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Feliz Cumpleaños !!
From your Cambridge colleagues



•  [ NON-PERTURBATIVE FEATURES – S-DUALITY ]: 
Connects perturbative with non-perturbative effects

Constraints imposed by SUSY, Duality, Unitarity

This talk will consider narrowly-focused aspects of maximally 
supersymmetric CLOSED STRING SCATTERING AMPLITUDES.

Modular Forms;  Automorphic forms for higher-rank groups;  Multi-Zeta Values; …. 

With:       Eric D’Hoker;  Pierre Vanhove;  Stephen Miller; 
               Carlos Mafra;  Oliver Schlotterer; 
               Boris Pioline;  Jorge Russo;  Rudolfo Russo; 

       Don Zagier;   ………..
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1509.00363		1502.06698	
1603.00839	

New papers

Mathematical connections to multiple-zeta values and their elliptic generalisations

•  SOME FEATURES OF STRING PERTURBATION THEORY 
Modular invariants of higher-genus Riemann surfaces



Font, Ibanez, Lust, QUEVEDO,  Strong-weak coupling duality 
and non-perturbative effects in string theory,  
Phys. Lett. B249 (1990) 35

We conjecture the existence of a new discrete symmetry of the 
modular type relating weak and strong coupling in string theory.   
The existence of this symmetry would strongly constrain the non-
perturbative behaviour in string partition functions and introduces 
the notion of a maximal (minimal) coupling constant.   An effective 
lagrangian analysis suggests that the dilaton vacuum expectation 
value is dynamically fixed to be of order one.  In supersymmetric 
heterotic strings, supersymmetry (as well as this modular symmetry 
itself ) is generically spontaneously broken.



THE LOW ENERGY EXPANSION OF STRING THEORY

EINSTEIN-HILBERT 

1
α′4

∫
d10x

√
− det G e−2φ R + . . . Interactions of other supergravity fields

•  LOWEST ORDER TERM reproduces the results of classical supergravity 

•  Expansion in powers of  α′R , α′D2 , . . .

compactify space-time to dimensions D < 10 

α′ = ℓ2s
ℓs      - STRING 

LENGTH SCALE
STRING COUPLING 
      CONSTANTSCALAR FIELD

  - DILATON
METRIC  – Gµν

e−φ =
1

gs

•  Perturbative expansion in powers of g = e−φ

DOUBLE EXPANSION – PERTURBATION AND LOW ENERGY EXPANSION

•  HIGHER ORDER TERMS:   

COEFFICIENT depends on moduli (scalar fields)

1
α′

∫
d10x

√
− det G F(φ, . . . ) R4 + . . .

(maximal supersymmetry)



G(R)/K(R)

SCALAR FIELDS (MODULI) AND S-DUALITY

Scalar fields parameterize a symmetric space 

SUPERGRAVITY (low energy limit of string theory): 

G(Z)\G(R)/K(R)
STRING THEORY:

Discrete identifications of scalar fields

groups in     series 
 (real split forms) 

En

(Cremmer, Julia)

Only a discrete arithmetic subgroup 
of          is symmetry of string theory  

G(Z)DUALITY GROUP
G(R)

Maximal compact 
subgroup

+ + +  ….

Vertex operators

g−2 g0 g2

acts on complex structure of torus

τ → aτ + b

cτ + d ad− bc = 1
a, b, c, d ∈ Z

SL(2,Z) Sp(4,Z)

WORLD-SHEET automorphic symmetries

“Sp(2h,Z)′′

STRING PERTURBATION THEORY:    Expansion around boundary of moduli space	

e.g.  in powers of                g = eφ → 0



FOUR-GRAVITON SCATTERING IN TYPE II STRING THEORYe.g.

(non-analytic pieces are essential, but will be ignored for now)

TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?

Symmetric function of Mandelstam invariants           (with                     ).s, t, u s + t + u = 0

Has an expansion in power series of                              and                             .�2 = s2 + t2 + u2 �3 = s3 + t3 + u3

⇠ s2p+3q + . . .

Coefficients are S-duality-invariant functions of 
scalar fields (moduli).

T (s, t, u;Ω) =
∑

p,q

E(p,q)(Ω)σp
2 σ

q
3

BOUNDARY DATA:  STRING PERTURBATION THEORY

Ω2 → ∞ g → 0(          )

linearized curvature R ∼ kµ kν ϵρσ

s = −2 k1 · k2
t = −2 k1 · k4
u = −2 k1 · k3

A(4)(ϵr, kr;Ω) = R4 T (s, t, u;Ω)



TREE-LEVEL  (VIRASORO AMPLITUDE)

skR4 � d2kR4

INFINITE SERIES of             terms.  Coefficients are powers of Riemann    values 
with rational coefficients

d2kR4 ⇣

T (4)
0 =

4
stu

�(1� ��s)�(1� ��t)�(1� ��u)
�(1 + ��s)�(1 + ��t)�(1 + ��u)

Tree-level SUPERGRAVITY
R4

d4R4 d6R4

d10R4 d12R4

d8R4

�2 = s2 + t2 + u2

A(4)
0 (ϵr, kr) = g−2

s R4 T0(s, t, u)

Generalises to N-particle scattering



VERY BRIEF REVIEW

•  Arise in dimensional regularisation of renormalisable quantum field theories.

w = 8⇣(5, 3) + . . .weight•  First non-trivial (irreducible)  case is

•  MZV’s are numbers with fascinating algebraic properties inherited from the 
    algebraic properties of multiple polylogarithms,  e.g.

ζ(5, 2) = 5ζ(2)ζ(5) + 2ζ(3)ζ(4)− 11ζ(7)

ZETA VALUES AND MULTIPLE-ZETA VALUES

MULTI-ZETA VALUES (MZV’s):

•  Special values of MULTIPLE POLYLOGARITHMS

ζ(a1, . . . , ar) = Lia1,...,ar (1, . . . , 1)) =
∑

0<k1<···<kr

r∏

ℓ=1

k−aℓ
ℓ

w =
r∑

ℓ=1

aℓ“weight” r“depth”

Lia1,...,ar (z1, . . . , zr) =
∑

0<k1<···<kr

r∏

ℓ=1

(
zℓ
kℓ

)aℓ

Even zeta values                                       (powers of pi) 

ζ(2n+ 1)Odd zeta values                transcendental?  Independent? 

ζ(2) =
π2

6e.g.ζ(2n) = − (2i)2nB2n

2(2n)!
π2n

Bernoulli numbers
•  Special values of POLYLOGARITHMS

ZETA VALUES:  

Lia(z) =
∞∑

n=1

zn

na ζ(a) = Lia(1)

Riemann zeta



Focus of mathematical interest within algebraic geometry and number theory

(e.g. Deligne, Zagier, Bloch, Brown, Kontsevich, Goncherov, Schnetz, ….) 

Gehrmann, Henn, Huber

e.g. 3-loop contribution to form factor in N=4 supersymmetric Yang-Mills     

d = 4− ϵ

Note the irreducible MULTIZETA VALUE at weight 8.



However:  Quite generally Feynman diagrams are known to lead to more general 
expressions, such as elliptic multiple polylogarithms and corresponding 
generalizations of multiple zeta values, as well as more exotic objects.

STRING THEORY provides a very efficient way of generating MZV’s and these 
generalizations.  There appears to be a strong analogy between the    expansion of 
Feynman loop expansion and the     of string theory  - at least at tree level.

ϵ
α′

These even arise at quite low orders in perturbation theory in QCD and in N=4 
supersymmetric Yang-Mills – contrary to some conjectures.



HOW DOES THIS GENERALIZE TO HIGHER GENUS ??

OPEN-STRING TREES:  For            coefficients of higher derivative interactions of order 
          (Yang-Mills)

N > 4
(Mafra, Schlotterer, Stieberger)α′n are MZV’s with weight n

•  Special values OF SINGLE-VALUED MULTIPLE POLYLOGARITHMS – these have NO MONODROMIES 
     (generalisations of  BLOCH-WIGNER DILOGARITHM                                             )Im (Li2(z) + log(1− z) log |z|)

w = 11
•  First non-trivial case is

weight

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5)

N-PARTICLE TREE AMPLITUDES

•  No even s.v. zeta values ζsv(2n) = 0 ζsv(2n+ 1) = 2ζ(2n+ 1)also

 coefficients are SINGLE-VALUED MZV’s (svMZV’s)CLOSED-STRING TREES:  For
           (gravity) 

N > 4 (Brown)



GENUS ONE AMPLITUDE

Coefficients of higher derivative interactions

MODULAR INVARIANTS FOR SURFACE 

GENUS ONE

Integral over complex 
structure

Low energy expansion - integrate powers of the genus-one Green function over the torus 
and over the modulus of the torus – difficult! (MBG, D’Hoker, Russo,  Vanhove)

A(4)
1 (ϵr, kr) =

π

16
R4

∫

M1

dτ2

y2
B1(s, t, u; τ) τ = x+ iy

B1(s, t, u; τ) =
1

y4

∫

Σ4

4∏

i=1

d2z exp

⎛

⎝−α′

2

∑

i<j

ki · kj G(zi, zj)

⎞

⎠ Vertex operator
Corr. function

Green function

Coefficients of higher derivative interactions: Ξ(p,q) =

∫

M1

d2τ

y2
j(p,q)(τ)

FEYNMAN DIAGRAMS ON TOROIDAL WORLD-SHEET

Expanding in a power series in momenta gives 

1

w!

1

y4

∫

Σ4

4∏

i=1

d2zi

⎛

⎝
∑

0<i<j≤4

sijG(zi − zj)

⎞

⎠
w

=
∑

i

σpi
2 σqi

3 j(pi,qi)(τ)
∑

i

(2pi + 3qi) = w

(with           ) α′ = 4

∼ sw



“MODULAR GRAPH FUNCTIONS”

“Weight” w = ℓ1 + ℓ2 + · · ·+ ℓ6 D2w R4contributes to

MOMENTUM-SPACE PROPAGATOR: m,n ∈ Zinteger world-sheet momenta

Ĝ(m,n) =
y

|mτ + n|2

z = u+ τ v

The Green function on a torus of complex structure :

G(z) = − ln

∣∣∣∣
θ1(z|τ)
θ′1(0|τ)

∣∣∣∣
2

− π

2y
(z − z̄)2

=
∑

(m,n) ̸=(0,0)

Ĝ(m,n)e2πi(mu−nv) + 2 ln
(
2π |η(τ)|2

)
doubly periodic function

τ = x+ iy

              is sum of world-sheet Feynman diagrams.  j(p,q)(τ)

l1!
l5!

l2!

l3!

l6!

l4!1

2 3

4

lS ! labels number of propagators on line SDℓ1,ℓ2,ℓ3,ℓ4;ℓ5,ℓ6 =

General contribution to 4-particle amplitude: i , j = 1, 2, 3, 4

Modular function

Each of these is a modular function - invariant under SL(2,Z)
τ → aτ + b

cτ + d

a, b, c, d ∈ Z, ad− bc = 1

1512.06779		
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(D’Hoker, MBG, Vanhove)



Non-holomorphic SL(2) EISENSTEIN SERIES

Ca,b,c(τ) =
∑

(mr,nr )̸=(0,0)∑
i mi=0=

∑
j nj

ya+b+c

|m1τ + n1|2a|m2τ + n2|2b|m3τ + n3|2c

MULTIPLE SUMS:
WORLD-SHEET FEYNMAN DIAGRAMS

Es(τ) =
∑

(m,n) ̸=(0,0)

ys

|mτ + n|2s
D2

e.g. =
∑

(m,n) ̸=(0,0)

y2

|mτ + n|4≡ E2(τ)d4R4

Ca,b,c sequencee.g. w = a+ b+ c (          ) vertices w − 1 d2wR4

….. …..

C4,3,2C1,1,1≡ D3 C2,2,1≡ D1,1,1,1;1 C3,1,1≡ D2,1,1,1

d6R4 d10R4d10R4 d18R4



1

2 3

41

2

1

2 3

1

2 3

D5 D2,2,1 D3,1,1 D1,1,1,1;1≡ C2,2,1

CONTRIBUTIONS TO              (WEIGHT-5)

1

2 3

4

`	

1

2

1

2 3

D4 D2,1,1 ≡ C2,1,1 D1,1,1,1D2
2= E2

2

1

3

4

2

1

2 3

4 1

32

1

32

4

D2,1,1,1≡ C3,1,1 D3 D2D1,1,1 D2

CONTRIBUTIONS TO            (WEIGHT-4)d8R4



•  Modular graph functions of arbitrary weight are special values of  
SINGLE-VALUED ELLIPTIC MULTIPLE POLYLOGARITHMS (D’Hoker, MBG, Gurdogan, Vanhove)

•  As with MZV’s, these elliptic functions satisfy a fascinating set of polynomial
    relationships – we have found just a few of these.                                      

polynomial of weight 5 in functions of different depth (no. of loops) 

e.g. D5 − 60C3,1,1 − 10E2 C1,1,1 + 48E5 − 16 ζ(5) = 0weight 5 F ≡

Proof:		Show (with great difficulty!) by	manipula?ng	mul?ple	sums	that	∇4F = 0

∇ = τ22
∂

∂τ
where	

−60 −10 +48= −16 ζ(5)

∆ = y2 (∂2
x + ∂2

y)

•  Direct analysis looks forbidding.   But           functions satisfy simple Laplace
     equations with Laplacian

Ca,b,c

•  Such	iden??es	relate	Feynman	diagrams	with	different	numbers	of	loops.	



WHAT IS THE BASIS OF MODULAR GRAPH FUNCTIONS?

QUESTION: 	

MODULAR GRAPH FUNCTIONS SATISFY POLYNOMIAL RELATIONS 
                   WITH RATIONAL COEFFICIENTS

CONJECTURE:

Elliptic generalisation of the rational polynomial relations between multiple 
polylogarithms and single-valued MZV’s

Analogous	to	interes?ng	issues	in	mul?ple	zeta	vlues	



These coefficients are analogous to the tree-level coefficients:

 WHAT IS THE CONNECTION BETWEEN THEM??

After ntegrating over                                          gives the one-loop expansion: τ (and dealing with divergences)

GENUS-ONE EXPANSION:

A(4)
1 =

π

3

(
1 + 0σ2 +

ζ(3)

3
σ3 + 0σ2

2 +
116 ζ(5)

5
σ2 σ3 . . .

)
R4

d8 R4 d10 R4

Ξ(p,q) =

∫

M1

d2τ

y2
j(p,q)(τ)

INTEGRATION OVER FUNDAMENTAL DOMAIN

Genus-one	coefficients	



GENUS TWO 

Amplitude is explicit but difficult to study.   Low energy expansion: 

(
A(4)

2 = g2
s

4
3
ζ(4) σ2R

4 +4ζ(4)σ3R
4 + . . .

)

d6 R4d4 R4

Result:

(D’Hoker, MBG, Pioline, R. Russo)

GENUS THREE

HIGHER ORDERS New problems - No explicit expressions

d6 R4

Technical difficulties analysing 3-loops.  Gomez and Mafra evaluated 
the leading low energy behaviour using PURE SPINOR FORMALISM,  giving

A(4)
3 = g4s

(
4

27
ζ(6)σ3 + . . .

)
R4



HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY (MAXIMAL) SUSY AND DUALITY ??

Investigate the exact moduli dependence of low lying terms in the low energy expansion.

Duality relates different regions of moduli space –
Connects perturbative and non-perturbative features in a highly nontrivial manner.

Ω → aΩ+ b

cΩ+ d
DUALITY GROUP SL(2,Z) a, b, c, d ∈ Z

ad− bc = 1

Relates strong and weak coupling.

SIMPLE EXAMPLE:

inverse string coupling constant

Ω = Ω1 + iΩ2

10-DIMENSIONAL  Type IIB - maximal supersymmetry

One complex modulus 	

Ω2 =
1

g
= e−φ

NON-PERTURBATIVE EXTENSION



NON-PERTURBATIVE EXTENSION

e.g. rank-d S-duality groups for M-theory on a d-torus 

Using:

•  Duality between M-theory (quantum 11-dimensional supergravity) on d-torus
    and and string theory compactified on a (d-1)-torus

•  Nonlinear maximal supersymmetry

679 8 5 4 310B D=11-d

SL(2, Z) SL(2, Z) SL(3, Z)⇥ SL(2, Z) SL(5, Z) SO(5, 5, Z) E6(6)(Z) E7(7)(Z) E8(8)(Z)

sequence on d-torus Ed(Z)

GENERALIZATIONS OF NON-HOLOMORPHIC EISENSTEIN SERIES   

R4 d4 R4 d6 R4

Leads	to	a	precise	expressions	for	the	exact	coefficients	of	“BPS”	interac?ons	

These	coefficients	are	automorphic	func?ons	of	the	S-duality	groups:	

The	perturba?ve	terms	agree	exactly	with	string	perturba?on	theory	at	genus	0,1,2,3	

BUT	THAT	IS	THE	SUBJECT	OF	A	SEPARATE	LECTURE	!!	



Feliz Cumpleaños !!
WE WANT YOU BACK!!


