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Plan

Goal:
Understanding 4d N = 4 SYM with varying coupling, i.e. D3-branes in
F-theory, via M5-branes on elliptic three-folds.

I. D3s in F/M5s in M

II. 4d N=4 SYM with varying coupling and Duality Defects

III. New chiral 2d (0,2) Theories



I. D3s in F/M5s in M



4d N = 4 SYM with varying τ

F-theory is IIB with varying τ , where there is also a self-duality group
SL2Z, which descends upon D3-branes to the Montonen-Olive duality
group of N = 4 SYM.

4d N = 4 SYM has an SL2Z duality group acting on the complexified
coupling

τ =
θ

2π
+ i

4π

g2
, τ → aτ + b

cτ + d
,

ad− bc = 1 and integral. Incidentally: the gauge group G maps to the
Langlands dual group G∨.

Usually, we consider τ constant in the 4d spacetime.

Coming from F-theory, it’s very natural to ask whether we can define a
version of N = 4 SYM with varying τ , compatible with the SL2Z action.

⇒ Network of 3d walls, 2d and 0d duality defects in N = 4.



Duality Defects

Variation of τ without singular loci are trivial. So the interesting physics
will happen along the 4d space-time where τ is singular.

⇒ around such singular loci, τ will undergo an SL2Z monodromy.

Usual lore: τ as the complex structure of an elliptic curve Eτ
⇒ Lift to M5-branes

⇒ Setup: elliptic fibration over the 4d spacetime with N = 4 SYM in the
bulk and duality defects (2d), which can intersect in 0d.



M5-brane point of view

{6d (2,0) theory on Eτ ×R4} = {N = 4 SYM on R4 with coupling τ }

So the setup that we will study is:

{6d (2,0) theory on a singular elliptic fibration}
= { 4d N = 4 SYM with varying τ and duality defects}

B2
M3

Y3

X4



Setups:

# Setup 1:
τ varies over 4d space (with B. Assel)
⇒ Y3 elliptic three-fold ⊂ elliptic CY4

# Setup 2:
τ varies onver a 2d space: 2d (0, p) scfts (with C. Lawrie, T. Weigand)
⇒ D3s on curves in the base of CYn.

In both setups: M5-brane point of view will be instrumental.



Advantages of the M5-brane point of view

Various advantages in considering the M5-branes on elliptic surface Ĉ
instead of D3 on C:

# 3-7 modes: Automatically included as chiral modes from B2 reduced
along (1,1) forms from singular fibers.

# Topological Twist: 4d N = 4 with varying τ on C requires topological
duality twists (TDT) [Martucci]
Will see: corresponds to M5-brane on Ĉ with standard ‘geometric’
topological twist. [Assel, SSN]

# Non-abelianization:
Bonus symmetry, and so TDT, exists for U(1) N = 4 SYM From
M5-brane: 6d→ 5d + non-abelianization approch exists see e.g. [Kugo],

[Cordova, Jafferis], [Assel, SSN, Wong], [Luo, Tan, Vasko, Zhao]

Similar considerations apply to the M2-brane duals, which give rise to a
1d N = 2,4 SQM. Non-abelianization possible there using BLG theory.
For K3: [Okazaki]



The 6d (2,0) Theory

# Lorentz and R-symmetry:

SO(1,5)L × Sp(4)R ⊂ OSp(6|4)

# Tensor multiplet:

BMN : (15,1) with selfdualityH = dB = ∗6H

Φm̂n̂ : (1,5)

ρm̂ : (4̄,4)

# Abelian EOMs:

H− = dH = 0 , ∂2Φm̂n̂ = 0 , /∂ρm̂ = 0 .



II. 4d N = 4 SYM with varying coupling and
Duality Defects

[Assel, SSN]



M5-branes on Elliptic 3-folds

An elliptic fibration Eτ → Y3→ B (Y not CY) has metric

ds2
Y =

1

τ2

(
(dx+ τ1dy)2 + τ2

2 dy
2
)

+ gBµνdb
µdbν .

Pick a frame ea for the base B and

e4 =
1
√
τ2

(dx+ τ1dy) , e5 =
√
τ2dy .

Let Y3 be a Kähler three-fold, so the holonomy is reduced to U(3)L:

SO(6)L→ U(3)L

4→ 31 ⊕ 1−3 .

On a curved space: Killing spinor equation with∇M connection

(∇M −ARM )η = 0

R-symmetry background⇒ constant spinor wrt twisted connection.



M5-branes on Elliptic 3-folds: Twist

# Standard geometric twist: U(1)L with U(1)R

Sp(4)R → SU(2)R ×U(1)R

4→ 21 ⊕ 2−1 .

# Topological Twist

TU(1)twist = (TU(1)L − 3TU(1)R)

implies that the supercharge decomposes as

SO(6)L × Sp(4)R → SU(3)L × SU(2)R ×U(1)twist ×U(1)R

(4,4) → (3,2)−2,1 ⊕ (3,2)4,−1 ⊕ (1,2)−6,1 ⊕ (1,2)0,−1

⇒ (1,2)0,−1 give two scalar supercharges



Now specialize the 6d spacetime to be Eτ → Y3→ B2 with coordinates
x0, · · · , x5, and (x4, x5) the directions of the elliptic fiber.

The spin connection along U(1)L is

ΩU(1)L = −1

6
(Ω01 + Ω23 + Ω45) ,

and the twist corresponds to turning on the background gauge field

AU(1)R = −3ΩU(1)L .

The base B2 is Kähler as well, so the holonomy lies in
U(1)` × SU(2)` ⊂ U(3)L with the U(1) generators given by

TL = T` + 2T45

Key: SO(2)45 rotation is along the fiber, and the non-trivial fibration is
characterized through a connection in this SO(2)45 direction and the spin
connection is

AD = ωD = −∂aτ1
4τ2

ea



Duality Twist

This means: from the 4d point of view the topological twisting requires

AD = ωD = −∂aτ1
4τ2

ea

The associated U(1) is in fact what is known as the ”bonus symmetry” of
abelian N = 4 SYM [Intrilligator][Kapustin, Witten] and we recovered the
duality twist of N=4 SYM [Martucci] from the M5-brane theory.

The bonus symmetry exists for the abelian N = 4 SYM and acts as follows
on the supercharges for ab− cd = 1

Qṁ → e−
i
2α(γ)Qṁ

Q̃m → e
i
2α(γ)Q̃m

where eiα(γ) =
cτ + d

|cτ + d|

φî → φî , λṁ+ → e−
i
2α(γ)λṁ+ , λm− → e

i
2α(γ)λm−

F (±)
µν → e∓iα(γ)F (±)

µν F (±) ≡
√
τ2

(
F ± ?F

2

)



Duality Twisted N = 4 SYM from 6d

6d topological twist + dim reduction to B gives an N = 4 SYM with
varying τ over a Kähler base B

S
U(1)
total =

1

4π

∫
B

τ2F2 ∧ ?F2 − iτ1F2 ∧ F2

+
8

π

∫
B

∂̄ ? ψα(1,0) χ(0,0)α − ∂ψα(1,0) ∧ ρ(0,2)α − ∂A ? ψ̃α̇(0,1) χ̃(0,0)α̇ + ∂̄Aψ̃
α̇
(0,1) ∧ ρ̃(2,0)α̇

− 1

4π

∫
B

∂̄ϕαα̇ ∧ ?∂ϕαα̇ + 2∂̄Aσ(2,0) ∧ ?∂Aσ̃(0,2)

and non-abelian extension (see paper with Ben Assel).

The twisted fields are form fields and sections of the AD bundle specified
by the charges:

F
(±)
2 ϕαα̇ σ(2,0) σ̃(0,2) χα(0,0) χ̃α̇(0,0) ψα(1,0) ψ̃α̇(0,1) ρα(0,2) ρ̃α̇(2,0)

L
q/2
D ∓2 0 −2 2 0 −2 0 2 0 −2



Sna =

∫
B

8

π
√
τ2

Tr
[
−

i

16
f(0,0)[σ(2,0) ∧ σ̃(0,2)]− [ψ̃α̇(0,1) ∧ ?ψ

α
(1,0)]ϕαα̇

+
1

4
[ψ̃α̇(0,1) ∧ ψ̃(0,1)α̇]∧ σ(2,0) −

1

4
[ψα(1,0) ∧ψ(1,0)α]∧ σ̃(0,2)

+ [χ̃α̇(0,0) ∧ ?χ
α
(0,0)]ϕαα̇ + [ρ̃α̇(2,0) ∧ ρ

α
(0,2)]ϕαα̇

− [χ̃α̇(0,0), ρ̃(2,0)α̇]∧ σ̃(0,2) + [χα(0,0), ρ(0,2)α]∧ σ(2,0)
]

+
1

16πτ2
Tr

[
2[ϕαα̇, σ(2,0)]∧ [ϕαα̇, σ̃(0,2)] + [ϕαα̇,ϕβα̇][ϕ

ββ̇ , ?ϕαβ̇ ]

+ [ϕαα̇,ϕββ̇ ][ϕβα̇, ?ϕαβ̇ ] + [σ(2,0) ∧ σ̃(0,2)] ? ([σ(2,0) ∧ σ̃(0,2)])
]
,

Here A = a(1,0) + a(0,1) and dA = F2 implies

f(2,0) =
√
τ2∂a(1,0) , f(0,2) =

√
τ2∂̄a(0,1) , f(1,1) + f(0,0) ∧ j =

√
τ2(∂̄a(1,0) + ∂a(0,1))

So far: this describes the ‘4d bulk’ theory on B2 with varying τ . Loci of
interest: singularities in the fiber, which give duality defects.



Singular Elliptic Curves and Defects

We can describe the elliptic fibration by Eτ in terms of a Weierstrass
model

y2 = x3 + fx+ g

f and g sections K−2/−3
B and the singular loci are

∆ = 4f3 + 27g2 = 0 .

Close to a singular locus z1 = 0, τ ∼ i log z1 + · · · with a branch-cut in the
complex plane z1. For the M5 this is relevant along ∆∩B:

z1

C

z2

1=0
τ γτ

W
γ

B2



Gauge theoretic description of walls and defects

Locally we can cut up B = ∪Bi and Wij 3d walls between these regions,
where τ has a branch-cut.

Define
FD = τ1F + iτ2 ? F

then the action of γ ∈ SL2Z monodromy on the gauge field is

(F
(j)
D , F (j))

∣∣∣
Wij

= γ(F
(i)
D , F (i))

∣∣∣
Wij

This maps the gauge part SF = − i
4π

∫
B
F ∧ FD to itself, except for an

offset on the 3d wall (see also [Ganor])

SγWij
= − i

4π

∫
Wij

(
A(i) ∧ F (i)

D −A
(j) ∧ F (j)

D

)
E.g. γ = T k this is a level k CS term.



Chiral Duality Defects

The wall action Sγ is neither supersymmetric nor gauge invariant. At the
boundary of the wall ∂W = C this induces chiral dofs: e.g. for the T k wall
this is simply a chiral WZW model with βi, i = 1, · · · , k, with ?2dβi = idβi

[Witten]

SC =
k∑
i=1

− 1

8π

∫
C
?2(dβi −A)∧ (dβi −A)− i

4π

∫
C
βiF

Under gauge transformations A→ A+ dΛ, βi→ βi + Λ this generates∫
FΛ which cancels the anomaly from the 3d wall.



Duality Defects from M5-branes

From the elliptic fibration and M5-brane we can apply this to any γ:

τ1 τ3

τ2

B

Singular fibers resolve into collections of S2 = P1s, intersecting in affine
ADE Dynkin diagrams.
Each resolution spheres gives rise to an ω(1,1) form, along which we can
expand B

dB =
k−1∑
i=1

(
∂zbidz ∧ ωi(1,1) + ∂z̄bidz̄ ∧ ωi(1,1)

)
Imposing self-duality, and redefining the basis of chiral modes bi with the
”section” of the elliptic fibration, identifies these modes with βi.



Intersections of Surface Defects: Point-defects

These chiral (0,2) supersymmetric defects can intersect at points

Pαβ = {zα = zβ = z = 0} = Cα ∩ Cβ = B ∩∆α ∩∆β

Geometrically: Kodaira fiber P1s become further reducible P1
i → C+ +C−

C
-

B

C
+

CPC'

intersection

B with Δ

Duality defects form network and at intersections:(∫
C+

+

∫
C−

)
B =

∫
P1
i

B → β+ + β− = βi

Such point-intersections are generic e.g. in CY4.
⇒ 4d-3d-2d-0d Matroshkas



Example:

D3-branes wrapping B2 intersecting discriminant loci in

∆1 ∩B = C ↔ SU(n) ∆2 ∩B = C̃ ↔ SU(m)

E.g. fibers are given in terms of simple roots Fi, i = 0,1, · · · , n− 1 and F̃j ,
j = 0,1, · · · ,m− 1 and there are chiral modes localized on each curve

C : βi , i = 0,1,2,3,4 , C̃ : β̃i , i = 0,1,2

The fibers in codim 2 split as, e.g. for SU(5) and SU(3): into weights of
the bi-fundamental:

C±ij ≡ ±(Li + L̃j) .



α1 α4α3α2

α1
~

α2
~

C15
-~C14

+~

C23
-~C22

+~

C31
-~

C :



F0 → F ′0 +C−
3̃1

F1 → F1

F2 → C+
2̃2

+C−
2̃3

F3 → F3

F4 → C−
1̃5

+C+
1̃4

C̃ :


F̃0 → F̃ ′0 +C−

1̃5

F̃1 → C+
1̃4

+ F3 +C−
2̃3

F̃2 → C+
2̃2

+ F1 +C−
3̃1



In codim 3 the SU(5) and SU(3) singularities collide at points P = C ∩ C̃
in B: Local coupling along the surface defect to the bulk gauge field

SC ⊃
∫
C

(
k−1∑
i=0

βi

)
FC

gives constraints:(
FC

4∑
i=0

βi

)∣∣∣∣∣
P

= FC

(
β+

3̃5
+ β−

3̃1
+ β1 + β+

2̃2
+ β−

2̃3
+ β3 + β−

1̃5
+ β+

1̃4

)∣∣∣∣
P(

FC̃

2∑
i=0

β̃i

)∣∣∣∣∣
P

= FC̃

(
β+

3̃5
+ β−

1̃5
+ β+

1̃4
+ β3 + β−

2̃3
+ β+

2̃2
+ β1 + β−

3̃1

)∣∣∣∣
P

Locally, this enhances the flavor symmetry of the 2d chiral models to
SU(n+m).



III. New 2d (0,2) Theories
[Lawrie, SSN, Weigand]



D3s on C = M5 on Ĉ

Consider now N = 4 SYM on R1,1 ×C, with τ -varying over curve C:

SO(1,4)L → SO(1,1)L ×U(1)L

and to preserve supersymmetry, consider U(1)R ⊂ SU(4)R:

SU(4)R →

SO(4)T ×U(1)R CY3 Duality-Twist: (0,4)

SU(2)R ×U(1)R × SO(2)T CY4 Duality-Twist: (0,2)

SU(3)R ×U(1)R CY5 Duality-Twist: (0,2)

Geometric embedding corresponds to D3-branes on C ×R1,1 with

{C ⊂ Bn−1 = Base of the elliptic CYn}
= {6d (2,0) theory on a elliptic surface Ĉ = Eτ → C }

CY3: MSW for elliptic CY [Vafa]



N = 4 Duality Twist as M5 Toplogical Twist

CYn Duality-Twist = Geometric Twist of M5 on Ĉ

CYn Duality-Twist

T twist
C =

1

2
(TC + TR) T twist

D =
1

2
(TD + TR) .

M5-brane Topological Twist: e.g. for CY4 twist

Sp(4)R → SU(2)R ×U(1)R

4 → 20 ⊕ 11 ⊕ 1−1

SO(1,5)L → SU(2)l × SO(1,1)L ×U(1)l

4 → 21,0 ⊕ 1−1,1 ⊕ 1−1,−1

Twist is defined as
T twist,M5 = Tl + TR



Example: CY4-Duality Twist of N = 4 SYM from 6d

SU(2)l × SU(2)R × SO(1,1)L ×U(1)twist ×U(1)R

ρ , Q : (2,2)−1,0,0 ⊕ (2,1)−1,1,1 ⊕ (2,1)−1,−1,−1 ⊕ (1,2)1,−1,0 ⊕ (1,1)1,0,1

⊕ (1,1)1,−2,−1 ⊕ (1,2)1,1,0 ⊕ (1,1)1,2,1 ⊕ (1,1)1,0,−1

Φ : (1,2)0,1,1 ⊕ (1,2)0,−1,−1 ⊕ (1,1)0,0,0

H : (3,1)−2,0,0 ⊕ (1,1)2,2,0 ⊕ (1,1)2,0,0 ⊕ (1,1)2,−2,0 ⊕ (2,1)0,1,0 ⊕ (2,1)0,−1,0 .

Geometric identification

qtwist(KĈ) = −2, qtwist(NĈ/Y4
) = −1



Spectrum of 2d (0,2) from M5 on Ĉ ⊂ CY4

Multiplicity (0,2) complex scalars R-Weyl L-Weyl

h0,0(Ĉ) = 1 Chiral 1 1 −

h0,1(Ĉ) = g Fermi − − 1

h0,2(Ĉ) = g− 1 + c1(B3) ·C Chiral 1 1 −

h0(Ĉ,N
Ĉ/Y4

) = h0(C,NC/B3
) Chiral 1 1 −

1
2
h1(Ĉ,N

Ĉ/Y4
) = h0(C,NC/B3

)− c1(B3) ·C Fermi − − 1

h1,1(Ĉ)− 2h0,2(Ĉ)− 2 = 8 c1(B3) ·C Fermi − − 1



Central Charges

Direct computation from 6d (2,0) or anomalies, on the elliptic surface
Eτ → C times R1,1 (much like in the earlier discussion) yields

cR =3(g+ c1(B3) ·C + h0(C,NC/B3
))

cL =3(g+ h0(C,NC/B3
)) + c1(B3) ·C + 8c1(B) ·C

From the N = 4 with duality twist, the zero modes do not incorporate the
3− 7 modes:

δcdefects
L = 8c1(B) ·C.

In the 6d approach these are automatically incorporated.



Discussion of other cases:

# CY3 Duality twist N = (0,4):

cR = 3C ·CN2
c + 3c1(B) ·CNc+ 6 , cL = 3C ·CN2

c + 6c1(B) ·CNc+ 6

This is dual to M5-branes on elliptic surfaces in CY three-folds, i.e.
MSW-string, Nc = 1 already in [Vafa]. Computation of elliptic genera
see e.g. [Haghighat, Murthy, Vandoren, Vafa].

# CY5 Duality twist: No M5 picture, but M2

cL = 3(g+ h0(C,NC/B4
)− 1) + 9c1(B4) ·C

cR = 3(g+ c1(B4) ·C + h0(C,NC/B4
)− 1)

Application to 2d (0,2) vacua from CY5 compactifications of F-theory
[SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation
requires D3-branes wrapped on curves in the class

C =
1

24
c4(Y5)|B4



BPS-equations and Hitchin moduli space

For τ constant, N = 4 SYM on C ×R1,1 with Vafa-Witten twist, gives rise
to a sigma-model into the Hitchin moduli space, which for the abelian
case is just flat connections [Bershadsky, Johansen, Sadov, Vafa].

In all duality-twisted theories the BPS equations imply

FA =
1

2

(
∂̄A(
√
τ2a)− ∂A(

√
τ2ā)

)
= 0

where the internal components of the gauge field a, ā are
√
τ2ā ∈ Γ(Ω0,1(C,L−1

D ))
√
τ2a ∈ Γ(Ω0,0(C,KC ⊗LD))

In particular, for this abelian setup, the theory is a sigma-model into
U(1)D-twisted flat connections. → duality twisted Hitchin moduli space



Summary and Outlook

Matroshkas:

# M5 on an elliptic three-fold give rise to N=4 SYM with varying τ , a
network of intersecting duality defects ’4d-3d-2d-0d’

# General γ ∈ SL2Z duality defects with (0,2) supersymmetry. Flavor
symmetry dictated by the singular fiber geometry, classify duality
defects, and extend to non-abelian setup [in progress]

# Localization, including defect intersections, e.g. as in [Gomis, Le Floch,
Pan, Peelaers]



2d SCFTs:

# D3s in F-theory on C ⊂ B gives rise to 2d scfts with (0, p) susy. Best
described in terms of dual M5-brane on Ĉ.

# Non-abelian generalization, sigma-model description into
generalized Hitching moduli space:
D3 description so far limited to U(1) gauge group. Non-abelianize
starting from 6d, as in [Assel, SSN]. E.g. C ⊂K3τ get non-abelian
version of the heterotic string.

# M2-branes on C ×R give rise to Super-QM: i.e. twisted version of the
Bagger-Lambert-Gustavsson theory on C.

# AdS/CFT with varying τ :
These 2d (0, p) SCFTs have interesting ”F-theory” AdS-duals, i.e.
varying-τ IIB solutions [Couzens, Martelli, SSN, Wong] (F-theoretic
lift of the 6d N=1 sugra configurations in [Haghigat, Murthy, Vafa,
Vandoren])

AdS3 × S3 ×CY τ3
Similarly: AdS3 solutions for 2d (0,2) theories from CY4 in F-theory.


