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Societal Motivation

W&C at different time and space scales %%z}
produce catastrophic losses of life and
destruction of infrastructures and properties
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N
The IAS region is home for more than
one hundred million people; some
countries are among the poorest in
the Americas, and in the world

Small countries are particularly
vulnerable: Grenada s losses of
US$919 as a result of hurricane Ivan
IN 1994 were equal to 2.5 times its
gross domestic product (Wahlstrom
2009)
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. Rationale (1AS)

. Vulnerability to climate variability
Floods and Drought, Tropical Cyclones, Impacts on Water
Resources and Ecosystems

. Nexus between IAS and North and South America, and for the
Pacific and Atlantic (American Monsoon System)

. Climatic impacts on geochemical and ecological systems

. Rich climatic phenomena: diurnal to multi-decadal time scales

. Ideal location for studying air-land-sea interaction

. Large biases in global climate models to capture climate features

. Need for capacity building in the region



2. Background and issues I: Local, regional variability and some processes



2.1 Regional rainfall variability (Mid Summer Drought, Dry Corridor)
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FIG. 2. Precipitation (black solid line), maximum temperature (gray

solid line), and minimum temperature (dotted line) biweekly clima-
tologies for Oaxaca, Mexico (17°N, 97°W).
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The VI was calculated as: VI, = {(P,,, = P,) / P}, where k =1,..., M. M is the total number of months
in record in chronologi gek e, P, is the precipitation for a given month k, and P, is the mean annual rainfall
for the station estimateg esnumber of years in record. (AR
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Interannual variability of the Mid Summer Drought (MSD) at (a) Barbacoa in Nicaragua, and (b)
Usulutan in EI Salvador, both in the Pacific coast of Central America. The Variability Index (V1) is

defined in the text (section 4.2.).



2.2 Western Hemisphere Warm Pools (WHWP)
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Western Hemisphere Warm Pool Area Anomaly Index
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Anomaly time series of the WHWP area surrounded by the 28.5 °C isotherm. The series Is
expressed as a percentage of the climatological mean area for July. The July values of the
five largest anomalies are indicated by the blue diamonds, and the July values of the prior
years by green circles. Years of major ENSO warm events are also marked (From IASCLIP,
VAMOS 10, Chile, 2008).
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2.3 Caribbean (Intra Americas) Low-Level Jet (CLLJ, IALLJ,
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Time—longitude cross section of monthly mean wind speed (m/s) at 925 hPa averaged
from 12.5 to 17.5°N from Reanalysis [Amador 2008, ANYAS].
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Vertical profile of monthly mean wind speed (ms-1) averaged from 12.5 to 17.50N for (a)
February and (b) as in (a) but for July from Reanalysis [Amador 2008, ANYAS].
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13 July 2001 (12Z) / Observing site: 19°N 81°W
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Observed profile of the
wind speed (solid line)
and direction (dashed line)
during the third phase of
the Warm Pool Climatic
Experiment (In Spanish,
Experimento Climatico en
las Albercas de Agua
Céalida, ECAC-3) over the
Caribbean Sea, on 13 July
2001 at 12Z near 19° N
81° W, just to the north of
the IntraAmericas jet
mean core position at 15¢
N. (From Amador et al
2005).
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PACS-SONET data. Table 2 contains the station characteristics and periods used.
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2.4 Atmospheric rivers
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Figure S1. a) SSM/I precipitable water (cm) and b) ERA-Interim vertically-integrated water
vapor transport (kg m s; color shadings with vectors superimposed) fields associated with
an AR rooted in the eastern tropical Pacific that impinged the Baja Peninsula in Mexico and
portions of the Southwestern United States during 30 November 2007 (Rivera 2016).



2.5 Tropical cyclones (TC) The presence of

1- The Western Hemisphere Warm Pools in the IAS

2- The annual and inter-annual variability of the CLLJ (Amador, 2008) and,

3- The regional moisture transport by this circulation (Duran-Quesada et al., 2010), provide
favorable conditions for tropical cyclone (TC) development. Easterly waves, tropical waves
and other tropical disturbances associated with strong convective activity are often the
precursors of TCs. These factors, among others, make the IAS, one of the most active regions

In the world, as far as the eneratlon of troplcal cyclones is concerned.

1980-2000

& D/n7500/fig_tab/509290a F1.html#close

http://sedac.ciesin.columbia.edu/data/sét/ndh-cyclone-hazard-frequency-distribution
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A good example of variability of phenomena in the IAS region is Major Hurricane
Otto in November 2016.

The late-season hurricane set several historical records.

When Otto became a hurricane at 1800 UTC 23 November, it surpassed by one day
Hurricane Martha of 1969 as the latest hurricane formation in a calendar year in the
Caribbean Sea. Otto became the strongest hurricane so late in the year, the latest
hurricane on record to be located in the Caribbean Sea, and Otto’s landfall on 24
November is the latest hurricane landfall in the Atlantic basin within a calendar year.

Otto’s landfall i1s also the southernmost hurricane landfall in Central America,
surpassing Hurricane Irene (1971), which also made landfall in southern Nicaragua
but about 25- 30 n mi north of where Otto crossed the coast.

Otto Is also the only known hurricane to move over Costa Rica (see listed reference,
Brown 2017).



Lightning activity associated with
° .4 Hurricane Oftto showing the
o northern rain-bands  moving
| | westward from 04.00 to 04.59

| dof o GEEI ° | - UTC (blue open circles), from
******************* T 06.00 to 06.59 UTC (green open
| P s circles) and from 08.00 to 08.59
UTC (red open circles). Yellow

triangles represent the approximate
| | o Rk | | ~westward track of Otto at 04.00,
***** ) 06.00, and 08.00 UTC estimated
? ? SRS ? ? - from the National Hurricane

ffffffff Center best track information. patais

| from the WWLLN global data base downloaded at the
N Center for Geophysical Research WWLLN station,
‘ I

University of Costa Rica
90 — ‘ [ . ‘
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(http://webflash.ess.washington.edu/).




3. Background and issues Il: regional to global influences on IAS climate



Regional moisture sources and sinks
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33N'J ' k : Figure 9. (a) Precipitation (mm) distribution for
30N+ & July (CRNO73 data, [45, 56]), and (b) pattern of
27N wind divergence-convergence (10-6/ s) at 925
24N-’ | hPa for July from Reanalysis [68]. Amador (2008).
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Figure 11. July LTM (1958-1999) during a warm

AN
1 VoL oy ENSO event (El Nino) for (a) wind anomalies
SONT v\ N> (ms-1) at 925 hPa, and (b) precipitation
278 v N » | gnomalies (mm). Amador (2008).
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33N rosoeoeos NN Figure 12. As in Figure 11 but, for a cold
30N < aon M ENSO event (La Nifa). Amador (2008).
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4. Final remarks (Some key Issues)



- ———————— - Western Hemisphere
- Warm Pool (WHWP)

7
7’

(2)What “are the mechanisms by which the

_-WHWP influences precipitation in the 1AS
region?

(b)What are the mechanisms for the
variability of the WHWP?

(c) How well can the WHWP be reproduced
by ocean models?

(d) How does the warm pool influence
hurricanes?

Seasonal distributions of SST for the tropical WHWP: (a)
Mar, (b) Apr, (c) May, (d) Jun, (e) Jul, (f) Aug, (g) Sep, and
(h) Oct. The shading and dark contour represent water
warmer than 28.5°C (Amador et al. 2006).




Upper panels: Correlation of northward moisture flux across the Gulf of Mexico with
CMAP precipitation (a) and sea surface temperature (b), from Mestas-Nuiiez et al.
(2007). Lower panels: Regression of NCEP reanalysis precipitation (c) and ERA
reanalysis precipitation (d) on summer precipitation over the Great Plains (box
area), from Ruiz-Barradas and Nigam (2005).
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(c) How well do global and regional models reproduce the = e
2 3 4 & § b i3 El 10 11 1z m/

low-level jets? —

(d) What are the major uncertainties and problems with
reanalyses?

(e) What are the linkages between the IAS and the Pacific?
IALLJ and Choco Jet?



Multiscale interaction :The Mid Summer drought (MSD)

800
701 Annual cycle of pregipitation in
600 +
500 +
400 +
300 +

Interannual variability of the midsummer drought in
Central America and the connection with sea surface

temperatures, 2016. T. Maldonado, A. Rutgersson, E. Alfaro, J. A. Amador, 200 ¢
and B. Claremar. AdV. In Geophysics. 103
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(c) cCm3-\TRMM

Land-air-sea interaction " /
(a) How does land affect surface and low- |, Py

e Yy
level pressure distributions? - TN
(b) Why do many, if not most, GCMs o8 { _ Q "
misrepresent the spatial distribution of e o I
precipitation in the 1AS region? (a) What are the relative importance of

ITCZ, SST, IALLJ, land effects, and
related local atmospheric circulation
In the MSD and its inter-annual
variability?

(b) What are the typical errors iIn
| global and regional models in their
EECEEFFIEEI simulation and prediction of the MSD?

Biweekly climatology of precipitation (black solid line), maximum
temperature (gray solid line), and minimum temperature (dotted line)
for Oaxaca, Mexico (17.8°N, 97.8°W). (From Magana et al. 1999)

Mid-summer drought (MSD)
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Key Issue
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Effect of African aerosols

-~ =

Modulation of rainfall?

A massive sandstorm blowing off the
northwest African desert has blanketed

i eastern Atlantic Ocean wi
¥ of Saharan sand. The massive nature of this
particular storm first seen in this SeaWiFS
image acquired on Saturday, 26 February 2000
when It reached over 1000 miles Into the Atlantic.
These storms and the rising warm air can lift dust
15,000 feet or so above the African deserts and then
out across the Atlantic, many times reaching as far as
the Caribbean where they often require the local weather i
services to issue air pollution ales
in San Juan, Pue uRlco

to the increasing frequency ai
events. Additionally, other studies suggest that Sahalian
Dust may play a rcle in determining the frequency and
hurricanes formed in the eastern Atlantic Ocean
hirdworld.org/role.html)
the SeaWiFS Project. NASA/GSFC and ORBIMAGE [

Satellite image (05/28/1999) showing dust
covering the southern Caribbean,
(From NOAA, Prospero and Stone, 1997)

What is the relationship between aerosols

and seasonal climate variation in the 1AS?
13



Elements to consider....

« Quantification of model errors and identify their sources, quantification of
errors and uncertainties in (global and) regional data assimilation products

« Empirical analyses of existing data for statistical relationships in observations

* Model sensitivity and predictability studies (model improvement)

* Process studies

e Data mining and assimilation (a regional issue!!!)

» Coordinate climate assessment/prediction efforts (regional collaboration)

* Education component (virtual courses?)
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Predictability of climate variability in the IAS region are affected
by both remote (e.g., ENSO, NAO, TAV) and local (warm pools,
land, EW, LLJ) factors;

High impact weather (e.g., TC, flood, severe storms) play critical
roles in local manifestations of climate variability and change in
the IAS region;

Easterly waves-mean flow interaction is crucial to understand
climate in the 1AS and cyclone formation;

Air-land-sea interaction and tropical-extratropical interaction are
the thrusts of climate variability in the IAS region.

Multiscale interaction is crucial to rainfall variability in the IAS
region. 17
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