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Motivation 

Design principles for oxygen-reduction activity
on perovskite oxide catalysts for fuel cells and
metal–air batteries
Jin Suntivich1, Hubert A. Gasteiger2†*, Naoaki Yabuuchi2, Haruyuki Nakanishi3, John B. Goodenough4

and Yang Shao-Horn1,2*

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR)
in fuel cells and metal–air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst
design principle that links material properties to the catalytic activity can accelerate the search for highly active and
abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide
catalysts primarily correlates to s*-orbital (eg) occupation and the extent of B-site transition-metal–oxygen covalency,
which serves as a secondary activity descriptor. Our findings reflect the critical influences of the s* orbital and metal–
oxygen covalency on the competition between O2

2–/OH– displacement and OH– regeneration on surface transition-metal
ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide
catalytic activity.

Driven by growing concerns about global warming and the
depletion of petroleum resources, developing renewable
energy production and storage technologies represents one

of the major scientific challenges of the twenty-first century. A criti-
cal element in the pursuit of this quest is the discovery of efficient
and cost-effective catalysts for use in electrochemical energy conver-
sion processes1,2 such as the oxygen evolution reaction (OER) and
oxygen reduction reaction (ORR), both of which are central to the
efficiencies of direct-solar3 and electrolytic water-splitting4,5

devices, fuel cells6 and metal–air batteries7,8. Although Sabatier’s
principle provides a qualitative argument for tuning catalytic
activity by varying the bond strength between the catalyst surface
and the reactant/product (neither too strong nor too weak,
leading to maximum activity at moderate bond strength), it has
no predictive power to find catalysts with enhanced activity.
Recent ab initio9 and experimental studies10,11 have identified a
unique catalyst property (‘activity descriptor’) that governs the
strength of the metal–oxygen bond and the ORR activity of plati-
num-based metals in acid (O2þ 4Hþþ 4e2 ! 2H2O).
Controlling the ORR activity descriptor—the d-band centre relative
to the Fermi level9,12—has quantitatively led to the discovery of
promising new platinum-based catalysts for ORR in proton
exchange membrane fuel cells (PEMFCs)10,13.

Alkaline fuel cells and metal–air batteries, which use transition-
metal oxides for catalysing the ORR (O2þ 2H2Oþ 4e2 ! 4OH2),
offer an alternative solution to PEMFCs. Oxides have shown reason-
ably high activity for the ORR in fuel cells14,15 and the OER in water
electrolysis5,16 and direct solar water splitting17 at neutral and high
values of pH. However, a lack of fundamental understanding of
the ORR mechanism and the material properties that govern

catalytic activity hampers the development of highly active oxide
catalysts. In this Article, we report a volcano relationship between
a material property that serves as the activity descriptor and the
intrinsic ORR activity of perovskite-based oxides. Such information
has predictive power and provides insights into the design of new
catalysts with enhanced ORR activity similar to those reported for
platinum-based metals10,11,13.

We take advantage of the flexibility of the physical-chemical and
catalytic properties of the perovskite family, where A sites with rare-
earth metal ions and B sites with transition-metal ions can allow
partial substitution to form AA′BB′O3 (Fig. 1a) to experimentally
examine a large number of oxides (15 total) to establish a catalytic
descriptor for ORR. Matsumoto et al.18–20 and Bockris and
Otagawa21 have reported geometric currents of perovskites in
thick, porous electrodes as a function of potential, but the intrinsic
specific ORR activity (kinetic current densities normalized to cata-
lyst surface area) necessary for ORR mechanistic discussion is not
available. We have recently reported a methodology using a thin-
film rotating-disk electrode with well-defined oxygen transport15

to allow a precise comparison of the ORR activities of different tran-
sition-metal oxides. This method yields a more accurate determi-
nation of the intrinsic ORR activity than that estimated from the
data reported by Bockris and Otagawa15, as oxygen mass transport
resistances in thin-film electrodes are much better compensated
than thick electrodes with very high internal surface area. In this
Article, we apply this methodology to assess the ORR activity of
15 perovskite-based oxides with various A-site (La1–xCaxBO3,
La1þxBO3þx) and B-site (LaB1–xB′

xO3) substitutions, which is used
to identify the material properties (descriptors) that govern their
intrinsic ORR activities. Here we use the molecular-orbital approach
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Motivation 

•  Bulk calculations of bands 
•  NEB calculations of 

transition states 
•  BO/CP calculations of 

reactions (maybe biased 
MD) 



Motivation 

Realistic calculations, which allow to predict, need to be: 
•  More accurate 
•  More complex 
Ideally they should not cost more and/or be more 
cumbersome than standard calculations, so that we can go 
high-throughput on them. 



Full atomistic QM 

•  How large a simulation cell 
•  How many water molecules 
•  How many electrons 

•  Sampling 
•  Is the result ‘correct’? 



Hierarchical models 

•  Focus on part of the system, treated at the highest level 
•  Use some fast, maybe approximate model to handle the rest (aka 

the environment) 
•  Atomistic (lower level ab-initio, semiemprical, classical QM/MM) 
•  Coarse-grained 
•  Continuum 

Chlorophyll pigments (QM) 
in the FMO protein (MM/MMPol) 
near metal nanoparticles (Continuum) 
 
O. Andreussi, et al. J. Phys. Chem. A 119, 
5197 (2015).  
 



Hierachical models 
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minimize the energy of the system and generate one characteristic conformation, and that  used 
by Némety and Scheraga, to use statistical mechanics methods, like Molecular Dynamics (MD) 12 
or Monte Carlo (MC) 12 and generate many configurations with a correct (in principle) statistic 
weight. 
 
The importance of the work of the laureates is independent of what strategy is used for the 
choice of the studied configuration(s). The prize focuses on how to evaluate the variation in the 
energy of the real system in a accurate and efficient way for systems where relatively large 
geometry changes or changes in electronic configuration in a smaller part of the studied system 
is strongly coupled to a surrounding that is only weakly perturbed. One way to address this 
problem is to develop an efficient computer code based on the Schrödinger equation that makes 
it possible to handle systems of the size that is required. The Car – Parrinello approach 13 is the 
leading strategy along this line. It is however still too demanding with respect to computer 
resources to be able to handle the large systems necessary for biomolecular modelling or 
extended supra-molecular systems with the required accuracy. The solution to the problem is 
instead to combine classical modelling of the larger surrounding, along the line suggested by 
Westheimer 4, Allinger 7, Némety and Scheraga 8, with quantum chemical modelling of the core 
region, where the chemically interesting action takes place.  
 
The contributions of the three laureates 
  

The first step in the development of multiscale modelling was taken when Arieh Warshel came 
to visit Martin Karplus at Harvard in the beginning of the 70’ies. Warshel had a background in 
inter- and intramolecular potentials and Karplus had the necessary quantum chemical 
experience. The goal was to study molecules similar to retinal. This chromophore, responsible 
for animal vision, had attracted Karplus attention14. Partly based on the ideas presented by 
Honig and Karplus14, Karplus and Warshel constructed a computer program that could calculate 
the π-electron spectra and the vibration spectra of a number of planar molecules with excellent 
results15. The basis for this approach was that the effects of the σ-electrons and the nuclei were 
modelled using a classical approach and that the π-electrons were modelled using a PPP16 
(Pariser – Parr – Pople) quantum chemical approach corrected for nearest overlap. Figure 2 
shows a typical molecule studied in that work. 
 
 
 
 
 
 
 
 
 



Continuum models of 
solvation 
From qauntum-chemistry to condensed matter 



Why using a continuum? 

•  Hierarchical approach, solute 
with full details, solvent 
simplified: 

•  take advantage of statistical 
averaging: isotropic 
continuum.  

•  only focuses on effects of 
interest: electrostatics; 

Intrinsically high-throughput 

Reduced number of molecules 
and implicit average 

 Sometimes solvent is ‘structural’ 
 Experimental dielectric constant 
 Biased selection, sometimes all 

interactions are important 
 



Continuum models: the 
main ingredients 

•  Cavity 
•  Rigid, soft 
•  Sharp or smooth 
•  Atomic/electronic 

•  Interactions 
•  Electrostatic 
•  Cavitation 
•  Dispersion/Repulsion 
•  H-bonds 



Continuum Models: PCM 

•  Molecular shaped cavity 
•  Usually atom-defined cavity 
•  Sharp 2D interface 
•  Numerically solved via Boundary 

Elements Methods (BEM) 

Polarizable Continuum Model 

J. Tomasi and M. Persico, Chem. Rev. 94 2027 (1994) 
J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 105 2999 (2005)   



PCM: Pros and Cons 

PROs 
•  Fast 
•  Reasonably parameterized and well tested 
•  Its electrostatic component gives reliable results 

(spectroscopy, reactions, etc.) 
 
CONs 
•  Sharp atom-centered interface: possible problems with 

forces 
•  Arbitrary and possibly parameter intensive definition 

of cavity 
•  Does not account cavity softness  
 

of its most common flavor 



PCM-related methods 

•  IEF-PCM by Tomasi, Mennucci et al. 
•  COSMO by Klamt et al. 
•  Isodensity PCM and Self-Consistent Isodensity PCM 

(SCI-PCM) by Scalmani et al. 
•  SMx (x=1,8) methods by Cramer, Truhlar et al. 
•  SVPE or SSVPE by Chipman et al. 

Implemented in Gaussian, GAMESS, Molpro, NWChem, 
QChem, ADF, Dalton, etc. 



Continuum Models: FG 

•  Fully variational approach 
•  Smooth (3D) self-

consistent dielectric 
function 

•  Numerically solved via 
multigrid 

J. Fattebert and F. Gygi, J. Comput. Chem. 23 662 (2002)  



FG Model: Pros and Cons 

PROs 
•  Elegant variational formulation 
•  Soft self-consistent cavity 
•  Limited number of parameter 

CONs 
•  More computational expensive 
•  Choice of dielectric function can lead to convergence problems 
•  Limited parameterization 
•  Missing non-electrostatic terms 
 

of its original formulation 



Derived or analogous to FG 

•  Self-consistent Continuum Solvation (SCCS) by Andreussi et 
al. 

•  Vasp-sol by Mattew and Hennig 
•  Salsa by Tomas Arias et al. 
•  CANDLE by Goddard et al. 

Other tools/modules developed by Skylaris et al. Reuter, 
Oberhofer et al., Vandevondelee et al. 
 
Implemented in QE, VASP, BigDFT, CP2K, ONETEP, CASTEP, 
etc. 



Self-consistent Continuum 
Solvation (SCCS) 

•  Electrostatics based on a redefined 
version of Fattebert-Gygi model 

•  Non-electrostatics based on 
quantum surface and quantum 
volume 

•  Changed the numerical approach, 
from multigrid to FFT-based 

•  Reparametrized for neutral and 
charged compounds 

Revised 

O. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. 136 064102 (2012) 



Revising FG: electrostatics 

Vacuum-like Poisson Equation 

Poisson Equation in dielectric medium 

Polarization charge 

Polarization charge 



Iterative Solver via FFT 

Computationally robust and easy to implement 
Naturally parallel and fully periodic 

 



Even better solvers 

•  Iterative solution on polarization 
charge can be shown to be 
equivalent to a preconditioned 
steepest-descent algorithm on 
the potential. 

•  A more efficient preconditioned 
conjugate-gradient algorithm 
with a smart preconditioner was 
recently developed. 

G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari, and S. Goedecker, J. Chem. 
Phys. 144, 014103 (2016)  



Novel dielectric function 

•  Ideally flat in important 
regions 

•  Adapted to an 
exponentially decaying 
electronic density 

•  Optimally smooth 
polarization charge 



Cavitation model 

•  Quantum Volume 
 
 
 
•  Quantum Surface 

M. Cococcioni, F. Mauri, G. Ceder and N. Marzari, PRL 94, 145501 (2005) 
D. Scherlis, M. Coccocioni et al., J. Chem. Phys.124 074103 (2006) 



Parameterize SCCS: 
Free Energies of Solvation 

Up to six parameters: 
•  Up to two experimental quantities (static dielectric 

constant and surface tension) 
•  Just two parameters to define the cavity (dielectric 

function) 
•  Up to two solvent-dependent parameters to fit 

experimental results 



Fit of the cavity parameters 



Fit of the experiments 



Test on Molecular 
Dynamics 



Charged Systems:  
new problems 

Periodic 
Boundary 
Conditions 
(PBC) 

DFT 
convergence of 
Anions’ 
Electronic 
Structure 

Much stronger 
solvent-solute 
interaction 



FFTs and PBC artifacts 

OLIVIERO ANDREUSSI AND NICOLA MARZARI PHYSICAL REVIEW B 90, 245101 (2014)

to the presence of fictitious replicas [19,28–44]. One class
of methods (labeled here “non-self-consistent” or NSC) aims
at correcting only the electrostatic energy of the systems,
while keeping the degrees of freedom of the system frozen
in the presence of periodic boundary conditions. This is the
approach, e.g., of the Makov-Payne method [31], that is one of
the most widespread methodologies to take care of PBC errors
for zero-dimensional (0D) systems.

In order to fully remove the effects of periodic boundary
conditions on partially periodic systems, other approaches
(labeled as “self-consistent” or SC, in the following) have been
developed that correct the electrostatic potential. This correc-
tion enters directly into the electrostatic energy, Kohn-Sham
potential, and interatomic forces, such that the electrostatic
energy has no spurious contributions from the periodic replica,
but also all the degrees of freedom of the system are optimized
in the correct electrostatic environment. These fully self-
consistent correction schemes can be further divided in two
classes, depending on whether the correction to the electro-
static potential is computed in real space (R-space) [40,41] or
in reciprocal space (G-space) [33,35,36,42]. For both classes,
correction for two-dimensional (2D), one-dimensional (1D),
and 0D systems have been proposed and implemented.

In this work, some of the existing PBC correction schemes
developed for partially periodic systems in vacuum are
extended in order to take into account the presence of a
continuum dielectric medium in the system. In the following,
the three general classes of corrections, i.e., NSC, SC R-space,
and SC G-space, are analyzed and the modifications of
the algorithms needed to include a continuum dielectric are
outlined. Equations for the most important cases are derived
and the proposed approaches are implemented and tested.

The paper is organized as follows: In Sec. II A, we
introduce the notation and the main electrostatic equations
used throughout the paper; in Sec. II B, we review the
main equations describing electrostatic interactions in periodic
systems, highlighting the limitations of standard approaches;
in Sec. II C, we summarize the equations behind the SCCS
model, as derived in Ref. [13], underlining the effects of
periodic boundary conditions; in Sec. II D, we describe the
Makov-Payne approach [31] (NSC, 0D) and appropriately
modify it in order to combine it with the SCCS model; in
Sec. II E, the point-countercharge (PCC) correction scheme
[40,41] is analyzed and extended to take into account of the
complex dielectric environment, and its application to the case
of slab geometries is presented (SC, R-space, 2D); in Sec. II F,
the Martyna-Tuckerman method [33] is discussed and its
modifications are derived and implemented for the case of
isolated systems (SC, G-space, 0D); in Sec. III, we present
detailed numerical results for the 0D and 2D cases; eventually,
in Sec. IV we draw our conclusions.

II. METHODS

A. Electrostatics in periodic boundary conditions

In order to establish a consistent notation, we report here
the main electrostatic equations, as reported in many standard
textbooks but with a specific focus on their form in periodic
systems. Electrostatic interactions are governed by Maxwell’s

equations, which relate electric field E (r) and charge density
ρ (r):

∇ · E (r) = 4πρ (r) , (1)

∇ × E (r) = 0. (2)

Due to the irrotational nature of the electrostatic field, it is
often convenient to express it in terms of the gradient of a
scalar potential, i.e., the electrostatic potential, as

E (r) = −∇v (r) (3)

and Eqs. (1) and (2) are recast into a single second-order
differential equation, i.e., the Poisson equation

∇2v (r) = −4πρ (r) . (4)

Once a proper set of boundary conditions is imposed,
the above differential equation can be solved exactly. In
particular, in a closed volume of space it is sufficient to specify
the potential (Dirichlet boundary conditions) or the normal
component of the field (von Neumann boundary conditions)
at the boundary in order to have a unique solution of the
electrostatic problem. Also, it is customary to recast Eq. (4)
in an integral formulation by the use of Green’s functions,
namely,

v [ρ] (r) ≡ v (r) =
∫

B

G(r − r′)ρ(r′)dr′, (5)

where the integration is performed over the arbitrary bounded
region B. In the above equation and in the following, we
decided to make explicit the functional dependence of the
potential on the density that generates it.

Given the definitions above, the electrostatic energy of a
charge distribution can then be expressed as

E [ρ] = 1
8π

∫

B

|E|2 dr. (6)

For an isolated charge density in vacuum, it is customary to
impose homogeneous Dirichlet or von Neumann conditions at
infinity, such that

E [ρ] = 1
2

∫

B

ρ (r) v [ρ] (r) dr (7)

and

G(r − r′) = 1
|r − r′| . (8)

For this class of systems, both the potential and the energy can
be easily computed by exploiting Eq. (8) and by setting the
integrand limit in Eqs. (7) and (5) to an arbitrary cell size D
large enough to contain the entire charge density of the system

v [ρ] (r) =
∫

D

G(r − r′)ρ(r′)dr′, (9)

E [ρ] = 1
2

∫

D

ρ (r) v [ρ] (r) dr. (10)

Nonetheless, the characteristic 1/r behavior of the electro-
static potential can be the source of two specular problems:
the divergence at short distances and the slow decay at large
distances make the electrostatic potential difficult to handle,
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introducing issues with the self-interaction of charges and of
conditionally convergent calculations of the field.

In periodic systems, the fundamental electrostatic equa-
tions, e.g., Eqs. (9) and (10), may be written in the same
form reported above, whereas it is intended that the integration
domain corresponds to the periodic unit cell, typically chosen
as the primitive one, and the physical quantities entering the
equations (density, potential, Green’s function, etc.) refer to
such infinitely periodic systems. In order to avoid confusion
on which kind of system is considered, in all the equations in
the following sections, we decided to use special typographic
characters (ϱ, E, v, !, G, and D) to identify quantities referring
to infinite periodic systems, while keeping the standard labels
(ρ, E, v, E, G, and D) for localized isolated systems.

In a periodic system, the entire, infinite, charge density
ϱ (r) will contribute to the potential v (ϱ,r). Nonetheless,
such a potential can still be expressed univocally with an
integral confined to the unit cell D of the periodic system, by
exploiting in Eq. (5) the Green’s function G(r − r′) appropriate
for periodic boundary conditions

v[ϱ] (r) =
∫

∞
G(r − r′)ϱ(r′)dr′ =

∫

D

G(r − r′)ϱ(r′)dr′.

(11)

Similarly, Eq. (7) can also be used as is in order to compute
the electrostatic energy per unit cell of a periodic system E[ϱ],
provided that the integration is over the unit cell D of the
periodic system

E[ϱ] = 1
2

∫

D

ϱ (r) v[ϱ] (r) dr. (12)

B. Periodic electrostatic potential

When dealing with periodic systems, it is natural to recast
the electrostatic equations in reciprocal space, in order to
exploit the simple form of the Fourier-transformed differential
operator

∇f (r) → ∇̃f (k) = ikf̃ (k) , (13)

∇ · F (r) → ∇̃ · F (k) = ik · F̃ (k) , (14)

where the overwritten tilde identifies Fourier-transformed
functions. By applying the above relations to Eqs. (1) and
(3), the general solution of the electrostatic field and potential
in a periodic system can be written as

! (k) = −4π
ikϱ (k)

|k|2
for k ̸= 0 (15)

and

v[ϱ] (k) = ik · ! (k)

|k|2
= 4π

ϱ (k)

|k|2
for k ̸= 0. (16)

For k = 0, the electrostatic equations need to be handled
with care. Indeed, special forms of the divergence theorem
impose that a periodic solution for the electrostatic field and
potential is only possible provided that the right-hand side
of Eq. (1) and the left-hand side of (3), once transformed in
Fourier space, are zero for k = 0. In particular, in order to
obtain a periodic solution for the electrostatic field, the total

charge of the system has to be zero:

ϱ (k = 0) ≡ ⟨ϱ⟩ = 1
V

∫

D

ϱ (r) dr = 0. (17)

Similarly, a periodic solution of the electrostatic potential will
only be possible for a zero average electrostatic field

! (k = 0) = 1
V

∫

D

! (r) dr = 0. (18)

As this latter condition univocally fixes the constant value of
the electrostatic field, the only undefined quantity for k = 0 is
the potential: given that the system is neutral, such component
has no effects on the final electrostatic energy

1
2

∫

D

v[ϱ] (k = 0) ϱ (k = 0) dr = 0. (19)

Even if ϱ is defined to be non-neutral inside the unit cell,
Eqs. (15) and (16) can still be used exactly as written, together
with the choice v (k = 0) = 0, but the quantities obtained will
actually correspond to a periodic system where the original
charge density has been compensated by a homogeneous
background (NCB)

ϱ → ϱ − ⟨ϱ⟩ . (20)

The specific choice v (k = 0) = 0 is made so that the NCB
density does not appear explicitly in the formulas since its
only contribution to the energy, i.e., the term for k = 0,
cancels out in Eq. (19). Nonetheless, for the sake of correctly
identifying the physical system under consideration, in the
following we will explicitly write the dependence of the
potential on the compensated charge density of the system,
namely, v[ϱ − ⟨ϱ⟩] (k).

It has to be noted that the above equations have been derived
for ideally infinite periodic systems, but it could be convenient
to take a different, real-space, perspective and to think of a
periodic system as generated by an increasingly larger number
of unit cells. In such a picture, while the reciprocal-space
approach can still be used to look for periodic solutions of
the electrostatic field and potential, it is physically acceptable
to have an additional nonperiodic, but linear, component for
the electrostatic potential. In other words, an additional linear
potential of the form !0 · r would still preserve the periodic
solution for the electrostatic field, and thus a physically
acceptable solution for the energy of the periodic system.
Moreover, for the same reasons, the k = 0 component of the
potential will not have any effect on the total energy of a neutral
system.

As the k = 0 components of the electrostatic field and
potential cannot be univocally determined by the electrostatic
differential equations, they can only be determined by the
boundary conditions imposed on the system. Exploiting
Eq. (11), the general solution for the electrostatic potential
of a periodic system can be written as

v[ϱ] (r) = 4π

V

∑

k ̸=0

ϱ (k)

|k|2
eik·r + !0 · r + v0, (21)

where the last two terms are usually referred in the literature
as the extrinsic potential [27,28,45] to distinguish them from
the intrinsic part, which can be solved independently of the

245101-3

ELECTROSTATICS OF SOLVATED SYSTEMS IN . . . PHYSICAL REVIEW B 90, 245101 (2014)

introducing issues with the self-interaction of charges and of
conditionally convergent calculations of the field.

In periodic systems, the fundamental electrostatic equa-
tions, e.g., Eqs. (9) and (10), may be written in the same
form reported above, whereas it is intended that the integration
domain corresponds to the periodic unit cell, typically chosen
as the primitive one, and the physical quantities entering the
equations (density, potential, Green’s function, etc.) refer to
such infinitely periodic systems. In order to avoid confusion
on which kind of system is considered, in all the equations in
the following sections, we decided to use special typographic
characters (ϱ, E, v, !, G, and D) to identify quantities referring
to infinite periodic systems, while keeping the standard labels
(ρ, E, v, E, G, and D) for localized isolated systems.

In a periodic system, the entire, infinite, charge density
ϱ (r) will contribute to the potential v (ϱ,r). Nonetheless,
such a potential can still be expressed univocally with an
integral confined to the unit cell D of the periodic system, by
exploiting in Eq. (5) the Green’s function G(r − r′) appropriate
for periodic boundary conditions

v[ϱ] (r) =
∫

∞
G(r − r′)ϱ(r′)dr′ =

∫

D

G(r − r′)ϱ(r′)dr′.

(11)

Similarly, Eq. (7) can also be used as is in order to compute
the electrostatic energy per unit cell of a periodic system E[ϱ],
provided that the integration is over the unit cell D of the
periodic system

E[ϱ] = 1
2

∫

D

ϱ (r) v[ϱ] (r) dr. (12)

B. Periodic electrostatic potential

When dealing with periodic systems, it is natural to recast
the electrostatic equations in reciprocal space, in order to
exploit the simple form of the Fourier-transformed differential
operator

∇f (r) → ∇̃f (k) = ikf̃ (k) , (13)

∇ · F (r) → ∇̃ · F (k) = ik · F̃ (k) , (14)

where the overwritten tilde identifies Fourier-transformed
functions. By applying the above relations to Eqs. (1) and
(3), the general solution of the electrostatic field and potential
in a periodic system can be written as

! (k) = −4π
ikϱ (k)

|k|2
for k ̸= 0 (15)

and

v[ϱ] (k) = ik · ! (k)

|k|2
= 4π

ϱ (k)

|k|2
for k ̸= 0. (16)

For k = 0, the electrostatic equations need to be handled
with care. Indeed, special forms of the divergence theorem
impose that a periodic solution for the electrostatic field and
potential is only possible provided that the right-hand side
of Eq. (1) and the left-hand side of (3), once transformed in
Fourier space, are zero for k = 0. In particular, in order to
obtain a periodic solution for the electrostatic field, the total

charge of the system has to be zero:

ϱ (k = 0) ≡ ⟨ϱ⟩ = 1
V

∫

D

ϱ (r) dr = 0. (17)

Similarly, a periodic solution of the electrostatic potential will
only be possible for a zero average electrostatic field

! (k = 0) = 1
V

∫

D

! (r) dr = 0. (18)

As this latter condition univocally fixes the constant value of
the electrostatic field, the only undefined quantity for k = 0 is
the potential: given that the system is neutral, such component
has no effects on the final electrostatic energy

1
2

∫

D

v[ϱ] (k = 0) ϱ (k = 0) dr = 0. (19)

Even if ϱ is defined to be non-neutral inside the unit cell,
Eqs. (15) and (16) can still be used exactly as written, together
with the choice v (k = 0) = 0, but the quantities obtained will
actually correspond to a periodic system where the original
charge density has been compensated by a homogeneous
background (NCB)

ϱ → ϱ − ⟨ϱ⟩ . (20)

The specific choice v (k = 0) = 0 is made so that the NCB
density does not appear explicitly in the formulas since its
only contribution to the energy, i.e., the term for k = 0,
cancels out in Eq. (19). Nonetheless, for the sake of correctly
identifying the physical system under consideration, in the
following we will explicitly write the dependence of the
potential on the compensated charge density of the system,
namely, v[ϱ − ⟨ϱ⟩] (k).

It has to be noted that the above equations have been derived
for ideally infinite periodic systems, but it could be convenient
to take a different, real-space, perspective and to think of a
periodic system as generated by an increasingly larger number
of unit cells. In such a picture, while the reciprocal-space
approach can still be used to look for periodic solutions of
the electrostatic field and potential, it is physically acceptable
to have an additional nonperiodic, but linear, component for
the electrostatic potential. In other words, an additional linear
potential of the form !0 · r would still preserve the periodic
solution for the electrostatic field, and thus a physically
acceptable solution for the energy of the periodic system.
Moreover, for the same reasons, the k = 0 component of the
potential will not have any effect on the total energy of a neutral
system.

As the k = 0 components of the electrostatic field and
potential cannot be univocally determined by the electrostatic
differential equations, they can only be determined by the
boundary conditions imposed on the system. Exploiting
Eq. (11), the general solution for the electrostatic potential
of a periodic system can be written as

v[ϱ] (r) = 4π

V

∑

k ̸=0

ϱ (k)

|k|2
eik·r + !0 · r + v0, (21)

where the last two terms are usually referred in the literature
as the extrinsic potential [27,28,45] to distinguish them from
the intrinsic part, which can be solved independently of the

245101-3

O. Andreussi and N. Marzari, Phys. Rev. B 90, 245101 (2014) 



FFTs and PBC artifacts 

•  Periodically replicated charge distribution 
•  Only neutral charge distributions (or neutralized 

background) 
•  Only zero average electric field  
•  Zero average potential (tin-foil boundary conditions) 

•  Different strategies to solve the problem in vacuum: 
•  Makov-Payne (post-processing, cubic cells, errors up to L-3) 
•  Martyna-Tuckerman (reciprocal space, perfect if cell twice 

as big as system) 
•  Parabolic correction (Point-Countercharge PCC) 

O. Andreussi and N. Marzari, Phys. Rev. B 90, 245101 (2014) 



Parabolic correction in 2d 
systems 

vacuum continuum solvent 

O. Andreussi and N. Marzari, Phys. Rev. B 90, 245101 (2014) 



PBC Correction: extension to 
continuum environments 

•  Makov-Payne 
•  Martyna-Tuckermann 
•  Point Counter-Charge 

(0D and 2D) 

O. Andreussi and N. Marzari, Phys. Rev. B 90, 245101 (2014) 



Converging Anions in vacuum 
[1] M.C. Kim, E. Sim and K. Burke, J. Chem. Phys. 134, 171103 (2011)  
[2] O. Andreussi, C. Dupont and N. Marzari,  in preparation (2017) 

CH-

(eV)% Experimental% Burke%[1]% Extrapolated%[2]%
CH% 1.24% 1.53% 1.57%
CH2% 0.65% 0.78% 0.78%
CH3% 0.08% 0.08% 0.15%
NH% 0.38% 0.55% 0.64%
NH2% 0.77% 0.83% 0.93%
OH% 1.83% 1.95% 2.02%

(eV)% Experimental% Burke%[1]% Extrapolated%[2]%
SiH% 1.28% 1.4% 1.38%
SiH2% 1.12% 1.29% 1.24%
SiH3% 1.41% 1.42% 1.36%
PH% 1.03% 1.07% 1.06%
PH2% 1.27% 1.25% 1.23%
HS% 2.36% 2.33% 2.30%



Stronger solvent-solute 
interaction: refitting 

•  Very good results on cations (MAE of 
~2 kcal/mol) 

•  Poor results on anions, improve after re-
parametrization (MAE of ~7 kcal/mol) 

ΔGsol,exp 

Δ
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C. Dupont, O. Andreussi and N. Marzari, J. Chem. Phys. 139, 214110 (2013)  



  

 Revised self-consistent continuum solvation (SCCS) model 
for the excited state (TDDFpT)



  

What happens when we excite the system (irradiation by light)?

Ground state Excited state

 From ground state to excited state

The dielectric constant of the solvent (water in this case) changes from 80 to 1.7.
This fact is taken into account in the TDDFPT equations.

Approximation for the optical response:



  

To 1st order in the perturbation, the frequency-dependent Kohn-Sham equation reads: 

where

The solute and solvent response charge densities read:

 TDDFPT + SCCS equations in a nutshell



  

 Examples (using B3LYP hybrid functional)

4-aminophthalimide (4-AP) alizarin

cyanin

The solvatochromic shifts of the absorption peaks
 in the spectra are due to two effects:

- geometrical (relaxation in vacuum VS solvent);

- dielectric screening (electronic excitations are
                                   screened by the solvent)

I. Timrov, O. Andreussi, A. Biancardi, N. Marzari, S. Baroni,
J. Chem. Phys. 142, 034111 (2015).



The Environ module 
A library for continuum environments in QE 



Environ as a plugin of QE 

•  Interfaced with PW, NEB, CP, and TDDFpT  
•  Planned extension to PHonon, (and Yambo)  
•  Available on QE-Forge 

http://qe-forge.org/gf/project/electroemb/ 
•  Official release, infos, news, etc. on 

www.quantum-environ.org 



Interfaced with QE via plugins 

•  Plugins activated by the ”exe.x –-plugin” (e.g. 
pw.x --environ) command-line option   

•  Handling of input keywords: 
•  Independent input file (environ.in) 

•  Print outs: summary, timing, debug 
•  Internal debug with an internal verbose=integer keyword 
•  Not (yet) interfaced with the post-processing (PP) code 



Environ as a self-standing 
library 

•  Designed for arbitrary “external” potentials which need to 
be computed along the SCF (may depend on electronic 
density) 

•  Each physical embedding requires up to three ingredients:  
•  Contribution to the Kohn-Sham potential (in real-space) 
•  Contribution to the total energy 
•  Contribution to the inter-atomic forces 



Available Embeddings 

 
•  Continuum dielectric 
•  External pressure 
•  Surface tension 
•  Periodic-boundary-conditions corrections in real-space 

(especially useful for slabs) 

•  Fixed user-defined distributions of charges 
•  Fixed user-defined dielectric regions 

•  Electrochemical diffuse-layer (in progress) 



External Charges 

•  Classical (fixed) charge 
distributions 

•  Compensate extra charge in 
simulation cell 

•  QM/MM (only electrostatics 
up to now) 

•  Shape given by Gaussian function 
     exp(||x-x0||2/spread2) 
•  Possibility to define multiple 0D-1D-2D 

charges 



Dielectric regions 

•  Solvent exclusion regions 
•  Reduce complexity of systems 

(substrates effects, interfaces, 
etc.) 

•  Shape given by complementary 
error function: 

     erfc((||x-x0||-width)/spread) 
•  Possibility to define multiple 

0D-1D-2D regions 
•  At the intersection, input orders 

count 
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Using SCCS 

•  Alkyl-growth catalysis (M. Montemore, O. Andreussi, 
J. Medlin, "Hydrocarbon Adsorption in an Aqueous 
Environment: A Computational Study of Alkyls on 
Cu(111)”, J. Chem. Phys. 145, 074702 (2016) 

•  Oxygen reduction reaction on Pt nanoparticles (L. 
Sementa, O. Andreussi, W.A. Goddard, and A. 
Fortunelli, “Catalytic activity of Pt_38 in the oxygen 
reduction reaction from first-principles”, Catal. Sci and 
Tech. 6, 6901 (2016)) and clean surfaces (A. Fortunelli, 
W.A. Goddard, Y. Sha, T.H. Yu, L. Sementa, G. Barcaro 
and O. Andreussi, “Dramatic Increase in the Oxygen 
Reduction Reaction for Platinum Cathodes from Tuning 
the Solvent Dielectric Constant”, Angew. Chem. Int. Ed. 
53, 1 (2014)  

•  Charge transfer in Cu-amyloids (G. La Penna, C. 
Hureau, O. Andreussi and P. Faller, “Identifying, by 
First-Principles Simulations, Cu[Amyloid-beta] Species 
Making Fenton-Type Reactions in Alzheimer’s 
Disease”, J. Phys. Chem. B 117, 16455 (2013) ) 
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