on

To see these properties, we solve the coastal equations keeping the v,
and &, terms. Then, the inviscid coastal equations written in terms of
a 1’2-layer model are

_f/U -+ g,h’x — 07

v / TV
v fut gy =

A he+ H (u, +v,) =0

75X

T

Solving for a single equation in / gives

2 Tr
ht_R hx:z:t = —— :Oa (1)
f
where R? = g'H/f* is the square of Rossby radius of deformation. The
forcing term vanishes because 7’ is independent of x.




3-d response to switched-on

The general solution to (1) 1s

h=H|h=H+A(y,t)e?/B)e "/ (1)

The coast is at x = 0 and the ocean lies in the region x <0, so we have
to drop the B term to ensure the solution is bounded as x — —oo.

To evaluate 4, we impose the boundary cond. that u =0 at x = 0.
Using the v-momentum equation to write u in terms of / gives

Y

g T ,
Ju= —7hmt—9/hy+ﬁ =0 @ =0

which, using (1), provides an equation for 4,

Y
At+cAy:T—, c=+\gH

C




3-d response to switched-on

We obtain the solution for 4 by splitting it into particular (steady-
state) and homogeneous (Kelvin-wave) responses,

Vo
Ap:/mg/de = x (y), A=Ay — ct)

where A(x,y) is an as yet unspecified function.

To satisfy the initial condition that 7 = H at t = (0, we must choose A

(») = —x(»), so that

h=H+ (A, +Ay) e =H 1 x (y) e — x (y — ct) /B




Initial adjustment

To determine the response a short time after the wind switches on,
we expand y(y — ct) in a Taylor series about 7= 0 to get

limh=H + x (y) — }fin&x (y — ct)

=H+x) - —exX(y)t+-]

.y

Thus, at small times, the response is just the 2-d response!
The response does not change from the 2-d response until the Kelvin
waves have propagated across the wind band.



Final adjustment

At longer times the solution for all the fields is

A packet of Kelvin waves propagates poleward. Note that, consistent
with Kelvin waves, there is no u field associated with the packet.

After its passage, the solution adjusts to a steady-state balance.

Key properties of the steady solution are: 1) a pressure gradient that
balances the wind along the coast (x = 0), thatis, p, = g'h, = ?/H; 2) a
coastal jet with a transport HRyv that supplies the Ekman transport
from the coast; and 3) Ekman drift that weakens to zero at the coast.



Intraseasonal variability



|rop|ca| InS!aBIII!y waves

120°W

130°wW

Legeckis (1977, Science) first
reported the presence of TIWs in the
eastern, tropical Pacific. TIWs were
soon shown to have a large impact on
the momentum and heat fluxes in the
region. Philander (1976, 1978, JGR)
argued that TIWs were caused by
barotropic instability. Yu et al. (1992,
Prog. Oceanogr.) later suggested that an
instability of the temperature front
was involved. Luther and Johnson
(1990) suggested that there was more
than one type of TIWs.

19 November 1975
; RS, 2 q 5°N
= D &= K &

-

Similar TIWs were soon observed in
the Atlantic Ocean. Their dynamics are
essentially the same as for the Pacific

TIWs.
d . : : . e ...

25 November 1975



Tropical instability waves

o
cm/s

1000 2000 3000 4000 5000 6000 7000

Michael Cox (1980) reported a Yanai-wave beam forced by surface TIWs in his OGCM
solution. Ascani & coworkers (2009) explored the idea that deep equatorial currents are
caused by an instability of the Yanai-wave beam generated by TIWs. To simulate the effect
of TIWs, they forced their OGCM by a wind stress with the wavelength (~1000 km) and
period (~30 days) of a typical TIW, generating the Yanai-wave beam shown above.



Somali Current instability (27 days)

DAY 258/YEAR 8
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Radiation of equatorially
trapped waves from the 10
western boundary in a
— , — humerical model. They were

generated by an instability
l. ' ° '::rosses the equator.

of the Somali Current as it
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Their structure identifies the waves to be Yanai waves. These modeled waves
were observed in altimetry by Tsai et al. (1992).



Somali Current instability (27 days)

When all the vertical modes are
summed, energy propagates
downward as well as eastward,
along paths parallel to the
group velocity. At the right of
the plots, energy has reflected
off the bottom to produce an
upward-propagating beam.

The presence of intraseasonal
variability at a depth of 750 m
in the Luyten and Roemmich
(1982) observations thus
appears to result from the
radiation of a beam of Yanai
waves from the Somali coast.
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Madden Julian Oscillations (30-60 days)

Sw=214

In the central 10, oceanic ISV el
appears to be mostly wind-forced. J\ zx *m_ﬁzo
A prominent forcing is by MJOs, ' AT
eastward-propagating, convective 100°E assm‘:vamm swotro
disturbances, with periods of 30— ) b
60 days.

Their impacts on rainfall,
oceanic surface fluxes, and SST !

11 d d :IF»‘:
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Waliser, Murtugudde, Lucas (2003, 2004)




in the ~ ays

Courtesy of Jerome Vialard

Intraseasonal SL (cm) lag 40day




