#### **Probing Galactic Magnetic Field** through Cosmic Ray Leptons, Diffuse *γ*-Rays and Radio Waves

#### Maryam Tavakoli (IPM, Tehran)

In collaboration with

Ilias Cholis (Department of Physics and Astronomy, The Johns Hopkins University) Giuseppe Di Bernardo (MPI für Astrophysik, Garching)

#### Workshop on Cosmology with Next Generation Radio Surveys June 21, 2016

# Galactic Magnetic Field

 $B = B_{reg} + B_{turb}$ 



• Faraday rotation measure  $\theta_{pol} = RM \times \lambda^2$ 

total and polarized intensity of synchrotron emission

# Galactic Magnetic Field

 $\mathbf{B} = \mathbf{B}_{\mathrm{reg}} + \mathbf{B}_{\mathrm{turb}}$ 



Turbulent component

$$B_{turb} = B_{0,turb} \exp\left(-\frac{R - R_{\odot}}{R_{0,turb}}\right) \exp\left(-\frac{|z|}{z_{0,turb}}\right)$$

total intensity of synchrotron emission

## Galactic Magnetic Field

 $\mathbf{B} = \mathbf{B}_{\mathrm{reg}} + \mathbf{B}_{\mathrm{turb}}$ 



#### Turbulent component

$$B_{turb} = B_{0,turb} \exp\left(-\frac{R - R_{\odot}}{R_{0,turb}}\right) \exp\left(-\frac{|z|}{z_{0,turb}}\right)$$

 $A_{turb} = (B_{turb}/B_{reg}) \odot = 1-1.5$ ,  $B_{total} (GC) \sim 50-200 \mu G$ 

# Is there an alternative approach to probe the Galactic magnetic field?

Noting that ...

-1-

-20-10

Comic ray electron (positron) energy losses at high energies



Noting that ...

-1/

-2, -1,

Comic ray electron (positron) energy losses at high energies



Noting that ...

Comic ray electron (positron) energy losses at high energies



Cosmic Ray Leptons



Cosmic Ray Leptons



#### Cosmic Ray Leptons



#### Cosmic Ray Leptons

The local flux of cosmic ray leptons is most sensitive to the local turbulence.



#### Cosmic Ray Leptons

The local flux of cosmic ray leptons is most sensitive to the local turbulence.



## Synchrotron Emission

Morphology of synchrotron emission strongly depends on the magnetic field structure.



#### Synchrotron Emission

Morphology of synchrotron emission strongly depends on the magnetic field structure.



## Inverse Compton Scattering

Different magnetic field structures can not be discriminated by diffuse  $\gamma$ -rays.



### Inverse Compton Scattering

Different magnetic field structures can not be discriminated by diffuse  $\gamma$ -rays.



#### Low vs High B<sub>GC</sub>



Effect of B<sub>GC</sub> on ICS



✓ Stronger  $B_{GC}$  makes cosmic ray electrons at the Galactic center lose energy via synchrotron more effectively than via ICS.

#### Low vs High Local Turbulence



# Effect of Local Turbulence on ICS



✓ Stronger local turbulence slightly weakens ICS emission over a large region of the sky.



 $\checkmark$  Local turbulence of the magnetic field can be constrained by local flux of leptons.

✓ Magnetic field structure can be probed and constrained by the morphology of the synchrotron emission.

✓ Strength of the magnetic field at the Galactic centre can be constrained by the spectrum of diffuse  $\gamma$ -rays in that region.

#### Thanks