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Earth System Models

« A climate model is a mathematical representation
of the observed real world

Purpose: To obtain a theoretically or practically
manageable representation of the Earth system by
reducing its complexity and removing details that are
not relevant for specific consideration.

Climate models use quantitative methods to
simulate the interactions of the atmosphere, oceans,
land surface, and ice

Courtesy: Prof. Guy Brasseur (2011)




Modeling the Earth System
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Earth System Modeling:
Some concrete Objectives

* Provide a predictive capability for the Earth System
on time scales from days to seasons to decades
* Go beyond the physical climate system to include
a predictive capability for marine and terrestrial
ecosystems
* Require development of an assimilative approach
to the coupled Earth System.
* Include an assessment of today’s suite of Earth
System observations within a predictive context and
those observations needed to be sustained routinely
* |dentify new observations and algorithms needed
to advance prediction skill

ESSL - The Earth & Sun Systems Laboratory

Courtesy: Prof. Guy Brasseur (2011)




Earth System Modeling:
Some concrete Objectives

* Include a predictive capability for disease vectors

* Focus on regional aspects (coastal region, megacities,
tropical forest, Arctic, et and link with integrated field studies).
* Include agricultural forecasts

* Education and training in the development and use of such
component

* Develop an advanced forecasting capability indicating
aspects of the Earth system particularly vulnerable and prone
to disruption on lead times of weeks to seasons to decades

* Provide policy neutral information on the implications and
ramifications of environmental prediction.

Courtesy: Prof. Guy Brasseur (2011)




Timeline of Climate Model Development
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From Weather Modeling to
Climate Modeling

Richardson (1922)

_ An artist view of recent climate models
The weather machine (L. Fairhead /LMD-CNRS)

ICTP Workshop on the Science of Climate Change, Antigua, 15 March 2017
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Before the Age of Computing
In 1922, Lewis Fry Richardson, a British mathematician and
meteorologist, proposed an immersive giant globe to
numerically forecast weather. This “factory” would employ

64,000 human computers to sit in tiers around the interior
circumference of a giant globe.
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NUMERICAL CLIMATE MODELLING: A REVIEW 1079 N
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Figure 5. Development of computer power sinoe 1950, Speads are shown in millions of instructions per second (MIPS) up to 1974

and in millions of foating point operations per second (MFLOPS) from 1975 onwards. The rate of increase is exponential and

shows no signs of tailing off (modified from A4 Climate Modelling Primer, h\ K McGutlic and A Henderson-Sellers, 1997,
reproduced by permission of John Wiley & Sons. Litd)
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Weather Prediction compared with Satellite

Observations
ECMWEF predictions and Meteosat observations

Meteosat 9 IR10.8 20080525 0 UTC ECMWF Fc 20080525 00 UTC+0h:

ICTP Workshop on the Science of Climate Change, Antigua, 15 March 2017
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Courtesy: Prof. Guy Brasseur (2011)
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Grids: Lat-long, Cubed-Sphere,icosahedral
(hexagons and pentagons)

ICTP Workshop on the Science of Climate Change, Antigua, 15 March 2017



Adaptive Grid to highlight processes in a
given region (From T. Ringler, LANL)

@ QO 0957
NS

Figure V.1. A variable resolution grid
based on a Spherical Centroidal Voronoi
Tesselation.

ICTP Workshop on the Science of Climate Change, Antigua, 15 March 2017




Feedbacks

in Climate Processes

Positive feedback
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Courtesy: Prof. Guy Brasseur (2011)
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Introducing Life into Earth System Models

Theoretical bases for modelling the physical system are

much firmer than for natural ecosystems.

The challenge is:

To develop a modelling system for the biosphere
broadest terms, which can represent in functional form

how it is influenced by, and itself influences, human
activities and the climate system

To establish a modelling framework that allows such a

modelling system to be fully coupled with the physical
system.

Courtesy: Prof. Guy Brasseur (2011)



Example of Individual Based Models for representing
ecosystems and Agent Based Models for representing human

behaviour -
7.7 UNIVERSITY OF
4P CAMBRIDGE
v Department of Geography
Driving forces of the
natural environment
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Trees are represented by an individual
based model that represents all trees over 5
years in age over the study region. Over
time the trees grow, and are cut down by
people, represented as individual agents,
each with their own unique behavior.
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Climate/Chemistry/Ecology/Hydrology

Based on P. Cox, 2004
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The Brazilian ESM - BESM development strategy:
One-Model: From Weather Forecasting
to Global Climate Change Scenarios

Extreme Events Hit Brazil
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BESM Component Models
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BESM
Climate Forecast System
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Conceptual Ocean-Atmos-Hydro
Coupled Model Suite
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BESM Atlantic ITCZ simulations
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BESM version 2.7 — under construction

SPECTRAL DYNAMICS: Semi_Lagrangian (<=25km) Eulerian (>25km)

S-L RADIATION: RRTMG PBL: dry MY2.0; moist Park
Deep CONVECTION Grell Cloud MICROPHYSICS: Ferreir-1M
CHEMIMSTRY: <MOZART> AEROSSOLS: <MAM>

ATMOSPHERE
FMS
COUPLER
LAND OCEAN
VEGETATION: SSiB, LM3 MOMS5: KPP <GISSVM>
HIDROLOGY: THMB <HAND> MOMS5: TOPAZ, SIS
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BESM2.5 CMIP5 Runs 1850-2100

Air Temperature at 2
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Atlantic Meridional Mode
SST, Taux, Tauy Joint EOF1

ERSSTv4 (9.3%) BESM2.5 historical run (11.4%)

& -0.015

-0.02

-0.025

-0.03

S. Veiga et al (2017) in preparation
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| BESM

Qs Brazian Earth System Model

BESM CMIP5 scenarios

available through ESGF at:
https://dm2.cptec.inpe.br/projects/esgf-inpe/
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BESM Guest Users
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http://besm.ccst.inpe.br/produtos/
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Competing demands of resolution, complexity,
uncertainty, and long integrations in Climate System Modelling:

Complexity
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Resolution

Resolution
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Courtesy: Prof. J. Shukla



Cooperation:
a superior form of evolution.
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Thank you for your attention

paulo.nobre@inpe.br
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