F-theory, Mb-branes and
N=4 SYM with Varying Coupling

Sakura Schafer-Nameki

UNIVERSITY OF
OX F O RD European Research Council

Established by the European Commission

Geometry and Physics of F-theory, ICTP, February, 2017

1610.03663 with Benjamin Assel
1612.05640 with Craig Lawrie, Timo Weigand



Plan

Goal:
Understanding 4d N = 4 SYM with varying coupling, i.e. D3-branes in
F-theory, via M5-branes on elliptic three-folds.

I. D3sin F/Mb5s in M
II. 4d N=4 SYM with varying coupling and Duality Defects
[TI. New chiral 2d (0,2) Theories



I. D3sin F/Mbs in M



4d N = 4 SYM with varying 7

F-theory is IIB with varying 7, where there is also a self-duality group
S Ly7, which descends upon D3-branes to the Montonen-Olive duality
group of N =4 SYM.

4d N =4 SYM has an S LsZ duality group acting on the complexified
coupling
0 4w at + b

- — _ % ;
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ad — bc = 1 and integral. Incidentally: the gauge group G maps to the
Langlands dual group G".

Usually, we consider 7 constant in the 4d spacetime.

Coming from F-theory, it’s very natural to ask whether we can define a
version of N = 4 SYM with varying 7, compatible with the SL>Z action.

= Network of 3d walls, 2d and 0d duality defects in NV = 4.



Duality Defects

Variation of 7 without singular loci are trivial. So the interesting physics
will happen along the 4d space-time where 7 is singular.

= around such singular loci, 7 will undergo an SL>Z monodromy.

Usual lore: 7 as the complex structure of an elliptic curve E-
= Lift to M5-branes

= Setup: elliptic fibration over the 4d spacetime with N = 4 SYM in the
bulk and duality defects (2d), which can intersect in 0d.



MS5-brane point of view

{6d (2,0) theory on E, x R*} = {N =4 SYM on R* with coupling 7 }
So the setup that we will study is:

{6d (2,0) theory on a singular elliptic fibration }
={4d N =4 SYM with varying 7 and duality defects}




Setups:

# Setup 1:
T varies over 4d space (with B. Assel)
= Y3 elliptic three-fold C elliptic CY4

# Setup 2:

T varies onver a 2d space: 2d (0, p) scfts (with C. Lawrie, T. Weigand)
= D3s on curves in the base of CYn.

In both setups: M5-brane point of view will be instrumental.



Advantages of the M5-brane point of view

Various advantages in considering the M5-branes on elliptic surface C
instead of D3 on C"

# 3-7 modes: Automatically included as chiral modes from Bs reduced

along (1, 1) forms from singular fibers.

# Topological Twist: 4d N = 4 with varying 7 on C requires topological
duality twists (IDT) [Martucci]
Will see: corresponds to M5-brane on C with standard ‘geometric’

topological twist. [Assel, SSN]

# Non-abelianization:
Bonus symmetry, and so TDT, exists for U(1) N = 4 SYM From
MS5-brane: 6d— 5d + non-abelianization approch exists see e.g. [Kugo],
[Cordova, Jafferis], [Assel, SSN, Wong], [Luo, Tan, Vasko, Zhao]

Similar considerations apply to the M2-brane duals, which give rise to a
1d N = 2,4 SQM. Non-abelianization possible there using BLG theory.
For K3: [Okazaki]



The 6d (2,0) Theory

# Lorentz and R-symmetry:
SO(1,5)r, x Sp(4)r C OSp(6]4)

# Tensor multiplet:
By : (15,1) with selfduality H = dB = *¢H
™. (1,5)
P (4,4)

# Abelian EOMs:



II. 4d N =4 SYM with varying coupling and
Duality Detects

[Assel, SSN]



Mb5-branes on Elliptic 3-folds

An elliptic fibration E, — Y3 — B (Y not CY) has metric

1
ds? = — ((dz 4+ T1dy)® + 13dy?) + g, db*db .

Pick a frame e“ for the base B and

1
4 5
= dx + 1 d = \/Tody .
e 2( + 11dy) € 20Y

Let Y3 be a Kdhler three-fold, so the holonomy is reduced to U(3):

SO(G)L — U(B)L
4 +3,d1_3.

On a curved space: Killing spinor equation with V; connection
(Ve — Axp)n =0

R-symmetry background = constant spinor wrt twisted connection.



Mb5-branes on Elliptic 3-folds: Twist

# Standard geometric twist: U (1) with U(1)r
Sp(4)R — SU(Q)R X U(l)R
4 —2,:P2 1.

# Topological Twist

TU(l)twist — (TU(l)L o 3TU(1)R)
implies that the supercharge decomposes as

SO(6)L X Sp(4)R — SU(3)L X SU(Q)R X U(l)twist X U(l)R

(474> — (372)—2,1 D (372)4,—1 D (172>—6,1 D (172>0,—1

= (1,2)p,—1 give two scalar supercharges



Now specialize the 6d spacetime to be E; — Y3 — By with coordinates

20, ... 2, and (z*, 2°) the directions of the elliptic fiber.

The spin connection along U (1), is

1
6

QU(I)L _ (Q01—|—Q23—|—Q45),

and the twist corresponds to turning on the background gauge field

AVMDr — _3UM)L

The base B, is Kdhler as well, so the holonomy lies in
U(l), x SU(2), C U(3) with the U(1) generators given by

T, =1y + 2145

Key: SO(2)45 rotation is along the fiber, and the non-trivial fibration is
characterized through a connection in this SO(2)45 direction and the spin

connection is

a

47’2



Duality Twist

This means: from the 4d point of view the topological twisting requires

87‘1
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The associated U(1) is in fact what is known as the "bonus symmetry” of
abelian N = 4 SYM [Intrilligator][Kapustin, Witten] and we recovered the
duality twist of N=4 SYM [Martucci] from the M5-brane theory.

The bonus symmetry exists for the abelian NV = 4 SYM and acts as follows
on the supercharges for ab — cd =1

Q" — 6_%a<7)Qm . cr +d
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Qm N G%a(v)Qm |C7' -+ d|
Qﬁ N ¢/’L\7 )\T N 8_504(7))\:?7 )\T_n N G%Q(W))\T
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Duality Twisted N =4 SYM from 6d

6d topological twist + dim reduction to B gives an N = 4 SYM with
varying 7 over a Kadhler base B

1 .
St[c])t(all) = 1 BT2F2 NxFoy —ar1ho N\ Iy

8 q o ! IR’ ~ q ~
+ — / c%up(m) X(0,0)a — 8w(170) N P,2)a — 04 *w(o,l) X(0,0)a + 5A¢(o,1) N P(2,0)é
B
1 _ _
_ / 0 AN*x00aa + 28“40(2’0) A *8/\5(0,2)
4 B

and non-abelian extension (see paper with Ben Assel).

The twisted fields are form fields and sections of the A bundle specified
by the charges:

(:l:> o ~ 1" ~ « T o ~cy
Fy ¥ 72,00 9(0,2) X,) X(0,0) ¢(1,0) ¢(0,1) Po,2) P2,0)
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na 8 ? 3 - .
ST = /B e Tr[— 1—6f(o,0) (02,00 NG(0,2)] — [¢(071> /\*’Lp(l’o)]gpad
1.~ ~ 1. . )
* Z[w(o,m Ado,1yal Ao — ZW(LO) AY1,0)yal NG (0,2)
+ [5(?0,0) A *X((Xo,())]@ozd + [ﬁ(ééQ,O) A p?O,Q)]SOad

B [5(((.)60,0)7ﬁ(2,0)0'é] A &(0,2) + [X?o,o)ap(og)a] A 0'(2,0)]

+

ac -~ ad . 5/3 .
o 2167, 0.0] Alpas: 0] + (07 @pall0 504

+ 0%, 0P [pas xp 05l + [0(2,0) A 0,2)] % ([0(2,0) A G0,

Here A = a1 o) + a(p,1) and dA = F; implies
f2,0) = VT20a1,0y,  flo2) = VT20a0,1),  fa,) + fo0 AJ=VT2(0aq,0) + da,))

So far: this describes the ‘4d bulk’ theory on By with varying 7. Loci of
interest: singularities in the fiber, which give duality defects.



Singular Elliptic Curves and Defects

We can describe the elliptic fibration by E in terms of a Weierstrass
model

y' =2+ fr+g
f and g sections K 1;2/ ~ and the singular loci are

A=4f34+27¢*=0.

Close to a singular locus z; =0, 7 ~ ilog z; + - -+ with a branch-cut in the
complex plane z;. For the M5 this is relevant along A N B:




Gauge theoretic description of walls and defects

Locally we can cut up B = UB; and IW;; 3d walls between these regions,
where 7 has a branch-cut.

Define
Fp=1F+irxF

then the action of v € SLyZ monodromy on the gauge field is

(FQ,FD)| =), FO)]

This maps the gauge part Sp = —= [, F A Fp to itself, except for an
offset on the 3d wall (see also [Ganor])
sy = (49 AF — 40 A FS)

¢ 47T Wij

E.g. v =T* this is a level k CS term.



Chiral Duality Defects

The wall action 57 is neither supersymmetric nor gauge invariant. At the
boundary of the wall W = C this induces chiral dofs: e.g. for the T wall
this is simply a chiral WZW model with 3;,7 =1, --- , k, with x2d3; = d3;
[Witten]

" i
SC:;_S_W‘/C*Q(dBZ—A)/\(dBZ—A)_E/CBZF

Under gauge transformations A — A + dA, 8; — B; + A this generates
[ F A which cancels the anomaly from the 3d wall.



Duality Defects from M5-branes

From the elliptic fibration and M5-brane we can apply this to any ~:

T3

h

Ty
i —

Singular fibers resolve into collections of S* = P's, intersecting in affine
ADE Dynkin diagrams.
Each resolution spheres gives rise to an w(!*!) form, along which we can

expand B
k—1 | |
AB =3 (D:bidz Awfy 1) + O:bidZ Ay ) )
i=1
Imposing self-duality, and redefining the basis of chiral modes b; with the
”section” of the elliptic fibration, identifies these modes with ;.



Intersections of Surface Defects: Point-defects

These chiral (0,2) supersymmetric defects can intersect at points
Pog={2a=23=2=0}=Co,NCs=BNA,NAg
Geometrically: Kodaira fiber P's become further reducible P} — C, + C_

@
c-‘/ ’

Duality defects form network and at intersections:

(/c++/c>B:/P;B = By+p-=0

Such point-intersections are generic e.g. in CY4.
= 4d-3d-2d-0d Matroshkas



Example:

D3-branes wrapping B> intersecting discriminant loci in

AiNB=C++ SU(n) AN B=C+ SU(m)
E.g. fibers are given in terms of simple roots F;, 7 =0,1,--- ,n—1and ﬁ’j,
3=0,1,---,m — 1 and there are chiral modes localized on each curve
C: B;, i=0,1,2,3,4, C: By, i=0,1,2

The fibers in codim 2 split as, e.g. for SU(5) and SU(3): into weights of
the bi-fundamental:
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In codim 3 the SU(5) and SU(3) singularities collide at points P = CNC
in B: Local coupling along the surface defect to the bulk gauge field

k—1
Sc D B | Fe
[(Z)
i—0

gives constraints:

4

(FCZ@) :Fc<ﬁ§;+ﬁgl+ﬁ1+ﬁ;2+ﬁ;3+ﬁ3+5{5+/3§>
1=0 P P
2

(FéZBZ) :Fé<5;5+5;5+5;1+63+6;3+6;2+51+5§1)
1=0 P P

Locally, this enhances the flavor symmetry of the 2d chiral models to
SU(n+m).



ITI. New 2d (0,2) Theories
[Lawrie, SSN, Weigand|]



D3s on C = M5 on C

Consider now N =4 SYM on R"! x C, with 7-varying over curve C:
SO(1,4), — SO(1,1), xU(1)L
and to preserve supersymmetry, consider U(1)r C SU(4)r:
SO(4)r xU(1)g CY3 Duality-Twist: (0,4)
SU4r — SURrxU)rxSO2)r CY,4 Duality-Twist: (0, 2)

)
SUB)r xU(1)g CY5 Duality-Twist: (0, 2)

Geometric embedding corresponds to D3-branes on C' x R with

{C C B,,—1 = Base of the elliptic C'Y,, }
= {6d (2,0) theory on a elliptic surface C = E,—C
y p

C'Ys: MSW for elliptic CY [Vafa]



N = 4 Duality Twist as M5 Toplogical Twist

CY,, Duality-Twist = Geometric Twist of M5 on C
C'Y,, Duality-Twist

1 o 1
TE™ = (To+Tr)  Tp™ = (T +Tr).

MS5-brane Topological Twist: e.g. for C'Y, twist
Sp(4)R — SU(Q)R X U(l)R
4 — 2091914
50(1,5)L — SU(Q)Z X SO(l, 1)L X U(l)l
4 - 2001110114

Twist is defined as
Ttwist,MS _ Crl 4+ TR



Example: CY;-Duality Twist of N =4 SYM from 6d

SU(2); x SUR2)gr x SO(1,1)r, x U(1)wist x U(1) g
p,Q: (2,2)2100D(2,1)-1,11P(2,1) 1,1, 1D (1,2)1,-10D (1,1)10,1
®(1,1)1,2-1D(1,2)1,1,0D(1,1)1,21 D (1,1)1,0,1
®:  (1,2)0,1,1D(1,2)0,—1,-1 D (1,1)0,0,0
H: (3,1)20,0® (1,1)22,0® (1,1)2,0,0 D (1,1)2,-2,0 P (2,1)0,1,0 ® (2,1)0,-1,0 -

Geometric identification

thist(KA _ _27 thist(NA

C) — C/Y4) =—1



Spectrum of 2d (0, 2) from M5 on C C CY,

Multiplicity (0,2) | complexscalars | R-Weyl | L-Weyl
ho0(C) =1 Chiral 1 1 -
hO1(C) =g Fermi — — 1
h92(C)=g—1+ci(B3)-C Chiral 1 1 —
h(C, Ng /yv,) =h(C,Nc;p,) Chiral 1 1 -
1hl(C, Ne y,) =h°(C,Noyp,) — e1(Bs) - C | Fermi - - 1
hb1(C) — 2n02(C) —2=8¢1(B3) - C Fermi - - 1




Central Charges

Direct computation from 6d (2,0) or anomalies, on the elliptic surface
E, — C times R"! (much like in the earlier discussion) yields

cr =3(g+c1(Bs)-C+h°(C,N¢yg,))
cr, =3(g +h°(C, Noyp,)) +c1(Bs) - C +8ci(B) - C
From the N = 4 with duality twist, the zero modes do not incorporate the

3 — 7 modes:
cgetects — 8¢ (B) - C.

In the 6d approach these are automatically incorporated.



Discussion of other cases:

# C'Y3 Duality twist N = (0,4):
cr=3C-CN?+3c;(B)-CN.+6, ¢ =3C-CN-+6¢c;(B)-CN.+6

This is dual to Mb5-branes on elliptic surfaces in CY three-folds, i.e.
MSW-string, N, = 1 already in [Vafa]. Computation of elliptic genera
see e.g. [Haghighat, Murthy, Vandoren, Vafal].

# CY5 Duality twist: No M5 picture, but M2

Ccr, = 3(g + hO(C, NC/B4) — 1) + 961(34) -C
cr =3(g+c1(Ba)-C+1h°(C,Ngyp,) — 1)
Application to 2d (0, 2) vacua from CY; compactifications of F-theory

[SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation
requires D3-branes wrapped on curves in the class

1
C= ﬂ04(Y5)\B4



BPS-equations and Hitchin moduli space

For 7 constant, N = 4 SYM on C x R"! with Vafa-Witten twist, gives rise
to a sigma-model into the Hitchin moduli space, which for the abelian
case is just flat connections [Bershadsky, Johansen, Sadov, Vafa].

In all duality-twisted theories the BPS equations imply

1/-
Fa=g (QL\( Taa) — O ( 72@)) =0
where the internal components of the gauge field a, a are

Vma c QYN C, L)
V120 € T(Q"(C,Kc ® Lp))

In particular, for this abelian setup, the theory is a sigma-model into
U(1)p-twisted flat connections. — duality twisted Hitchin moduli space



Summary and Outlook

Matroshkas:

# MBD5 on an elliptic three-fold give rise to N=4 SYM with varying 7, a
network of intersecting duality defects '4d-3d-2d-0d’

# General v € SL2Z duality defects with (0, 2) supersymmetry. Flavor
symmetry dictated by the singular fiber geometry, classify duality
defects, and extend to non-abelian setup [in progress]

# Localization, including defect intersections, e.g. as in [Gomis, Le Floch,
Pan, Peelaers]



2d SCFs:

# D3s in F-theory on C' C B gives rise to 2d scfts with (0, p) susy. Best
described in terms of dual M5-brane on C.

# Non-abelian generalization, sigma-model description into
generalized Hitching moduli space:
D3 description so far limited to U(1) gauge group. Non-abelianize
starting from 6d, as in [Assel, SSN]. E.g. C C K37 get non-abelian
version of the heterotic string.

# M2-branes on C x R give rise to Super-QM: i.e. twisted version of the
Bagger-Lambert-Gustavsson theory on C.

# AdS/CFT with varying 7:
These 2d (0,p) SCFTs have interesting “F-theory” AdS-duals, i.e.
varying-7 IIB solutions [Couzens, Martelli, SSN, Wong] (F-theoretic
lift of the 6d N=1 sugra configurations in [Haghigat, Murthy, Vafa,

Vandoren])
AdS3 x S% x CYy

Similarly: AdSs solutions for 2d (0, 2) theories from CY4 in F-theory.



