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Upwelling-favorable annual-mean winds (dominated by July) 

Reversing cross-equatorial winds 

Relatively steady southeast tradewinds 

As a result, the IO monsoon winds 
circulate clockwise (anticlockwise) 
about the equator during the 
summer (winter).  The annual-
mean winds have the summer 
pattern. 

Climatological wind forcing 
Equatorial westerlies 



January July  

During the SWM, upwelling 
favorable winds lift the thermocline 
off Somalia and Oman, on the Indian 
coast, and around Sri Lanka. 

Wind-forced thermocline response 

McCreary, Kundu, and Molinari (1993) 

There is a thermocline ridge in a band from 5–10°S. It is driven by Ekman 
pumping associated with the northward weakening of the Southeast Trades, and 
is stronger in northern summer when the Trades are stronger. 

During the NEM, the thermocline 
deepens due to alongshore winds off 
Somalia and Oman and to surface 
cooling in the northern AS. 



January July  

McCreary, Kundu, and Molinari (1993) 

The upwelling and downwelling responses do not remain confined to their 
forcing regions.  Rossby and Kelvin waves radiate away from the forcing 
regions, thereby impacting the ocean remotely.  

Wave radiation 

The spring Wyrtki Jet reflects from 
the IO eastern boundary as a packet of 
Rossby waves, and a Kelvin (coastal) 
wave propagates around the perimeter 
of the Bay of Bengal. 

Rossby waves radiate off the west 
coast of India during both seasons. 

Sea level movie 



To provide an introduction to the dynamics of wind-
driven circulations in the North Indian Ocean (NIO), 
both for its mean state and climatic variability. 

Goal 

Our approach is to split the complete IO response into 
smaller pieces in the interior, equatorial, and coastal 
oceans.  We then discuss simple solutions that illustrate 
the dominant processes at work in each region.  These 
simpler solutions provide the “language” needed to 
discuss more complex problems. 

Approach 



What types of ocean models are useful for studying 
NIO phenomena?  

model hierarchy: OGCMs, LCS model, layer models 

What types of ocean waves impact NIO phenomena? 
gravity & Rossby waves; Kelvin waves; (shelf waves) 

How does the wind drive ocean circulations? 
Ekman flow; Ekman pumping; excitation of Rossby and Kelvin 
waves; adjustment to Sverdrup balance 

How do wind-driven dynamics differ in the interior, 
equatorial, and coastal oceans? 

They are very similar, differing primarily in the types of waves 
that are generated. 

Questions 



References: ITCP and Dropbox 

This lecture, TTAlecture.pptx, and other files can be obtained 
from the ITCP website at: 

http://indico.ictp.it/event/7666/ 

Today’s talk focuses on physical concepts, rather than 
mathematical solutions.  There are additional slides at the end of 
TTAlecture.pptx that derive some of the solutions discussed 
today, as well as other supportive material. 

They can also be found at the Dropbox link: 
https://www.dropbox.com/home/Trieste2016 

at least for the next month. 



References: NIOSS (2010) 

The content & organization of this lecture were inspired by a set 
of lectures I gave at a summer school held at NIO in 2010 
(NIOSS).  An overview of NIOSS can be found at the web site: 
http://www.nio.org/index/option/com_newsdisplay/task/view/tid/4/
sid/23/nid/255 



References: NIOSS (2010) 

All of the movies that I show were prepared during NIOSS, and 
they are stored in the Tutorials folders at the website 
http://www.nio.org/index/option/com_eventdisplay/task/view/tid/4/
sid/114/eid/143 
They can also be obtained from the ICTP web site.  I recommend 
that you download all of these movies onto your own computer.   

A description of each movie is given in ExperimentList.docx, 
located in the Tutorials folders at the NIOSS website, as well as at 
the ICTP website. 



References: INCOIS winter school (2015) 

This lecture is a 1½-hour version of a set of lectures I gave 
during a winter school held at INCOIS in 2016.  The complete 
set of lectures can be downloaded from the web site: 

http://www.incois.gov.in/portal/ITCOocean/course_materials.jsp 

Replace picture. 



Organization 
1) Hierarchy of ocean models 
2) Midlatitude-ocean waves 

3)  Interior ocean 
4) Equatorial ocean 

5a) Equatorial waves 
5b) Wind-forced solutions 

[6) Coastal Ocean] 
7) Summary 



Hierarchy of ocean models: 
OGCMs, LCS and layer models  



Simpler ocean models 

At the same time, it is often difficult to isolate basic processes at 
work in OGCM solutions.  Instead, basic processes are illustrated 
better in simpler systems.  The simpler systems provide a language for 
discussing phenomena and processes in the more complicated ones.  
Moreover, OGCM & simple solutions are often quite similar to each 
other and to observations. 

Here, I introduce equations for the linear, continuously stratified 
(LCS) and 1½-layer models, which are simpler equation sets that allow 
for analytic solutions.  Most of our understanding of ocean dynamics 
arises from analytic solutions to these simpler equation sets. 

OGCMs are remarkably good at simulating oceanic phenomena. 



The following set of equations are the equations of motion that are 
solved in many OGCMs. 

OGCM equations 

​"↓$ =−&'  

Many OGCMs adopt the 
hydrostatic approximation.  
In most physical situations, 
it is an EXCELLENT one. 



The LCS model linearizes and simplifies the OGCM equations 
until it is possible to express the u, v, and p fields as the expansions 

 
 
 

LCS model: mode equations 

where ​(↓)  depends only on * and the expansion coefficients, ​+↓) , ​ and the expansion coefficients, ​+↓) , ​
,↓) , and ​-↓) , only on x, y, and t. 

Thus, the ocean’s response is separated into a superposition of 
independent responses associated with each mode.  They differ only 
in the values of ​.↓) , the Kelvin-wave speed for each mode. 

The resulting equations for un, vn, and pn are 

(A) 

See additional slides and HIGNotes.pdf for a derivation of (A). 



The functions ​(↓) (*) are the baroclinic and barotropic modes of the 
ocean.  They require that the ocean bottom is flat at $=−/ and that ​ and that ​
0↓1↑% (*)=−(​5∕​7  )​7↓1*  depends only on z.  They are then solutions 
to 

subject to the boundary conditions and normalization 

(1) 

(2) 

LCS model: baroclinic and barotropic modes 

Among other things, conditions (2) ensure that 8=& at the top and  at the top and 
bottom of the ocean. 
Integrating (1) over the water column gives 
 
 
 
 
Constraint (3) can be satisfied in two ways.  Either ​.↓& =∞ in which 
case ​(↓& (*)=( (barotropic mode) or ​.↓)  is finite and its value is  (barotropic mode) or ​.↓)  is finite and its value is 
set so that the integral of ​(↓)  vanishes (baroclinic modes). 

(3) 



LCS model: baroclinic and barotropic modes 

When ​7↓1*  and ​0↓1↑%  are 
constants and cn is finite (baroclinic 
modes), the solutions to (1) are cosine 
functions, cos(mz). 

In order to satisfy boundary 
conditions (2), m must equal an 
integral number of half wavelengths 
in the water column, that is,  

 
 
 
 

When ​0↓1↑%  decreases with 
depth like 

 
 
 

and cn is finite, solutions to (1) are 
similar, except their wavelength 
increases and amplitude decreases 
with depth. 

The values of  cn are different from, 
but are similar to, those for constant 
density. 

When cn is infinite, the solution to 
(1) that satisfies boundary conditions 
(2) is 

 
 

the barotropic mode of the system. 

​9↓: ($) 



where the pressure is 
 
 
so that 5′ has a much smaller (reduced) value than g. 

If a particular phenomenon is surface trapped, it is often useful 
to study it with an upper-layer model that focuses on the surface 
flow.  Such a model is the 1½-layer, reduced-gravity model.  In its 
linear form, its equations are 

1½-layer model 

   The model allows water to transfer into and out of the layer by 
means of an across-interface velocity, w1.  Thus, the system can 
allow for upwelling and downwelling regions in the ocean. 

The model equations are essentially the same as a baroclinic mode 
of the LCS model, where ​.↓)↑% = ​5↓%(↑′ ​;↓( , and w1 is 
analogous to mixing on density.  It is often useful to interpret the 
response of the n = 1 baroclinic mode as that of a 1½-layer model.  

Most of the NIOSS movies are numerical solutions to the LCS 
model for a single (n = 1) baroclinic mode or, equivalently, to a 
1½-layer model.  A few movies are LCS solutions that are a sum of 
a number of baroclinic modes. 



Midlatitude-ocean waves: 
dispersion relations 



To focus on the free waves, we neglect forcing, damping, and 
friction terms in the equations for a mode of the LCS model (or 1½-
layer model) to get 

Solutions to these equations for a single vertical mode describe 
how waves propagate horizontally. 

Waves associated with a superposition of vertical modes 
 
 
 

propagate both horizontally and vertically. 

​,↓)  equation 



Solving the unforced, inviscid equations for a single equation in 
vn, and for convenience dropping subscripts n gives   

(1) 

​,↓)  equation 

Solutions to (1) are difficult to find analytically because f  is a 
function of y and the equation includes y derivatives (​<↓==>  term).  
There are, however, useful analytic solutions to approximate 
versions of (1). 

See additional slides for a derivation of (1). 



The simplest approximation (mid-latitude β-plane approximation) 
simply “pretends” that f and β are both constant.  Then, solutions to 
(1) have the form of plane waves, 

Then, we can set ?@=−AB, ?C=AD, and ?E=Aℓ in (1), resulting in the , ?C=AD, and ?E=Aℓ in (1), resulting in the , and ?E=Aℓ in (1), resulting in the 
dispersion relation,  

The dispersion relation provides a “biography” for a model.  It 
describes everything about the waves it supports. 

Dispersion relation of free waves 



Gravity and Rossby waves 

σ/f 

k/α 

- 1 

−1 1 

R/2Re 

For convenience, the figure plots 
curves when ℓ = 0. 

When ℓ ≠ 0, the disp. rel. is a 
circle for each σ.  So, the two 
curves become circular bowls. 

The top bowl (bottom bowl) 
describes the gravity waves 
(Rossby waves) of the system. 



The coastal KW propagates 
along coasts at speed c with the 
coast to its right (in the NH), 
and decays offshore with the 
scale c/f = R, the Rossby radius 
of deformation. 

Kelvin waves 
To derive the dispersion relation 
for GWs and RWs, we solved 
for a single equation in v.  So, 
we missed a wave with v = 0, 
the coastal Kelvin wave. 

The dispersion curves shown in  
the figure and equation are for 
Kelvin waves along zonal 
boundaries. KWs also exist 
along meridional boundaries. 

σ/f 

k/α 

- 1 

−1 1 

See the additional slides for a 
derivation of the Kelvin wave.  



Phase and group speed 

σ/f 

k/α 

- 1 

−1 1 

R/2Re 

The figure shows the wave types 
that we have discussed. 

The phase speed of a wave with 
wavenumber k and frequency σ 
is the slope of the line that 
extends from (&,&) to (B,D). 

The group speed of a wave with 
wavenumber k and frequency σ 
is the slope of the line parallel 
to the dispersion curve at the 
point (B,D). 

Movies A1, A2, A3b 



Interior ocean: 
Ekman pumping &  

adjustment to Sverdrup balance 



Equations of motion for the ​F↓: , ​<↓: , and ​"↓:   fields of a single 
baroclinic mode are 

 
 
 
 
 
 
 
 
 

This linear set of equations, however, is difficult to solve.   
A useful (and still popular) simplification is to drop the acceleration 

and damping terms from the momentum equations.  In addition, the 
horizontal viscosity terms are assumed small dropped in the interior 
ocean, and are only retained to represent western boundary currents. 

This approximation is useful because it filters out the gravity-wave 
response.  Thus, it only describes the slowly varying parts of the 
response, that is, its Ekman-drift, Ekman pumping and Rossby wave 
(if β ≠ 0) parts. 

Interior-ocean equations 



Suppose the ocean is forced by a zonal-wind stress   ​G↑C  switched on 
at @=&, that H is constant (I=&), and that there is no damping (J = 0). , that H is constant (I=&), and that there is no damping (J = 0).  is constant (I=&), and that there is no damping (J = 0). ), and that there is no damping (J = 0).  = 0). 
Then, the solution is 

 
 
 

 
so that h thickens (thins) continuously where ​G↓E↑C  > 0 (< 0). 

With h known, the zonal and meridional velocities are  
 
 
 
 

a superposition of Ekman and geostrophic currents. 
Note that, although the geostrophic flow grows linearly in time, the 

Ekman flow switches on instantly at t = 0 and thereafter remains 
constant.  It switches on instantly because the interior-ocean equations 
filter out gravity (inertial) waves. 

See additional slides for a derivation of this solution. 

Ekman pumping (I=&) with J = 0 forced by ​G↑C  ) with J = 0 forced by ​G↑C   = 0 forced by ​G↑C  



Ekman pumping (I=&) with J = 0 forced by ​G↑C  ) with J = 0 forced by ​G↑C   = 0 forced by ​G↑C  

For this wind, ​G↓E↑C <& north of 2000 km and h thins, and the  north of 2000 km and h thins, and the 
opposite change happens south of 2000 km.  The constant Ekman drift 
shifts water continually from the northern to the southern half of the 
domain.  Counter-rotating geostrophic gyres spin-up in response to h. 

How long does it take for the layer bottom to upwell to the surface? 
 
 
 

which for the above wind, H = 100 m, and f = 10−4 s−1 is t = 368 days.  



In steady state, Ekman drift still flows from the northern to the 
southern half of the domain. Water entrains into the layer in the north 
to provide a source for the Ekman drift and detrains from the layer in 
the south to provide a sink, forming an overturning cell. 

Suppose the ocean is forced by a zonal wind (i.e., ​K↑= =0) and there 
is damping (κ ≠ 0).  Then, the solution is 

 
 
 

 
so that h stops growing. 

Movies C1 

See additional slides for a derivation of this solution. 
upwelling 

sinking 

Ekman pumping (I=&) with J ≠ 0 forced by ​G↑C  ) with J ≠ 0 forced by ​G↑C   ≠ 0 forced by ​G↑C  



– 

f-plane 
The initial response is the 

same as on the f-plane.  
Ekman flow switches on 
instantly because gravity 
waves are filtered out of the 
system, and wind curl drives 
Ekman pumping. 

Adjustment to Sverdrup balance (I≠&) forced by ​G↑C  ) forced by ​G↑C  

Consider the response to a switched-on ​K↑L  patch when I≠&. . 



β-plane 
Subsequently, westward 

radiation of Rossby waves 
extends the response west of 
the forcing region, and 
adjusts the circulation to 
Sverdrup balance.  

Consider the response to a switched-on ​K↑L  patch when I≠&. . 

Adjustment to Sverdrup balance (I≠&) forced by ​G↑C  ) forced by ​G↑C  

See additional slides for a 
derivation of this solution. 



At any longitude, Ekman 
pumping continues until the 
passage of Rossby waves.  
Because they propagate 
slowly, the Ekman pumping 
can be large enough for the 
bottom of the layer to rise 
to the surface (light blue 
area). In that case, the 
solution breaks down, and 
there must be upwelling 
from the deep ocean. 

β-plane 

Consider the response to a switched-on ​K↑L  patch when I≠&. . 

Adjustment to Sverdrup balance (I≠&) forced by ​G↑C  ) forced by ​G↑C  



The initial response is the 
same as on the f-plane.  
Ekman flow switches on 
instantly because gravity 
waves are filtered out of the 
system, and wind curl 
drives Ekman pumping. 

f-plane 

Adjustment to Sverdrup balance (I≠&) forced by ​G↑E  ) forced by ​G↑E  

Consider the response to a switched-on ​G↑E  patch when M≠0. 



β-plane 
Subsequently, the Rossby 

waves radiate westward 
across the wind patch, but 
after their passage the 
adjusted response remains 
confined to the forcing 
region. 

Movies C3 & C2a 

Adjustment to Sverdrup balance (I≠&) forced by ​G↑E  ) forced by ​G↑E  

Consider the response to a switched-on ​G↑E  patch when M≠0. 



Equatorial ocean: 
equatorially trapped waves & 

wind-forced solutions 



What forcing mechanisms drive equatorial currents?  
 zonal and meridional wind stress 

What are equatorial waves? 
 equatorial gravity, Rossby, and Kelvin waves; 
 mixed Rossby/gravity (Yanai) wave 

How do they differ from midlatitude waves?  
 dynamically very similar; extra Yanai wave; 
 discreteness 

What are the key differences between 2-d and 3-d 
theories of equatorial circulation? 

 Yoshida Jet; establishment of ​"↓L  to balance ​K↑L  

How do equatorial waves reflect from basin 
boundaries?  

 Kelvin- and Rossby-wave reflections 

Questions 



Equatorial ocean: 
equatorially trapped waves 



Equations for the ​F↓: , ​<↓: , and ​"↓:  for a single baroclinic mode are 

Because f vanishes at the equator, no terms can be dropped that allow 
for mathematically simple solutions near the equator. 

(1) 

A useful assumption, though, is to set H=IE, known as the , known as the 
equatorial I-plane approximation.   As a result, one can look for -plane approximation.   As a result, one can look for 
solutions as expansions in Hermite functions. 

Equatorial-ocean equations 



It is convenient to introduce the non-dimensional variable 
 
 
 
and to rewrite the v equation in terms of η. 

Equatorial gravity and Rossby waves 

Equatorial waves are unforced ( ​K↑L = ​K↑= =0) solutions to (1) of the 
form, Nℓ(E)​012⁠(ADC−AB@) , and without damping (A = 0).  For 
convenience, we drop the subscript n.  The resulting v equation is 

(2) 

Reinserting subscript n, the length scale Rn = (αon)−1 = (β/cn)½ is 
referred to as the equatorial Rossby radius of deformation.  Note that 
it has a different value for each baroclinic mode n.  Usually, its reported 
value is for the n = 1  mode. With cn = 250 cm/s and β = 2.28x10−13 cm
−1s−1, its value is R1 = 331 km. 

The mathematical difficulty with obtaining a dispersion relation from 
(2) is that, because f varies so much near the equator, it is not possible 
to set Nℓ(E)=012(AℓE), like we did for the interior ocean.  Rather, Nℓ
(E) is the set of solutions (eigenfunctions) that satisfy 

 
 
 

and vanish as O→±∞, where ℓ = 0, 1, 2, ….  They are referred to as 
Hermite functions. 

(2′) 

See additional interior-ocean 
slides for a derivation. 



The solutions to (2) can be represented as expansions in Hermite 
functions 

where <ℓ is a wave amplitude.  Each term in expansion (3) is an 
individual equatorial wave. 

which provides the dispersion relation 

for equatorial, Rossby and gravity waves. 

(3) 

Equatorial gravity and Rossby waves 

Inserting term ℓ in (3) into (2) and using (2′) gives 



The dispersion relations for 
equatorial and midlatitude waves 
are very similar.  They differ 
only in that α = f/c varies 
continuously for midlatitude 
waves, whereas αℓ has discrete 
values for equatorial waves.  

Equatorial gravity and Rossby waves 

σ/σo 

k/αo 

1 

3 

For ℓ = 0, there is a new type of 
wave, the mixed Rossby-gravity 
(Yanai) wave, which behaves 
like a Rossby (gravity) wave for 
k positive (negative).  

For each ℓ > 1, there is a gravity 
wave (large σ) and a Rossby 
wave (small σ).  The plot shows 
waves for ℓ = 1, 2, and 3.   

Matsuno first published and 
discussed this famous set of 
disperson curves. 

See additional slides for a deriv. 
of the Yanai-wave relation. 



σ/σo 

k/αo 

1 

3 

To summarize, for each ℓ > 0, 
there is a gravity wave (large σ) 
and a Rossby wave (small σ).  
The plot indicates waves only 
for ℓ = 1, 2, and 3.  In addition, 
there is the Yanai wave for 
ℓ=0, and the equat. Kelvin 
wave with <=0.   

Theoretical equatorial waves 

To derive the dispersion relation 
for GWs and RWs, we solved 
for a single equation in v.  So, 
we missed a wave with ,=&, , 
the coastal Kelvin wave with 
the dispersion relation B=D.. . 

See additional slides for a deriv. 
of the equatorial KW. 



The u, v & p fields for an ℓ = 1 
Rossby wave when cn = 250 
cm/s and P = 360 days.  For 
this P, σ/σo = .03 and λ = 240º. 

Courtesy of Francois Ascani 

Structure of equatorial Rossby waves 

σ/σo 

k/αo 

1 

3 



The u, v & p fields for an ℓ = 2 
Rossby wave when cn = 250 
cm/s and P = 360 days.  For 
this P, σ/σo = .03 and λ = 140º. 

Courtesy of Francois Ascani 

σ/σo 

k/αo 

1 

3 

Structure of equatorial Rossby waves 



σ/σo 

k/αo 

1 

3 

The first equatorially trapped waves to 
be discovered were gravity waves 
with periods of O(10 days) (Wunsch 
and Gill, 1976; Deep-Sea Res.).  

The equatorial Kelvin wave was 
discovered after it was predicted 
(Knox and Halpern, 1982, JMR).   

The mixed Rossby-gravity (Yanai) 
wave was first observed in the 
atmosphere by Yanai.  In the ocean, 
it was (probably) first detected in 
the Indian Ocean by Reverdin and 
Luyten (1986) using altimeter data. 

Who first detected an equatorial 
Rossby wave? 

Tom Farrar (2010) 

Observed equatorial waves 

Movies E1b & E2b 

A lot of mathematics led to this set of 
dispersion curves.  Do any of these 
waves actually exist?! 



Equatorial ocean: 
wind-forced solutions 



Kozo Yoshida wrote down the first solution for an x-independent 
(2d) equatorial current driven by zonal winds.  The (more complete) 
theoretical solution developed somewhat later (Dennis Moore) has come 
to be called the “Yoshida Jet” (Jim O’Brien). 

The basic dynamics of the Yoshida Jet can be understood from the 
zonal-momentum equation. Neglecting the ​-↓)C  (the flow is assumed 
to be L-independent) and mixing terms in the zonal momentum equation -independent) and mixing terms in the zonal momentum equation 
gives 

Offshore, Ekman balance (H​,↓) = ​G↑C / ​6↓) ) holds, whereas at 
the equator un continues to accelerate ( ​+↓)@ = ​​G↑C ∕​6↓)  ).  The 
switch from one dynamical regime to the other occurs at y ≈ αon

–½ = (β/
cn) –½ . 

x-independent (2-d) Yoshida Jet 



In reality and models, equatorial zonal flows (Yoshida Jets) don’t 
continue to accelerate.  Why not? 

Bounded (3-d) Yoshida Jet 

In this case, the system stops accelerating by adjusting to a state 
where the pressure gradient balances the wind. It does so by radiating 
equatorial Kelvin and Rossby waves. 

Because in the real world either the wind forcing or the ocean basin 
is zonally bounded, which introduces x-dependence into the solution.  
(An exception is the Southern Ocean, but we will not consider that case 
here.) 

For convenience, we can still drop the mixing terms in the zonal 
momentum equation, and at the equator the Coriolis term vanishes.  
The boundaries, however, introduce x-dependence so we cannot neglect 
the pnx term 



d (1 month) 

d (6 months) 

Equatorial jet 

Kelvin wave 

Rossby wave 

Rossby wave 
Kelvin wave 

Bounded (3-d) Yoshida Jet 

Suppose that the ocean basin is unbounded but the wind is bounded, a 
patch of zonal wind. 

In response to forcing by a patch of easterly wind, an accelerating  
Yoshida Jet initially develops in the forcing region.  Subsequently, KWs and 
RWs radiate from the forcing region.  They generate a steady, eastward, 
equatorial  current both east and west of the forcing region: the bounded YJ. 



At low frequencies, the incoming Kelvin wave 
reflects as a packet of Rossby waves (Moore, 1968).  
with the waves corresponding to larger ℓ values 
propagating offshore more slowly. 

1 
3 

5 

7 

The zonal current of the Kelvin wave divides at 
the Rossby-wave front to flow along the edges of 
the wave packet.   

Eastern-boundary reflections 
What happens when basin boundaries are included? 



After multiple reflections, 
the solution eventually adjusts 
to a steady state of Sverdrup 
balance. 

In response to forcing by a 
patch of wind in the interior 
ocean, KWs reflect from the 
eastern boundary as a packet 
of RWs creating a characteristic 
wedge-shaped pattern.  In 
addition, wind-generated RWs 
reflect from the western 
boundary to return to the 
interior ocean.  

Adjustment to steady state 

Movies F1b & F2 

d (1 month) 

d (6 months) 

d (1 year) 

d (5 years) 

Equatorial jet 

Kelvin wave 

Rossby wave 

Reflected 
Rossby-wave 
packet 

Sverdrup flow 



How does the LCS model 
adjust when many baroclinic 
modes are included?   

Multi-mode response to switched-on ​G↑C  
d (1 month) 

d (6 months) 

d (1 year) 

d (5 years) 

Equatorial jet 

Kelvin wave 

Rossby wave 

Reflected 
Rossby-wave 
packet 

Sverdrup flow 

The plot shows the response 
of the n = 1 mode without 
damping.  It also illustrates 
the n > 1 responses: the main  
difference is that the solution 
takes longer to adjust to 
steady state, because the 
propagation speeds of eq. 
waves are slower (∝​P↓:  and 
cn < c1. 

With damping, the n > 1 
responses are increasingly 
damped for larger n, since ν 
= A/cn

2.  In that case, waves 
that radiate from the forcing 
region are increasingly 
weakened for larger n. 



With damping (vertical mixing), the LCS model produces a realistic steady 
flow field near the equator with an EUC. 

Multi-mode response to switched-on ​G↑C  

McCreary (1981) 

EUC 

Movies I1a, I1b & I1c 



In the IO, the steady component of equatorial ​G↑C  is weak.  Instead, ​K↑L  
tends to oscillate at annual, semiannual, and other (e.g., intraseasonal) 
periods. 

Multi-mode response to periodic ​G↑C  

In response to periodic forcing, equatorial waves from a number of 
baroclinic modes superpose to form beams that propagate vertically as well 
as horizontally. Kelvin (Rossby) beams extend downward and eastward 
(westward) from the forcing region.  Phase propagates upwards (downwards) 
across downward-extending (upward-extending) beams. 

McCreary (1981) 

EUC 
See additional slides for a derivation 
of vertical propagation. Movies J1d, J1g, and J2b 



Masumoto et al. (2005) 

The u field (b & d) shows 
a strong semiannual cycle. 

Upward phase propagation in the EEIO 

Above 200 m, the phase of 
u  propagates upwards, 
indicating that it is remotely 
forced (wave) signal! 



Coastal ocean: 
2-d and 3-d solutions with 

constant H (I=&) or variable H (I≠&)  (I=&) or variable H (I≠&) ) or variable H (I≠&)  (I≠&) ) 



Summary 



The Indian Ocean winds differ markedly from the those in the Pacific 
and Atlantic Oceans in that there are no quasi-steady trades along the 
equator.   

Indian Ocean phonomena 



January July  

Wind-forced thermocline response 

McCreary, Kundu, and Molinari (1993) 

There is a thermocline ridge in a band from 5–10°S. It is driven by Ekman 
pumping associated with the northward weakening of the Southeast Trades, and 
is stronger in northern summer when the Trades are stronger. 



Sea level movie 

The winds in the North Indian Ocean (north of ~10°S), are highly 
variable because of the monsoon.  As a result, there are no steady 
currents, and the propagation of remotely-forced waves around the 
basin is apparent. 

Indian Ocean phonomena 





Additional slides 



Hierarchy of ocean models: 
derivation of LCS model equations 

See HIGNotes.pdf for a detailed discussion. 



LCS model 

Drop the momentum advection terms.  Their neglect is sensible 
because the linear terms are known to play an important (often 
dominant) role in the equations.  Nevertheless, the nonlinear terms 
are known to be important for many ocean processes (e.g., 
instabilities and eddies).  So, this assumption is QUESTIONABLE, 
and can only be assessed by comparing linear solutions carefully with 
observations. 

Drop the horizontal Coriolis term.  I know of very few studies that 
explore the impact of this term. It is certainly not important for any 
of the phenomena considered in this course.  So, this assumption is 
VERY GOOD. 

Impose the hydrostatic relation by neglecting wt and (νwz)z.  
Dropping wt affects high-frequency waves of the order of the Vaisala 
frequency, not of interest here.  Dropping (νwz)z filters out a very 
thin boundary layer near the ocean surface that is dynamically 
unimportant for the rest of the flow field.  This assumption is GOOD. 



LCS model Linearize the equation of state to 
 
 

Then, set κT = κS and combine the T and S equations to obtain a 
single density equation.  The linearization ignores subtle density 
effects in the deep ocean (e.g., caballing) and setting κT = κS  deletes 
double diffusion.  These processes aren’t important for phenomena 
considered in this course.  So, this assumption is VERY GOOD. 



LCS model 

Drop horizontal advection of density.  As for the neglect of the 
momentum advection terms, this assumption is QUESTIONABLE. 

We can’t drop the wρz term, because it allows the model to “know” 
that the ocean is stratified.  So, we linearize wρz by replacing ρz with 
ρbz where ρb(z) is an assumed background density structure of the 
ocean.  This linearization is common; it was first used by Fjeldstad 
(1933).  This assumption is usually SURPRISINGLY GOOD. 

The derivative ρbz is related to a fundamental ocean frequency, the 
Vaisala frequency, the square of which is  

 
 

Replace ρbz with Nb
2. 



LCS model 

Modify the form of vertical diffusion from (κρz)z to (κρ)zz.  This 
assumption is essential to allow the expansion of solutions into 
vertical (barotropic and baroclinic) modes.  Since the precise form 
of vertical diffusion is not known, it is OKAY. 



LCS model 

Modify the form of vertical diffusion from (κρz)z to (κρ)zz.  This 
assumption is essential to allow the expansion of solutions into 
vertical (barotropic and baroclinic) modes.  Since the precise form 
of vertical diffusion is not known, it is OKAY. 

Wind stress enters the ocean in a surface mixed layer.  To simulate 
this process in a simple way, we introduce wind as a “body force” 
with the vertical profile Z(z).  The body force differs from an actual 
mixed layer in that its profile is uniform in space and constant in 
time.  This representation is CONVENIENT and SENSIBLE. 



Wind stress enters the ocean in a surface mixed layer.  To simulate 
this process in a simple way, we introduce wind as a “body force” 
with the vertical profile Z(z).  The body force differs from an actual 
mixed layer in that its profile is uniform in space and constant in 
time.  This representation is CONVENIENT and SENSIBLE. 

LCS model 

Rewrite equations (1) − (3).  First, solve (1) for ρ and (2) for w in 
terms pz.   Then, insert both expressions into (3). 

(1) 

(2) 

(3) 



LCS model 

Rewrite equations (1) − (3).  First, solve (1) for ρ and (2) for w in 
terms pz.   Then, insert both expressions into (3). 

Finally, assume that  
 

In which case all the z-operators have the same form, a property 
necessary to represent solutions as expansions in vertical modes. 



Mid-latitude ocean waves: 
derivation of ​,↓)  equation 



Derivation of vn equation 

(−1) 



Derivation of vn equation 

(−1/cn
2) 



Derivation of vn equation 



Mid-latitude ocean waves: 
derivation of coastal Kelvin wave 



Derivation of KW solution 

(−c2) 



Derivation of KW solution 

(−1) 



Derivation of KW solution 

Look for solutions proportional to exp
(ikx –iσt).  Set ∂t = −iσ and ∂x = ik. 



Interior ocean: 
Ekman drift and inertial oscillations 



The most fundamental forced motion in the ocean is Ekman drift.  In 
an inviscid, single-mode (or 1½-layer) model, Ekman drift occurs at 
an angle of 90° to the right (left) of the wind in the northern 
(southern) hemisphere. 

Ekman drift and inertial oscillations (β = 0) 

(2) 

Why is it “okay” to consider spatially uniform winds?  Because the 
typical scale of wind the wind forcing (~500−1000 km) is much 
greater than the Rossby radius of deformation (R ~ 25−50 km). 

To illustrate this response as simply as possible, we assume that the 
ocean is unbounded, f is constant, and the forcing is by a spatially 
uniform τx.  Then, the equation (1) simplifies to 



Suppose the wind switches on at t = 0.  We split the solution into a 
time-independent, particular solution 

 
 
 

and a homogeneous solution that satisfies (2) with F = 0 
 
 
 
The total solution is then 
 
 
 
and A and B are determined by applying initial conditions. 

Ekman drift and inertial oscillations (β = 0) 



We use the v momentum equation to write the boundary condition 
for u in terms of v.  We have 

 
 
 
 

Assume that the ocean is at rest before the wind switches, so that 
appropriate initial conditions are u = v = 0 at t = 0.   

Applying the initial conditions gives 
 
 
 
 

so that  
 
 
 

Ekman drift and inertial oscillations (β = 0) 



The steady-state solution is 
Ekman drift, but GWs at σ = f  
are also generated to satisfy the 
initial conditions. 

σ/f 

k/α 

- 1 

−1 1 

R/Re 

Because β = 0 and there are no 
coasts, only GWs are possible. 
Because the wind is spatially 
uniform, only GWs with k = ℓ = 
0 can be excited.  According to 
the disp. rel., the waves with 
zero wavenumber are inertial 
waves with σ = f. 

If the wind is not spatially 
uniform, GWs with k > 0 and σ 
> f can are also excited. 

Ekman drift and inertial oscillations (β = 0) 



Ekman drift and inertial oscillations (β = 0) 

a steady, southward, Ekman drift plus an inertial oscillation in which 
the velocity vector rotates clockwise at a single frequency f. 

To summarize, the solutions for u and v when f is constant are 



Ekman drift and inertial oscillations (β ≠ 0) 

a steady, southward, Ekman drift plus an inertial oscillation in which 
the velocity vector rotates clockwise at a single frequency f. 

To summarize, the solutions for u and v when f is constant are 

Q: How does this simple response change when β ≠ 0? 

A: Frequency f  and hence the clockwise rotation of the velocity 
vector differ at each latitude. Very quickly, convergences 
(divergences) develop between different latitudes, requiring water to 
downwell (upwell).  This process excites gravity waves with ℓ ≠ 0, and 
is known as β-dispersion.     

Movies B 



Interior ocean: 
derivation of Ekman pumping (β = 0) 



Ekman pumping 
Written in terms of a 1½-layer model, the interior-ocean equations are  
 
 
 

 
 
where 
 
 
and the damping corresponds to entrainment into or detrainment from 
the layer. 

Solving for a single equation in h gives 
 
 
 
 
where wek is the Ekman-pumping velocity, the rate at which wind curl 
raises or lowers subsurface isopycnals. 



Ekman pumping 
When there is no damping (Q=0), the solution is 
 
 
 

 
so that h grows continuously in time.  With damping (Q≠0), it is 
 
 
 
 
so that h stops growing. 

With h known, the zonal and meridional velocities are  
 
 
 
 

a superposition of Ekman and geostrophic currents. 

 
 
 

 



Interior ocean: 
adjustment to Sverdrup balance (β ≠ 0) 



Adjustment when β ≠ 0 and κ = 0 

Suppose the model ocean allows f  to vary (β ≠ 0) and there is no 
damping (κ = 0).  Then, h satisfies 

To satisfy the initial condition that h = H at t = 0, we must choose Λ
(x,y) = −χ(x,y), so that 

We obtain the solution by splitting it into steady-state (particular, 
forced) and  transient (homogenous, wave) parts 

 
 
 
 

where Λ(x,y) is an as yet unspecified function.   



To determine the response a short time after the wind switches on, 
we expand the Rossby-wave term in a Taylor series about t = 0 to get 

 
 
 
 
 
 
 

Thus, at small times, the response is just Ekman pumping! 
The response does not change from Ekman pumping until the Rossby 

waves have time enough to propagate significantly westward. 

Initial adjustment 

t + 



At longer times the solution for all the fields is 
 
 
 
 
 
 
 

where 
 
 
 

Final adjustment 

A packet of Rossby waves propagates westward. 

After their passage, the solution adjusts to a steady-state Sverdrup 
balance. 



Interior ocean: 
western boundary currents 



Western-boundary currents 

When long-wavelength Rossby waves (LWRWs) propagate to a 
western-ocean boundary, zonal flow associated with them is channeled 
into a western-boundary current (WBC). 

Movie MassSource(300days).fli 

Without momentum mixing, the LWRWs reflect as a packet of 
short-wavelength Rossby waves (SWRWs) that continuously thins. 



Western-boundary currents 

When long-wavelength Rossby waves (LWRWs) propagate to a 
western-ocean boundary, zonal flow associated with them is channeled 
into a western-boundary current (WBC). 

Movie MassSource(300days).fli 

Movies D 

Without momentum mixing, the LWRWs reflect as a packet of 
short-wavelength Rossby waves (SWRWs) that continuously thins. 

With momentum mixing, the WBC thinning stops (or never appears 
at all) and its offshore structure adjusts to steady-state profile.   



Western-boundary currents 

To find the structure of the western-boundary current, neglect time-
dependent and vertical-mixing terms and forcing terms in the 
equations of motion, and for convenience drop subscripts n. 

Solving for a single equation in v then gives 



Western-boundary currents 

Adopting that boundary-layer assumption that Ly
2 » Lx

2, we drop 
all y-derivative terms from the right-hand side of (1). 

(1) 

With only Raleigh damping (νh = 0), then the solution to (1) is  
 
 
 

a Stommel layer. 

With only Laplacian mixing (ν = 0), then the solution to (1) is  
 
 
 

 
a Munk layer.  This layer oscillates, as well as decays, offshore. 



In Solutions D1 − D3, the WBCs are Munk layers that decay and 
oscillate offshore. 

νh = 5x106 cm2/s 

νh = 5x107 cm2/s 

νh = 5x105 cm2/s 

Western-boundary currents 



Equatorial ocean: 
derivation of Yanai-wave dispersion relation 



Mixed Rossby-gravity (Yanai) wave 

The curious form of the Yanai-wave dispersion curve happens because 
it factors into two parts when ℓ = 0.  We have 



Mixed Rossby-gravity (Yanai) wave 

The curious form of the Yanai-wave dispersion curve happens because 
it factors into two parts when ℓ = 0.  We have 

The second factor describes a wave that travels westward at the speed 
of a Kelvin wave.  It can be shown that this wave blows up at ±∞, and 
so it must be discarded. 

The single dispersion relation for the Yanai wave is then 
 
 
 

For small and large values of σ, the relation simplifies to, 
 
 
 

the same properties for Rossby and gravity waves, respectively. 



Equatorial ocean: 
 structures of Hermite functions and 
equatorial gravity & Rossby waves 



Fedorov and Brown (2007) 

The figure plots the first six Hermite functions φℓ (ℓ = 0–5).  The 
scaling factor, LR = Rn = (cn/β)½, the equatorial Rossby radius of 
deformation for baroclinic mode n.  (For n = 1, LR  is roughly 331 km.)  
Note that the φℓ are less equatorially trapped (extend farther off the 
equator) as ℓ increases.  Note also that they alternate between being 
symmetric and antisymmetric about the equator. 

Ascani (2002) 

Hermite functions 

For large ℓ, the Hermite functions resemble cosine or sine curves 
near the equator.  They begin to decay at latitudes higher than the 
“turning latitude.”  So, the Hermite functions are equatorially 
trapped. 



The vℓ, uℓ, and pℓ fields for equatorially trapped Rossby and gravity 
waves are 

whereVℓ is a constant amplitude, Nℓ(O) is a Hermite function, O= ​E∕​
R↓)  ,  

Equatorial gravity and Rossby waves 

and j = 1 (2) corresponds to the − (+) sign. 



The u, v, and p fields for a 
Yanai wave when cn = 250 
cm/s and P = 30 days.  For 
this P, σ/σo = .36 and λ = 7.3º. 

Courtesy of Francois Ascani 

Structure of Yanai waves 

σ/σo 

k/αo 

1 

3 



The u, v, and p fields for a 
Yanai wave when cn = 250 
cm/s and P = 360 days.  For 
this P, σ/σo = .03 and λ = 0.64º. 

Courtesy of Francois Ascani 

σ/σo 

k/αo 

1 

3 

Structure of Yanai waves 



Equatorial ocean: 
derivation of equatorial Kelvin wave 



The equatorial Kelvin wave has v = 0, and so was missed in the 
preceding solutions.  To find it, set v = A = 0 in (1), and look for a free-
wave solution of the form Nℓ(E)012​(ADC−AB@). 

With these restrictions, equations (1) reduce to 

The first and third equations imply 

and the second then gives 

(4) 

Equatorial Kelvin wave 



The solution that grows exponentially in y, which corresponds to the 
root, k = –σ/c, is physically unrealistic in an unbounded basin and 
must be discarded.  Therefore, the only possible wave is 

which describes the structure and dispersion relation for the equatorial 
Kelvin wave.  In (5), I have used the property that 

(5) 

The solution to (4) is 

and redefined the arbitrary constant amplitude to be Po = π¼P'o.  

Equatorial Kelvin wave 



Equatorial ocean: 
eastern-boundary reflection 



Remarkably, the characteristic 
wedge shape and westward 
propagation is visible in 
satellite data.  The figure shows 
global maps of filtered sea level 
from TOPEX/Poseidon on April 
13 and July 31, 1993.  It shows a 
Rossby-wave packet generated 
by the reflection of an 
equatorial  Kelvin wave forced 
by intraseasonal winds in the 
western ocean. (After Chelton 
and Schlax, 1996.) 

Fedorov and Brown, 2007 

Eastern-boundary reflections 

Movies F 



Equatorial ocean: 
Vertical propagation 



and cn can be replaced by  

under the restriction that the background stratification, Nb(z) varies 
slowly with respect to the vertical wavelength of the wave, m(z) (the 
WKB approximation).   In that case,  

Rather than to look for solutions as expansions in vertical modes, ψn(z), 
another way of studying solutions to the LCS model is to look for 
approximate solutions of the form,  

Recall that the vertical structure of  waves in the LCS model satisfy 

Vertical propagation 



Group theory states that a packet of Kelvin waves (that is, a superposition 
of several waves associated with different k and m values) propagates at 
the “group” velocity 

Thus, the energy of the packet propagates to the east with the slope 

So, if phase propagates upwards (m > 0), energy propagates downwards, 
and vice versa. 

With this change, the dispersion relation for equatorial Kelvin waves is 

Vertical propagation (KW beams) 

Since coastal Kelvin waves have the same dispersion relation as 
equatorial ones, they propagate vertically in the same way. 



Group theory states that a packet of Yanai waves (that is, a superposition of 
several waves associated with different k and m values) propagates at the 
“group” velocity 

Thus, the energy of the packet propagates to the east with the slope 

the same slope as for Kelvin waves! 

The dispersion relation for Yanai waves becomes 

Vertical propagation (YW beams) 



For the RW dispersion curves, 
as σ tends to zero so does k.   

Vertical propagation (long-wavelength RWs) 

σ/σo 

k/αo 

1 

3 

So, in the low-frequency limit 
the RW disp. curves are non-
dispersive. This limit is known 
as the long-wavelength 
approximation. 

In this limit, RWs propagate 
vertically with a slope 
 
 
 
with a steeper slope, and in the 
opposite direction from, KW 
and YWs. 



Coastal ocean: 
2-d and 3-d solutions with 

constant H (I=&) or variable H (I≠&)  (I=&) or variable H (I≠&) ) or variable H (I≠&)  (I≠&) ) 



How does wind drive coastal currents?  
 across-shore Ekman flow driven by alongshore winds 

What waves are generated at coasts?  
 Kelvin and Rossby waves; (shelf waves) 

What are the key differences between 2-d and 3-d 
theories of coastal circulation? 

 wave radiation; establishment of ​"↓=  to balance ​K↑=  

Why do eastern-boundary currents exist at all? 
 vertical mixing; (shelf trapping) 

Questions 



A useful set of equations for the coastal ocean is 

Coastal-ocean equations 

A key simplification is to drop the acceleration and damping terms 
from the zonal momentum equation. In addition, since it is well 
known that the coastal ocean responds much more strongly to alongshore 
winds drop τx forcing.  Finally, for simplicity neglect the horizontal 
mixing terms.  In this way, the alongshore flow is in geostrophic 
balance, a property consistent with observations. 

As for the interior-ocean equations, this approximation is useful 
because it filters out gravity waves.  Thus, it only describes the slowly 
varying response, that is, its directly forced & Rossby-wave (if β ≠ 0) 
parts. 



Y(y) 

All the coastal solutions discussed below are forced by a band of 
alongshore winds of the form, 
 
 
 
Since this wind field is x-independent, it has no curl. Therefore, 
the response is entirely driven at the coast by onshore/offshore 
Ekman drift.  The time dependence 
is usually switched-on 
 
 
except for a few solutions  
when it is periodic 
 
 

Forcing by a band of alongshore wind ​G↑E  



Consider the 2-dimensional (x, h) coastal response of a 1½-layer 
model when the wind is independent of y.   

2-d response to switched-on ​G↑E  

The offshore decay scale of the circulation is the Rossby radius of 
deformation, R.  There is a geostrophic coastal current v in the 
direction of the wind. 

we 

If the alongshore winds are directed southward, they force offshore 
Ekman drift.  Since there can be no flow through the coast, the 
thermocline must rise to conserve mass. It rises until it intersects the 
surface mixed layer, and then subsurface water entrains (upwells) 
into surface layer.    

hm 

R 



The solution to the 2-d coastal equations with J=S=& is  is 
 
 
 
 

For southward winds (​G↑E <&), h thins at the coast, and the coastal ), h thins at the coast, and the coastal 
response weakens exponentially offshore with width scale R. 

How long does it take for h to thin to the surface at the coast?  For 
the parameter choices 

 
 
 

the time is 29 days. 

See additional slides for a derivation of (3). 

2-d response to switched-on ​G↑E  



In a 3-d model (x, y, h) with 
β = 0, in addition to local 
upwelling, coastal Kelvin 
waves extend the response 
north of the forcing region.  
The pycnocline tilts in the 
latitude band of the wind, 
creating a pressure force that 
balances ​G↑E  and stops the 
interface from rising further. 

f-plane 

3-d response to switched-on ​G↑E  (I=&) ) 
Two-dimensional coastal upwelling is altered dramatically when 3-d 

processes are included.  Specifically, the propagation of Kelvin waves 
along the coast stops the rise of h. 

See additional slides for a 
derivation of this response. 

Movies H1a and H1b 



When β ≠ 0, Rossby waves 
carry the coastal response 
offshore, leaving behind a state 
of rest in which ​-↓E  balances ​
G↓E  everywhere. 

β-plane 

The RW speed is 
 
 

 
So, RWs propagate faster 
closer to the equator ( ​.↓T ~ ​H↑
−% ). 

3-d response to switched-on ​G↑E  (I≠&) ) 

Movie H1c 



β-plane A fundamental question of 
coastal dynamics is:  Since Rossby 
waves propagate offshore, why do 
eastern-boundary currents exist 
at all? 

A possible answer is that many 
baroclinic modes contribute to the 
coastal response, and that the RWs 
associated with them are damped 
before they can propagate offshore.   

Multi-mode response to switched-on ​G↑E  (I≠&) ) 



Multi-mode response to switched-on ​G↑E  (I≠&) ) 

With damping, the responses of 
the n > 1 modes are increasingly 
damped since ν = A/cn

2.  In that 
case, the Kelvin and Rossby waves 
that radiate from the forcing 
region are weakened for larger n.  
For sufficiently large n, then, the 
response is confined to the forcing 
region. 

The plot shows the response of 
the n = 1 mode without damping.  
But, it also illustrates the n > 1 
responses: the difference is that 
currents propagate offshore more 
slowly, since the RW propagation 
speed is ∝​.↓)↑−%  and cn < c1. 

β-plane 



The model allows Rossby waves 
to propagate offshore.  A steady 
coastal circulation remains, 
however, because they are damped 
by vertical diffusion. 

McCreary (1981) obtained a 
steady-state, coastal solution to 
the LCS model with damping. 

There is upwelling in the band of 
wind forcing.  There is a surface 
current in the direction of the 
wind, and a subsurface CUC. 

Movies I2c and I3c 

Multi-mode response to switched-on ​G↑E  (I≠&) ) 



The coastal circulation along Northwest Africa at 21° 40′N during 
February−April, 1974.  The prevailing winds are southward.  The 
coastal response includes a surface flow in the direction of the wind, 
a poleward undercurrent, and coastal upwelling. 

Mittelstadt et al. (1975), Huyer (1976) 

Observed eastern-coastal circulation 

The agreement with the McCreary (1981) model is striking.  Do 
eastern-boundary coastal in the real ocean exist due to diffusive 
damping? 



For a switched-on ​G↑E , Kelvin 
waves (Rossby waves) radiate 
poleward (offshore), leaving behind a 
steady-state coastal circulation. 

σ = 2π/200 days 

For a periodic ​G↑E , coastal KWs 
and RWs are continually generated.    

Philander and Yoon (1982) 

Kelvin-wave packets associated 
with a number of  baroclinic modes 
form a “beam” that carries energy 
downward.  There is upward phase 
propagation across the beam. 

See additional equatorial ocean slides 
for a discussion of vertical propagation 
of Kelvin waves. 

Movies K1e & K1d 

Multi-mode response to periodic ​G↑E  (I≠&) ) 



Coastal ocean: 
derivation of 2d coastal response 



Solving for a single equation in h gives 
 
 
 
where R2 = g'H/f2 is the square of Rossby radius of deformation.  The 
forcing term vanishes because τy is independent of x. 

It is easy to solve the coastal equations for the initial rise of the 
thermocline.  At that time, the response is inviscid, and the coastal 
equations written in terms of a 2-d, 1½-layer model are 

2-d response to switched-on ​G↑E  

(1) 



The general solution to (1) is 
 
 
 

The coast is at x = 0 and the ocean lies in the region x < 0, so we have 
to drop the B term to ensure the solution is bounded as x → −∞. 

2-d response to switched-on ​G↑E  

To evaluate A, we impose the boundary cond. that u = 0 at x = 0. 
Using the v-momentum equation to write u in terms of h gives 

 
 
 

and then 
 
 
 



The solution is then 
 
 
 

For southward winds (τy < 0), h thins at the coast, and the coastal 
response weakens exponentially offshore with width scale R. 

2-d response to switched-on ​G↑E  

How long does it take for h to thin to the surface at the coast?  For 
the parameter choices 

 
 
 

the time is 29 days. 

There is a meridional geostrophic current associated with h,  
 
 
 

a coastally trapped jet flowing in the direction of the wind. 



Coastal ocean: 
derivation of 3d (β = 0) coastal response 



Solving for a single equation in h gives 
 
 
 
where R2 = g'H/f2 is the square of Rossby radius of deformation.  The 
forcing term vanishes because τy is independent of x. 

To see these properties, we solve the coastal equations keeping the vy 
and hy terms.  Then, the inviscid coastal equations written in terms of 
a 1½-layer model are 

3-d response to switched-on ​G↑E  

(1) 



The general solution to (1) is 
 
 
 

The coast is at x = 0 and the ocean lies in the region x < 0, so we have 
to drop the B term to ensure the solution is bounded as x → −∞. 

3-d response to switched-on ​G↑E  

To evaluate A, we impose the boundary cond. that u = 0 at x = 0. 
Using the v-momentum equation to write u in terms of h gives 

 
 
 

which, using (1), provides an equation for A, 
 
 
 

(1) 



To satisfy the initial condition that h = H at t = 0, we must choose Λ
(y) = −χ(y), so that 

We obtain the solution for A by splitting it into particular (steady-
state) and homogeneous (Kelvin-wave) responses,  

 
 
 
 

where Λ(x,y) is an as yet unspecified function.   

3-d response to switched-on ​G↑E  



To determine the response a short time after the wind switches on, 
we expand χ(y − ct) in a Taylor series about t = 0 to get 

 
 
 
 
 
 
 

Thus, at small times, the response is just the 2-d response! 
The response does not change from the 2-d response until the Kelvin 

waves have propagated across the wind band. 

Initial adjustment 

t + 



At longer times the solution for all the fields is 

Final adjustment 

A packet of Kelvin waves propagates poleward.  Note that, consistent 
with Kelvin waves, there is no u field associated with the packet. 

After its passage, the solution adjusts to a steady-state balance.   

Key properties of the steady solution are: 1) a pressure gradient that 
balances the wind along the coast (x = 0), that is, py = g'hy = τy/H; 2) a 
coastal jet with a transport HRv that supplies the Ekman transport 
from the coast; and 3) Ekman drift that weakens to zero at the coast. 



Intraseasonal variability 



Legeckis (1977, Science) first 
reported the presence of TIWs in the 
eastern, tropical Pacific.  TIWs were 
soon shown to have a large impact on 
the momentum and heat fluxes in the 
region.  Philander (1976, 1978, JGR) 
argued that TIWs were caused by 
barotropic instability.  Yu et al. (1992, 
Prog. Oceanogr.) later suggested that an 
instability of the temperature front 
was involved.  Luther and Johnson 
(1990) suggested that there was more 
than one type of TIWs. 

Similar TIWs were soon observed in 
the Atlantic Ocean.  Their dynamics are 
essentially the same as for the Pacific 
TIWs. 

Tropical instability waves 



Michael Cox (1980) reported a Yanai-wave beam forced by surface TIWs in his OGCM 
solution.  Ascani & coworkers (2009) explored the idea that deep equatorial currents are 
caused by an instability of the Yanai-wave beam generated by TIWs.  To simulate the effect 
of TIWs, they forced their OGCM by a wind stress with the wavelength (~1000 km) and 
period (~30 days) of a typical TIW, generating the Yanai-wave beam shown above. 

Tropical instability waves 



Their structure identifies the waves to be Yanai waves.  These modeled waves 
were observed in altimetry by Tsai et al. (1992). 

Somali Current instability (27 days) 

Radiation of equatorially 
trapped waves from the IO 
western boundary in a 
numerical model.  They were 
generated by an instability 
of the Somali Current as it 
crosses the equator. 



When all the vertical modes are 
summed, energy propagates 
downward as well as eastward, 
along paths parallel to the  
group velocity.  At the right of 
the plots, energy has reflected 
off the bottom to produce an 
upward-propagating beam.  

The presence of intraseasonal 
variability at a depth of 750 m 
in the Luyten and Roemmich 
(1982) observations thus 
appears to result from the 
radiation of a beam of Yanai 
waves from the Somali coast. 

u 

v 

Somali Current instability (27 days) 



In the central IO, oceanic ISV 
appears to be mostly wind-forced.  
A prominent forcing is by MJOs, 
eastward-propagating, convective 
disturbances, with periods of 30–
60 days.  

Their impacts on rainfall, 
oceanic surface fluxes, and SST 
are well documented. 

Waliser, Murtugudde, Lucas (2003, 2004) 
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Madden Julian Oscillations (30−60 days) 



ISV in the EIO (~90 days) 
Courtesy of Jerome Vialard 


