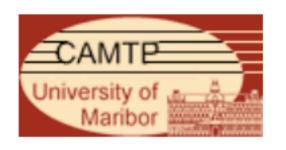
Geometry and Physics of F-theory 2017 ICTP, Trieste, February 27-March 2, 2017

(Non-) Abelian Discrete Symmetries in String (F-) Theory

Mirjam Cvetič



Outline (Summary)

Progress report since F-theory'16, Caltech

- I. Abelian discrete gauge symmetries in F-theory multi-sections &Tate-Shafarevich group highlight Z₃ highlight Heterotic duality and Mirror symmetry
- II.Non-Abelian discrete gauge symmetries in F-theory relatively unexplored

stoop down to weakly coupled regime

Non-Abelian discrete symmetries in Type IIB String Explicit construction of CY-threefold, resulting in a four-dimensional Heisenberg-type discrete symmetry

Abelian discrete symmetries in Heterotic/F-theory

M.C., A. Grassi and M. Poretschkin,

`Discrete Symmetries in Heterotic/F-theory Duality and Mirror Symmetry," arXiv:1607.03176 [hep-th]

Non-Abelian discrete symmetries in Type IIB string

V. Braun, M.C., R. Donagi and M. Poretschkin,

``Type II String Theory on Calabi-Yau Manifolds with Torsion and Non-Abelian Discrete Gauge Symmetries,'' arXiv:1702.08071 [hep-th]

Abelian Discrete Symmetries in F-theory

Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section

```
Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;...]

Recent extensive efforts'14-'16: [Braun, Morrison; Morrison, Taylor;

Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson, Garcia-Etxebarria,

Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; M.C., Donagi, Klevers,

Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin;...]
```

Key features:

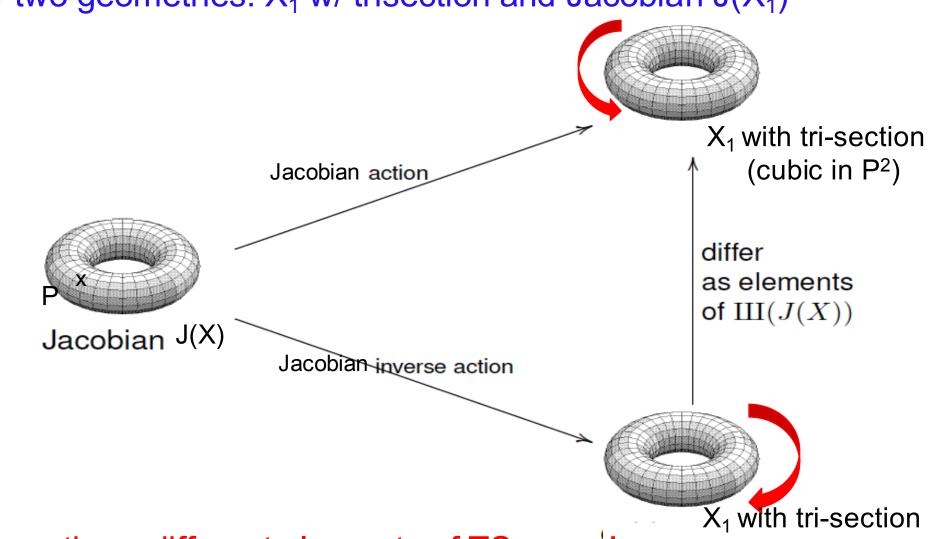
Higgsing models w/U(1), charge-n $\langle \Phi \rangle \neq 0$ — conifold transition

- Z₂ [Anderson, Garcia-Etxebarria, Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand'14]
- Z₃ [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

Tate-Shafarevich group and Z₃

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

Only two geometries: X₁ w/ trisection and Jacobian J(X₁)



There are three different elements of TS group!

(cubic in P²)

Shown to be in one-to-one correspondence with three M-theory vacua.

Discrete Symmetries & Heterotic/F-theory Duality

[Morrison, Vafa '96; Friedman, Morgan, Witten '97]

Basic Duality (8D):

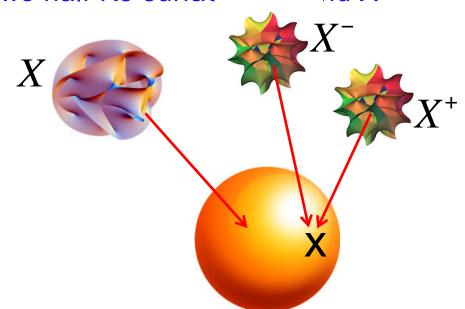
Heterotic E₈ x E₈ String on T²

to dual to

F-Theory on elliptically fibered K3 surface X

Manifest in stable degeneration limit:

K3 surface X splits into two half-K3 surfaces X⁺ and X⁻



Dictionary:

- X⁺ and X⁻ → background bundles V₁ and V₂
- Heterotic gauge group $G = G_1 \times G_2 \quad G_i = [E_8, V_i]$
- The Heterotic geometry T²: at intersection of X⁺ and X⁻

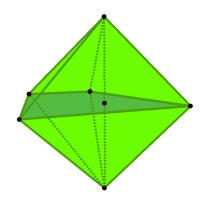
K3-fibration over P^1 (moduli)

Heterotic/F-theory Duality

[Morrison, Vafa'96], [Berglund, Mayr'98]

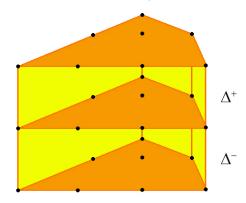
Employ toric geometry techniques in 8D/6D to study stable degeneration limit of F-theory

Toric polytope:



specifies the ambient space X

Dual polytope:



specifies the elements of $O(-K_X)$ - monomials in ambient space

6D: fiber this construction over another P¹

Study:

U(1)'s [M.C., Grassi, Klevers, Poretschkin, Song 1511.08208] at F-theory'16, Caltech

Discrete symmetries [M.C., Grassi, Poretschkin 1607.03176] highlights here

Discrete Symmetry in Heterotic/F-theory Duality

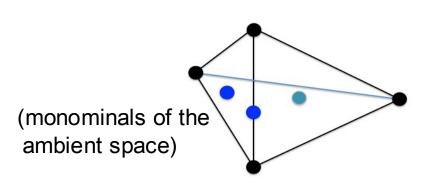
[M.C., Grassi, Poretschkin 1607.03176]

Goal: Trace the origin of discrete symmetry D

- Conjecture for P²(1,2,3) fibration [Berglund, Mayr '98]
 X₂ elliptically fibered, toric K3 with singularities (gauge groups) of type G₁ in X⁺ and G₂ in X⁻
 - its mirror dual Y_2 with singularities (gauge groups) of type H_1 in X^+ and H_2 in X^- with $H_i=[E_8, G_i]$
- Employ the conjecture to construct background bundles with structure group G where D=[E₈, G] beyond P²(1,2,3)
- Explore "symmetric" stable degeneration with $G_1 = G_2$
 - → symmetric appearance of discrete symmetry D

Example with Z₂ symmetry

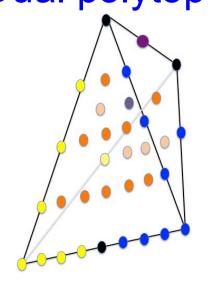
Polytope:



8D: $((E_7 \times SU(2))/\mathbb{Z}_2)^2$ – gauge symmetry \mathbb{Z}_2^2 - vector bundle

6D: $(E_7 \times SU(2))/\mathbb{Z}_2$ - gauge symmetry

Dual polytope:



 \mathbb{Z}_2 – gauge symmetry $((\mathrm{E}_7 \times \mathrm{SU}(2))/\mathbb{Z}_2)^2$ - vector bundle

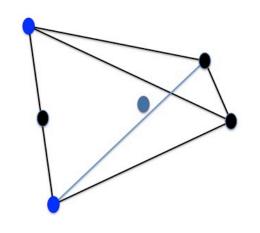
 \mathbb{Z}_2 - gauge symmetry

Field theory: Higgsing symmetric U(1) model:
only one (symm. comb.) U(1)-massless

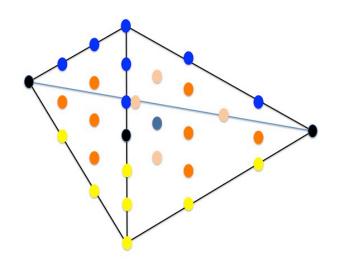
→ only one Z₂ -``massless"

Example with Z₃ symmetry

Polytope:



Dual polytope:



6D: $(E_6 \times E_6 \times SU(3))/\mathbb{Z}_3$ - gauge symmetry

 \mathbb{Z}_3 - gauge symmetry

These examples demonstrate:

toric CY's with MW torsion of order-n,

via Heterotic duality related to

mirror dual toric CY's with n-section.

Related: [Klevers, Peña, Piragua, Oehlmann, Reuter '14]

Non-Abelian Discrete Symmetries – less understood

F-theory - limited exploration

[Grimm, Pugh,Regalado '15], c.f., T. Grimm's talk [M.C., Lawrie, Lin, work in progress] [M.C., Donagi, Lin, work progress]

stoop down to weak coupling

Type II string compactification

Important progress in these directions builds on the work [Camara, Ibanez, Marchesano '11]

Abelian discrete gauge symmetries realized on Calabi-Yau threefolds with torsion.

Non-Abelian Heisenberg-type discrete symmetries realized on Calabi-Yau threefolds with torsion classes that have specific non-trivial cup-products.

[Berasaluce-Gonzales, Camara, Marchesano, Regalado, Uranga '12]

Calabi-Yau threefold X₆ with Torsion

Torsion
$$(H^5(X_6,\mathbb{Z})) \simeq \operatorname{Torsion}(H^2(X_6,\mathbb{Z})) = \mathbb{Z}_k$$
 example Torsion $(H^4(X_6,\mathbb{Z})) \simeq \operatorname{Torsion}(H^3(X_6,\mathbb{Z})) = \mathbb{Z}_{k'}$

[Camara, Ibanez, Marchesano '11]

 $\rho_2, \beta_3, \tilde{\omega}_4, \text{ and } \zeta_5 \text{ represent the generators of the torsion cohomologies } \bar{\mathbb{W}}/$

$$d\gamma_1=k\rho_2, \qquad d\tilde{\rho}_4=k\zeta_5, \qquad \qquad {\rm k^{-1}\,and\,k'^{-1}\,\,torsion\,linking\,numbers}$$
 $d\alpha_3=k'\tilde{\omega}_4, \qquad d\omega_2=k'\beta_3$

 $\gamma_1, \ \omega_2, \ \alpha_3 \ \text{and} \ \tilde{\rho}_4 \ \text{are non-closed forms satisfying:}$

$$\int_{X_6} \gamma_1 \wedge \zeta_5 = \int_{X_6} \rho_2 \wedge \tilde{\rho}_4 = \int_{X_6} \alpha_3 \wedge \beta_3 = \int_{X_6} \omega_2 \wedge \tilde{\omega}_4 = 1$$

(consequence of expressions for torsion linking numbers)

Upon Type IIB KK reduction of C₂, B₂, C₄ gauge potentials on X₆ \rightarrow Z_k x Z_k, discrete symmetry, realized in the Stückelberg mass $\mathcal{G}_{ij} \eta^i_\mu \eta^{\mu j}$

[Berasaluce-Gonzales, Camara, Marchesano, Regalado, Uranga '12]

When: $\rho_2 \wedge \rho_2 = M \, \tilde{\omega}_4$, $M \in \mathbb{Z}$, M non-vanishing

Upon KK reduction, Heisenberg discrete symmetry specified by k, k', M:

$$\mathcal{G}_{ij} \, \eta_{\mu}^{i} \eta^{\mu \, j} \quad \text{w/} \quad \begin{array}{rcl} \eta_{\mu}^{i} & = & \partial_{\mu} b^{i} - k \, A_{\mu}^{i} \,, & i = 1, 2 \,, \\ \eta_{\mu}^{3} & = & \partial_{\mu} b^{3} - k' A_{\mu}^{3} - M b^{2} (\partial_{\mu} b^{1} - k \, A_{\mu}^{1}) \end{array}$$

Calabi-Yau threefold X₆ with Torsion

Torsion $(H^5(X_6,\mathbb{Z})) \simeq \operatorname{Torsion}(H^2(X_6,\mathbb{Z})) = \mathbb{Z}_{k_1} \times \mathbb{Z}_{k_2}$ another example Torsion $(H^4(X_6,\mathbb{Z})) \simeq \operatorname{Torsion}(H^3(X_6,\mathbb{Z})) = \mathbb{Z}_{k_3}$

When: $\rho_2 \wedge \rho_2 = M \, \tilde{\omega}_4$, $M \in \mathbb{Z}$, W/ M non-vanishing

→ Heisenberg discrete symmetry specified by k₁, k₂, k₃ and M:

$$\mathcal{G}_{IJ*} \eta_{\mu}^{I} \eta^{\mu J*} \quad \psi \quad \eta_{\mu(i)} = \partial_{\mu} b_{(i)}^{2} - \tau \partial_{\mu} b_{(i)}^{1} + k_{i} \left(A_{\mu(i)}^{2} - \tau A_{\mu(i)}^{1} \right) \qquad i = 1, 2$$

$$\eta_{\mu}^{3} = \partial_{\mu} b^{3} + k_{3} A_{\mu}^{3} - M \left(b_{(1)}^{2} - \tau b_{(1)}^{1} \right) k_{2} A_{\mu(2)}^{1}$$

$$\tau = C_0 + i e^{-\phi}$$

[Grimm, Pugh, Regalado '15]

Dilaton-axion coupling

Non-Abelian Discrete Symmetry in Type IIB

Requires the study of Calabi-Yau threefolds with torsion by determining torsion cohomology groups and their cup-products \rightarrow technically challenging

Choose a specific Calabi-Yau threefold X_6 : free quotient of T^6 by a fixed point free action of $Z_2 \times Z_2$:

[part of a general classification [Donagi, Wendland'09]]

$$g_1: (z_0, z_1, z_2) \mapsto (z_0 + \frac{1}{2}, -z_1, -z_2),$$
 $g_2: (z_0, z_1, z_2) \mapsto (-z_0, z_1 + \frac{1}{2}, -z_2 + \frac{1}{2})$

$$\mathbb{C}/(\mathbb{Z} + \tau_i \mathbb{Z}) \ni z_i = \mathbf{x}_i + \tau_i \mathbf{y}_i$$
 $i=0,1,2$

Computation of cup-products:

Strategy: relate X₆ to a submanifold Y₀:

$$Y_0 \hookrightarrow X$$
, $(x_0, x_1, x_2, y_0) \mapsto (x_0 + \tau_0 y_0, x_1, x_2)$,

 $z_i = x_i + \tau_i y_i$

four-dimensional sub-torus quotient, invariant under $Z_2 \times Z_2$.

Cup-products in Y_0 could be done explicitly by hand, but obtained as part of a computational scheme (cellular model \rightarrow co-chains of cubical cells) that gives, among others, full integer cohomology of X_6 .

Restriction i*: $H^*(X_6, Z) \to H^*(Y_0, Z)$ - surjective, and exhibits $H^*(Y_0, Z)$ as a direct summand of $H^*(X_6, Z)$, along with the multiplicative structure of the cohomlogy ring of Y_0

Determine cup-products of $H^2(X_6, Z)$ torsion classes that are non-vanishing in $H^4(X_6, Z)$.

Results:

Full cohomology for
$$\mathsf{Y}_0$$
:
$$H^d(\mathsf{Y}_0,\mathbb{Z}) = \begin{cases} \mathbb{Z}_2 & d=4 \\ \mathbb{Z}^2 & d=3 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5 & d=2 \\ \mathbb{Z}_0 & d=1 \\ \mathbb{Z}_1 & d=0 \end{cases} \qquad H^d(\mathsf{X}_0,\mathbb{Z}) = \begin{cases} \mathbb{Z} & d=6 \\ \mathbb{Z}_4^2 \oplus \mathbb{Z}_2^3 & d=5 \\ \mathbb{Z}^3 \oplus \mathbb{Z}_2^3 & d=4 \\ \mathbb{Z}^8 \oplus \mathbb{Z}_2^3 & d=3 \\ \mathbb{Z}^3 \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_2^3 & d=3 \\ \mathbb{Z}^3 \oplus \mathbb{Z}_4^2 \oplus \mathbb{Z}_2^3 & d=2 \\ 0 & d=1 \\ \mathbb{Z} & d=0 \end{cases}$$
Non-vanishing cup-products for Y_0 :

$$\bigcup : H^{2}(Y_{0}, \mathbb{Z}) \times H^{2}(Y_{0}, \mathbb{Z}) \to H^{4}(Y_{0}, \mathbb{Z}) = \mathbb{Z}_{2}$$

$$\overline{c}_{i} \in H^{2}(X_{0}, \mathbb{Z}) \quad i^{*}(\overline{c}_{i}) = c_{i}$$

$$\overline{c}_{0} \cup c_{1} = c_{2} \cup c_{3} \neq 0$$

$$\overline{c}_{0} \cup \overline{c}_{1}, \ \overline{c}_{2} \cup \overline{c}_{3} \in H^{4}(X_{0}, \mathbb{Z})$$

First explicit construction of a Type IIB a Calabi-Yau manifold that exhibits a Heisenberg- type discrete symmetry w/ $k_1=2$, $k_2=4$, $k_3=2$, M=1 (earlier example)

Summary

- Abelian Discrete Symmetries in F-theory Highlight insights into heterotic duality
- Non-Abelian discrete symmetries in Type IIB: Construction of CY manifold whose torsional classes have non-trivial cup-products
 - → Heisenberg discrete group first explicit example

Outlook

- Techniques presented here applicable to F-theory
 study of Heisenberg symmetries ([Grimm, Pugh, Regalado'15]
 c.f, T. Grimm's talk)
- Non-Abelian discrete symmetry in F-theory via Higgsing of higher index representations ([M.C.,Klevers,Taylor'15], [Klevers, Taylor'16], c.f., W. Taylor's talk)

[M.C., Lawrie, Lin, work in progress]

Presented at the next meeting on Geometry of String Theory