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Earth’s Climate System
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> Unique composition of gases GHGs:

favors life as we CO2(0.04%) CH,, N,O, water vapor
know it
No GHGs = T =-17°C
o Unique weather & climate Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography

o Trans po rt s h e at, NOAA Earth System Research Laboratory

momentum, and humidity
(hydrological cycle)
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- Transports aerosols and
other contaminants (O,
CFC, NO,, black carbon,

etc.)
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é i/ € External Forcings

CO, & Temperature in Antarctica since 420,000 yr ago
2015: 15°C 400

— Surface Temperature in Antarctica
— Pre-industrial concentrations of CO2
Human contribution to atmospheric CO2

Last
Interglacial
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Thousands of years before present

Last glaciation (Tan = -16°C)
(Petit et al., 1999, Nature, 399, p. 431. Ver Fig. 2.31, W&H, 2006, p. 52)
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Source: IPCC 2007 1850



OBS: Global Air Temperature Anomaly
and Ocean Heat Content

Global average temperature anomaly (1850-2014) 0-2000 m Global Ocean Heat Content
== 3-Month average through Oct-Dec 2015
= Yearly average through 2015

= Pentadal average through 2011-2015

=== Met Office Hadley Centre and Climatic Research Unit

=== NOAA National Climatic Data Center O
= NASA Goddard Institute for Space Studies é
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NOAA/NESDIS/NODC Ocean Climate Laboratory
Updated from Levitus et al. 2012
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Radiative Forcings in the Atmosphere (Watts/m?)

Processes

ANTHROPOGENIC

- GHGs
- Land-use change
- Tropospheric Ozone

NATURAL

- Solar radiation
- Volcanoes
- Water vapor

Attribution to climate change

Natural

Human activities

processes

Radiative Forcing Terms

Radiative forcing of climate between 1750 and 2005
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Figure SPM.2. Giobal average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO,), methane
(CH,4), nitrous oxide (N,O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of
the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also

(AR4 WG1, IPCC 2007 — Sci Basis)




CLIMATE CHANGE

Perturbation of the Earth’s climate due to

Human Activity:
Population growth,
Industrial development =»
Land-use change, and
Fossil fuel burning

NATURAL.:
Solar radiation,
Tectonic plates,

Volcanism,

El Nino, Decadal
Oscillations...




“Weather is what we feel right now”

Climate: Atmospheric phenomena that occur from one
month to much longer time periods. It is the average weather
In a place over more than thirty years.

“Climate is what we expect”



Scales of Variability of Weather and Climate

Heat Wawes, Droughts Decadal Variability
® ug eDroughts & A ,1. | 414 ¥ (PDO, AM
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Understanding of the effect of climate change on event type

Attnbution of Extreme Weather Events in the Context of Climate Change
'Mational Academy of Sciences 2016
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Atmospheric Circulation

Subpolar Polar high

Ferrel Cell:
Thermally indirect
circulation

Jet Stream

—

Hadley Cell: Direct
circulation
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Surplus Heat Energy Transferred
By Atmosphere And Oceans “
.
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Annual Temperature Range

Large seasonal contrasts =» Rossby and planetary waves
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Thermodynamic Equation

Local change T = Horiz ADV + vertical ADV  + radiative + convective diabatic heating

Warming/diabatic dissipation

= Sigma (Static Stability):
= + Stable, - unstable, 0 neutral

ascent
and
precipitation

L
MIDLATITUDES: Horiz ADVECTION of Temp dominates S ;/ 7k

TROPICS: Vert ADV dominates (w o = compression
expansion). Local change and horiz ADV
are small from day to day. Easterly waves =




©The COMET Program



Semipermanent Highs and Lows
January SLP

See Fig. 1.18, Wallace and Hobbs, 2006, p. 17



Semipermanent Highs and Lows
July SLP
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See Fig. 1.19, Wallace and Hobbs, 2006, p. 17




January Precipitation Climatology 1998-2015, TRMM

Figure from George Kiladis



July Precipitation Climatology
1998-2015, TRMM
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Figure from George Kiladis



Figure from George Kiladis



January and July Precipitation (mm)
derived from CMAP

Fig. 1.25 January and July climatological-mean precipitation. [Based on infrared and microwave satellite imagery over the
oceans and rain gauge data over land, as analyzed by the NOAA National Centers for Environmental Prediction CMAP project.
Courtesy of Todd P. Mitchell.]

Fig. 1.25, Wallace & Hobbs, 2006, p. 20.



Inverted troughs

aSa(;‘eJI(

precipitation

subsidence

5-10km

2 km 4-5 km

FRICTION LAYER




http://apollo.lsc.vsc.edu/classes/met130/notes/chapter15/graphics/ATL_WAVES VIS.gif



EAST - WEST (WALKER) CIRCULATION ALONG EQUATOR High
tropospheric

isobaric
surface

Low
tropospheric
isobaric

e € | ow level
Easterlies

the tropical
climate is  [Reseit
coupled i
(+ feedback)



II-Iigh cloud fraction gdeep convection) and surface IWinds

150°E 180° 150°W 120°W

and surface winds
| |

20°S

120°E 150°E 150°W 120°W

——= 10x1072 N m~2

(Reynolds SST, ISCCP high clouds, Quikscat winds)

In the tropics,
convection coincides with
warm SST and
surface wind convergence.

All three define the
West Pacific warm pool
and the Intertropical
Convergence Zone

(ITCZ).

East Pacific Cold Tongue
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BON == S
5584 an STRF200 (m? s-1)
(STRF = ¥ = gz/f)

L4

(Cavazos and Rivas, 2004)
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Figure from
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Subtropical Westerly Jet during El Nifio




The Madden-Julian
Oscillation (MJO) and
Kelvin Waves

The MJO is also referred to as
the 30-60 day or 40-50 day
oscillation and is the main
intraseasonal/intra-annual
fluctuation that explains
weather variations near the
equatorial regions.

It may also affect weather
systems in the extratropics,
such as the west coast of the
U.S. in winter. In its simplest
form, the MJO consists of
coherent variations

Approximate 1 Month Sequence

Madden - Julian Oscillation
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Atmospheric Kelvin Waves and the MJO

Life cycle of the MJO during boreal summer (48 days)
OLRan (W m2) every 3 days

24 16

Convection

http://envam1.env.uea.ac.uk/met_ocean_climate.html (Matthews 2000)
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Warm Pool: SST > 28°C
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(a) Large AWP (¢) 14 Large Warm Pools
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http://www.aoml.noaa.gov/phod/research/tav/awp/



(a) Atlantic multidecadal variability index (c) Pacific decadal variability index
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NAO*: Positive Phase of the NAO NAO’: Negative Phase of the NAO

The two extreme phases of the North At-
lantic Oscillation (NAO) and some climatic

impacts. Courtesy of Lamont Doherty @
Earth Lab./NOAA). AV/D1/001




Teleconnections of the North Atlantic Oscillation
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Figure 2A. The North Atlantic Oscillation (NAO). Its "high index" state is shown above, this corresponds to
particularly high atmospheric pressure over the Azores, an intense low over Iceland. Ocean winds are stronger
and winters milder in the eastern U.S. When the NAO index is low, ocean winds are weaker and the U.S.
winter more severe. Changes in ocean temperature distributions are also observed. (lllustration by Fritz Heide

& Jack Cook, WHOI)
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