Intensity Mapping with SKA: BAOs and neutrinos

Matteo Viel INAF/OATS

ICTP Workshop on Cosmology with Next Generation Radio Surverys – 23/06/2016

OUTLINE

- ✓ Modelling the Intensity Mapping signal
- ✓ Cross-correlation of IM with galaxies
- ✓ Neutrinos
- ✓ BAOs with IM and BAO reconstruction

Francisco Villaescusa-Navarro - Postdoc now moving to CCA in New York: IM and neutrinos

Phil Bull Caltech and JPL Neutrinos and IM

Andrej Obuljen - SISSA PhD student BAO reconstruction

David Alonso Oxford Univ. BAO with IM

Isabella Carucci – SISSA PhD student Small scale IM power spectrum

Tirth Roy Choudury NCRA Pune

Modelling the IM signal at high redshift - II

✓ New science from BOSS/SDSS-III low res. Low S/N data: modeling of the crosscorrelation signal between Lyalpha and DLAs

 $P_{
m HI}(k,z) = b_{
m HI}^2(z)P_{
m m}(k,z)$ HI power spectrum real space (not observable) $\overline{\delta T_b}(z) = 189\left(rac{H_0(1+z)^2}{H(z)}
ight)\Omega_{
m HI}(z)h
m mK$

> 21cm redshift space power spectrum (observable)

$$P_{21cm}(k,z) = \overline{\delta T_b}^2(z) b_{\rm HI}^2(z) \left(1 + \frac{2}{3}\beta(z) + \frac{1}{5}\beta^2(z)\right) P_{\rm m}(k,z)$$

 $\Omega_{HI}b_{HI}$ sets the amplitude of the signal

Villaescusa-Navarro, MV, Alonso, Datta, Bull, Santos 2015

Modelling the IM signal at high redshift - IV

Method 1: to fit a low b_{DLA} bias (Bagla et al.)

Method 2: to fit the BOSS observations (high b_{DLA})

Method 3: hydro simulation with self-shielding (no free parameters) - as in Dave'+13

Villaescusa-Navarro, MV, Datta, Roy Choudhury 2014

Modelling the IM signal at high redshift - V

$$\begin{split} \delta T_b(\nu) &= \overline{\delta T_b}(z) \left(\frac{\rho_{\rm HI}(\vec{r})}{\bar{\rho}_{\rm HI}}\right) \left[1 - \frac{T_{\gamma}(z)}{T_s(\vec{r})}\right]\\ \overline{\delta T_b}(z) &= 23.88 \ \bar{x}_{\rm HI} \left(\frac{\Omega_{\rm b} h^2}{0.02}\right) \sqrt{\frac{0.15}{\Omega_{\rm m} h^2} \frac{(1+z)}{10}} \ {\rm mK}, \end{split}$$
$$\delta T_b^s(\nu) &= \overline{\delta T_b}(z) \left[\frac{\rho_{\rm HI}(\vec{s})}{\bar{\rho}_{\rm HI}}\right]$$

Villaescusa-Navarro, MV, Datta, Roy Choudhury 2014

Modelling the IM signal -VI: at high redshift with cross-correlation

Cross-correlation with a future high redshift SPECTROSCOPIC LBGs survey allows to probe smaller scales allows to boost the SNR (Ue Li's talk)

Villaescusa-Navarro, MV, Alonso, Datta, Bull, Santos 2015

Modelling the IM signal - VII: at low redshift in groups and clusters

Caution: astrophysical effects (e.g. AGN feedback) can affect the $M_{HI}(M, z)$ but there are other observational constraints independent of absorption lines - AGN reduces the HI content of a halo by 50%

SUMMARY OF IM MODELING

1) Modelling of 21 cm power spectrum relatively easy in the post-reionization era

2) Key astro quantity is how HI mass is distributed within haloes

3) External observational constraints do not allow total freedom in the model building

4) Mildly non-linear scales or small scales to be modeled with N-body/hydro or halo models or PT

COSMOLOGICAL NEUTRINOS

Villaescusa-Navarro, Bull, MV, 2015

COSMOLOGICAL NEUTRINOS: STATUS

- Cosmological neutrino background energy density already detected via Neff (10-17 sigma level)
- Cosmological neutrino free streaming scale much more difficult and not detected yet
- Claims have been made but these appear to reconcile tensions between data sets at the expenses of breaking some internal consistency of the CMB data
- Improvement/progress on the cosmological side has profound implications for particle physics experiments (neutrinoless double beta decay, tritium experiments, etc.)

Neutrinos and IM - I: effect on cosmology

Effect of neutrino free streaming on halo mass

Neutrinos and IM - II: HI modeling

Neutrinos and IM - III: 21 cm power spectrum

Effect induced by neutrino free streaming to be compared with.....

COSMOLOGICAL NEUTRINOS: NON-LINEAR MATTER POWER

<u>Neutrinos and IM - III</u>

Fisher matrix analysis

	SKA1-LOW	SKA1-MID
$T_{\rm inst}$ [K]	$40 + 0.1T_{\rm sky}$	28
$N_d \times N_b$	911 imes 3	190×1
$ u_{\mathrm{min}} \; \mathrm{[MHz]} $	210	375
$\nu_{\rm max}~[{ m MHz}]$	375	1420
$A_{ m eff}(u_{ m crit}) \; [{ m m}^2]$	925	140
$S_{\rm area} \ [{\rm deg}^2]$	20	25,000
$t_{ m tot}$ [hrs]	10,000	10,000
	2.75, 3.25, 3.75,	0, 0.125, 0.375, 0.625,
z bin edges	4.25, 4.75, 5.25,	0.875, 1.125, 1.375,
	5.75	1.625,1.875,2.2,2.8

Neutrinos and IM - IV: constraints

30 meV realistic conservative 1sigma error bar DESI, Euclid quote errors that are usually around 20 meV

Possibly firm detection of non-zero mass Hierarchy more difficult

	$\sigma(M_{\nu}) \ / \ {\rm eV} \ (95\% \ {\rm CL})$					
Massive neutrino datasets		+ Planck CMB	+ Planck CMB			
			+ Spectro-z			
Planck M_{ν}		0.461	0.094			
SKA1-LOW	0.311	0.208	0.118			
SKA1-MID	0.268	0.190	$0.104 \\ 0.082$			
SKA1-LOW + SKA1-MID	0.183	0.145				
SKA1-LOW + Planck M_{ν}	— 0.089		0.076			
SKA1-MID + Planck M_{ν}		0.071	0.065			
SKA1-LOW + SKA1-MID + Planck M_{ν}		0.067	0.058			

TABLE 5

Marginal 2σ (95% CL) constraints on the neutrino mass, for various combinations of surveys and prior information.

BAOs in IM

Villaescusa-Navarro, Alonso, MV in prep.

BAOs in IM - I

Bull, Camera, Raccanelli+ 2015

BAOs in IM - II

Angular resolution too poor 1.6 deg

This motivates the use of 1D power only......

BAOs in IM - III

BAOs in IM- IV: MCMC fitting

 $\alpha = 0.99853 \pm 0.00928$

1% accuracy in alpha determination

This is remarkable

100

100

100

Present constraints on the radial BAO are at the level of 3.5% or so

BAOs in IM - V: foregrounds modeling and subtraction

	I		[Foreground	A (mK^2)	$\beta \alpha$	ξ
				Galactic synchrotron	700	2.4 2.8	0 4.0
			-	Point sources	57	1.1 2.0	7 1.0
				Galactic free-free	0.088	3.0 2.1	5 35
				Extragalactic free-free	0.014	10 21	0 35
	10 ⁰		L	Extragalactic free-free	0.014	1.0 2.1	0 00
5	10						
\sim				$(l_{\rm ref})^{\beta} (\nu_{\rm ref}^2)$	f^{α}	$\log^2(\iota$	(ν_1/ν_2)
Ö.			$C_l(u_1, u_2)$	$=A\left(\frac{16I}{I}\right)\left(\frac{16I}{I}\right)$	$\frac{1}{2}$) exp($\frac{1}{c^2}$
Ţ				$(\iota) (\nu_1 \nu$	/2 /	Z	5″ /
4			1				74
Γ							
4							
\leq							
\frown		cosmo+noise					
<u>ح</u> ى							
\mathbf{C}	10^{-1}	— cosmo+noise+foregrounds: n_fog=7					
Ð	10						
		$[]$ — cosmo+noise+ioregrounds: n_iog=6					
		cosmo+noise+foregrounds: n fog=5					
		— cosmo+noise+foregrounds: n_fog=8					
		cosmo Lingico L foregroundou n. fog -12					
		\square Cosmo+noise+toregrounds: \square log=12					
	1.10						
	1 05		1 n				
	1.05						
.0							
at:	1.00						
Ĕ							
	0 05						
	0.95		P 1				
	0.901						
		TO - TO -					
		$k_{\parallel} \left[h \mathrm{Mpc}^{-1} \right]$					

BAOs in IM - VI: reconstruction

- BAO scale is in mildly non-linear regime
 - Dominant smoothing from coherent flows, rather than random motions
 - Large scale modes, bulk flows, supercluster formation
- Shifts in BAO peak ~ 0.3%

٠

Reconstruction improves the error on alpha by 50% or so.

BAOs in IM - VI: reconstruction

Standard reconstruction algorithm

- Smooth the density field
- Compute negative Zel'dovich displacement field on a grid
- Displace original particles by s -"displaced"

$$\delta_d(\vec{k}) = \int d^3 q e^{-i\vec{k}\cdot\vec{q}} (e^{-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q}) + \vec{s}(\vec{q})\right)} - 1)$$

 $\delta(\vec{k}) \to S(\vec{k})\delta(\vec{k})$

 $\vec{s}(\vec{k}) \equiv -i\frac{\vec{k}}{k^2}S(\vec{k})\delta(\vec{k})$

- Shift spatially uniform grid of particles -"shifted"
- Reconstructed density field

$$\delta_s(\vec{k}) = \int d^3q e^{-i\vec{k}\cdot\vec{q}} (e^{-i\vec{k}\cdot\vec{s}(\vec{q})} - 1)$$

$$\delta_{recon} \equiv \delta_d - \delta_s$$

Reconstruction algorithm

- Smooth the density field •
- Compute negative • Zel'dovich displacement field on a grid
- Displace original particles grid cells by s - "displaced"

$$\delta_d(\vec{k}) = \int d^3q e^{-i\vec{k}\cdot\vec{q}} \left(e^{-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q})+\vec{s}(\vec{q})\right)}-1\right)$$

 Shift spatially uniform grid of particles - "shifted" apply uniform weights to displaced grid positions

$$\delta_s(\vec{k}) = \int d^3q e^{-i\vec{k}\cdot\vec{q}} (e^{-i\vec{k}\cdot\vec{s}(\vec{q})} - 1)$$

Reconstructed density field

$$\delta_{recon} \equiv \delta_d - \delta_s$$

$$\vec{s}(\vec{k}) \equiv -i\frac{\vec{k}}{k^2}S(\vec{k})\delta(\vec{k})$$

$$\vec{s}(\vec{k}) \equiv -i \frac{\vec{k}}{k^2} S(\vec{k}) \delta(\vec{k})$$

 $\delta(\vec{k}) \to S(\vec{k})\delta(\vec{k})$

$$\vec{s}(\vec{k}) \equiv -i \frac{\vec{k}}{k} S(\vec{k}) \delta(\vec{k})$$

BAOs in IM: reconstructed BAO peak in 2+1 dimensions

BAOs in IM: reconstructed BAO peak in 2+1 dimensions

Conclusions

-> Exciting new era for cosmology at high redshift with IM has already started

-> Post reionization Universe is promising: DE evolution, modified gravity?

-> HI modeling inside galaxies is crucial: more physical models and observations will of course improve the knowledge of how HI is distributed within haloes and cosmological constraints could become tighter

-> Neutrino honest bound around 30 meV (present constraints < 0.14 eV at 2sigma)

-> IM BAOs (a new observable) could allow to recover D_H and D_A in the range 0<z<3