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Outline (Summary)

Non-Abelian discrete symmetries in Type IIB String
Explicit construction of CY-threefold, resulting in a four-dimensional 
Heisenberg-type discrete symmetry 

I.  Abelian discrete gauge symmetries in F-theory  
multi-sections &Tate-Shafarevich group – highlight Z3

highlight Heterotic duality and Mirror symmetry

II.Non-Abelian discrete gauge symmetries in F-theory 
relatively unexplored

stoop down to weakly coupled regime

Progress report since F-theory’16, Caltech



Abelian discrete symmetries in Heterotic/F-theory
M.C., A. Grassi and M. Poretschkin,
``Discrete Symmetries in Heterotic/F-theory Duality and 
Mirror Symmetry,’’ arXiv:1607.03176 [hep-th]

Non-Abelian discrete symmetries in Type IIB string
V. Braun, M.C., R. Donagi and  M.Poretschkin, 
``Type II String Theory on Calabi-Yau Manifolds with Torsion 
and Non-Abelian Discrete Gauge Symmetries,’’  
arXiv:1702.08071 [hep-th]



Abelian Discrete Symmetries in F-theory
Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section 

Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;…] 
Recent extensive  efforts’14-’16: [Braun, Morrison; Morrison, Taylor; 
Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria, 
Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand;  M.C., Donagi, Klevers, 
Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin;…]

Higgsing models w/U(1), charge-n <F>≠ 	0	 −	conifold transition
Geometries with n-section Tate-Shafarevich Group Zn

Z3   [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

Z2  [Anderson,Garcia-Etxebarria, Grimm; 
Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand’14]

Key features:



Tate-Shafarevich group and Z3

X1 with tri-section
(cubic in P2)Jacobian

Jacobian
J(X)

Only two geometries: X1 w/ trisection and Jacobian J(X1) 

x
P

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

X1 with tri-section
(cubic in P2)There are three different elements of TS group!

Shown to be in one-to-one correspondence with three M-theory vacua.



Discrete Symmetries & Heterotic/F-theory Duality 

Basic Duality (8D):

Heterotic E8 x E8 String on T2

dual to

F-Theory on elliptically fibered
K3 surface X

Dictionary:
• X+ and X- à background bundles V1 and V2
• Heterotic gauge group G = G1 x G2 Gi = [E8,Vi]
• The Heterotic geometry T2: at intersection of  X+ and X-

Manifest in stable degeneration limit:

K3 surface X  splits into
two half-K3 surfaces X+ and X-

X−

X+
X

K3-fibration over
(moduli)

P1

x

[Morrison,Vafa ‘96; Friedman,Morgan,Witten ’97]



Employ toric geometry techniques in 8D/6D to study 
stable degeneration limit of F-theory 

Toric polytope:                                    Dual polytope:                                    

specifies the ambient 
space X

specifies the elements of  O( -KX) -
monomials in ambient space

6D: fiber this construction over another P1     

Heterotic/F-theory Duality 
[Morrison, Vafa ’96], [Berglund, Mayr ’98]

[M.C., Grassi, Klevers, Poretschkin, Song 1511.08208]  
at F-theory’16, Caltech                         

[M.C., Grassi, Poretschkin 1607.03176] 
highlights here                 

Study:             
U(1)’s  

Discrete symmetries 



Discrete Symmetry in Heterotic/F-theory Duality 
[M.C., Grassi, Poretschkin 1607.03176]                 

Goal: Trace the origin of discrete symmetry D

• Conjecture [Berglund, Mayr ’98]

X2 elliptically fibered, toric K3 with singularities (gauge groups)
of type G1  in X+ and G2 in X-

its mirror dual Y2 with singularities  (gauge groups) of type
H1 in X+ and H2 in X- with Hi=[E8, Gi] 

• Explore ``symmetric’’ stable degeneration with G1=G2
à symmetric appearance of discrete symmetry D

for P2(1,2,3) fibration

• Employ the conjecture to construct background bundles with 
structure group G where  D=[E8, G] beyond P2(1,2,3)



Figure 1: The polytope on the left shows the ambient space whose associated hypersur-
face leads to the Z2-geometry. The polytope on the right provides the ambient space of
the geometry with gauge symmetry ((E7 × SU(2))�Z2)2. The zero plane along which the
symplectic cut is performed is marked by the black points. The yellow and blue points
give the affine Dynkin diagram of E7. The latter are inherited by the half K3 surfaces X±2 ,
respectively. The purple point corresponds to an SU(2) gauge group which appears in both
half K3 surfaces X±2 after the stable degeneration limit. Orange points mark inner points of
the facets. Finally, beige-coloured points are on the invisible facets of the polytope.

Using equation (2.4), we find the following defining equation

��○ ∶ a1y41 + a2y21y22 + a3y42 + a4y23 + a5y1y2y3 = 0 . (4.4)

Here, the coefficients read in terms of Ũ , Ṽ as follows

a1 = a11 ,

a2 = a21Ũ
2Ṽ 2 ,

a3 = a31Ũ
5Ṽ 3 + a32Ũ4Ṽ 4 + a33Ũ3Ṽ 5 ,

a4 = a41 ,

a5 = a51Ũ Ṽ . (4.5)

One observes that there are two sections located at y2 = 0 and are given by

a11y
4
1 + a41y23 = 0 . (4.6)

Thus, ��○ is an elliptically fibered K3.
In fact, a similar K3 surface has already been investigated in [21]. To make contact with

that description, we transform the constraint (4.4) into a hypersurface within the ambient
space P1 ×Bl1P(1,1,2). To be concrete, the coordinate transformation

y1 � �x31x2UV � 14 , y2 � �x1x32U−3V −3� 14 , y3 � x3(UV ) 12 , (Ũ , Ṽ )� (U,V ) . (4.7)

maps (4.4) onto
s1x

3
1x2 + s2x21x22 + s3x1x32 + s4x1x2x3 + s5x23 = 0 . (4.8)

Here, one has

s1 = a11UV, s2 = a21UV, s3 = a31U2+a32UV +a33V 2, s4 = a51UV, s5 = a41UV . (4.9)

12

Example with Z2 symmetry 

8D:( )2 - gauge symmetry 
2 - vector bundle
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1 Introduction and Summary of Results

Recent years have witnessed important advances in F-theory compactification[? ? ? ].
While the study of non-Abelian gauge symmetries has been extensively studied in the past,
the study of Abelian and discrete gauge symmetries has been advanced only in recent years.
...associated with Mordell-Weil and Tate-Shafarevich group of the fibered Calabi-Yau man-
ifolds...

Heterotic/F-theory duality also plays in important role in shedding light on the origin of
gauge symmetries in heterotic gauge theory from the geometric perspective of F-theory. In
the past aspects of non-Abelian gauge symmetries have been studied extensively. However,
only very recently a detail study of the orgin of Abelian gauge symmetry has been performed.

The purpose of this paper is to present aspects of a study of discrete gauge symmetries
in heterotic/F-theory duality. We build our studies on conjecture heterotic/F-theory mirror
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Field theory: Higgsing symmetric U(1) model: 
only one (symm. comb.) U(1)-massless      
à only one Z2 -``massless’’



- gauge symmetry - gauge symmetry 

Dual polytope: 

Figure 2: The polytope on the left shows the ambient space whose associated hypersurface
leads to the Z3-geometry. The polytope on the right provides the ambient space with gauge
symmetry ((E6 × SU(3))�Z3)2. The zero plane along which the symplectic cut is performed
is marked by the black points. The yellow and blue points give the affine Dynkin diagram of
E6. The latter are inherited by the half K3 surfaces �±, respectively. Beige-coloured points
are on the invisible facets of the polytope. In particular, the two points on the invisible edge
correspond to the Dynkin diagram of SU(3) which is inherited by both half K3 surfaces.
Finally, orange points mark inner points of the facets and the purple point marks the inner
point of the polytope.

4.3 The model with Z3 gauge symmetry

The construction of the example with discrete Z3 gauge symmetry parallels the example
with Z2 gauge symmetry and we therefore keep the discussion brief. This time we start with
a geometry that has gauge symmetry ((E6 × SU(3))�Z3)2.
4.3.1 The geometry with ((E6 × SU(3))�Z3)2 gauge symmetry

We start again with a pair of dual polytopes (�○,�). �○ gives rise to a K3 surface with
singularity content ((E6 × SU(3))�Z3)2, while � gives rise to a K3 surface with fiber ambient
space given by P2. �○ is given by the convex hull of

(2,−1,0), (−1,2,0), (−1,−1,3), (−1,−1,−3) . (4.26)

while � is given as the convex hull of

(−1,−1,0), (1,0,0), (1,1,0), (0,1,0), (−1,−1,1), (−1,−1,−1) . (4.27)

The two polytopes are displayed in figure 2. Assigning coordinates as

(−2,1,0)� y1, (2,−3,0)� y2 (0,1,0)� y3,(2,−3,1)� Ũ , (2,−3,−1)� Ṽ , (4.28)

an application of formula (2.4) reveals that the hypersurface equation for ��○ is given as

��○ ∶ a1y41 + a2y21y22 + a3y42 + a4y23 = 0 . (4.29)
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Figure 2: The polytope on the left shows the ambient space whose associated hypersurface
leads to the Z3-geometry. The polytope on the right provides the ambient space with gauge
symmetry ((E6 × SU(3))�Z3)2. The zero plane along which the symplectic cut is performed
is marked by the black points. The yellow and blue points give the affine Dynkin diagram of
E6. The latter are inherited by the half K3 surfaces �±, respectively. Beige-coloured points
are on the invisible facets of the polytope. In particular, the two points on the invisible edge
correspond to the Dynkin diagram of SU(3) which is inherited by both half K3 surfaces.
Finally, orange points mark inner points of the facets and the purple point marks the inner
point of the polytope.
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The coefficients read as follows

a1 = a11 ,

a2 = a21Ũ
2Ṽ 2 ,

a3 = a31Ũ
5Ṽ 3 + a32Ũ4Ṽ 4 + a33Ũ3Ṽ 5 ,

a4 = a41 . (4.30)

The rank of the Picard lattice is found to be h(1,1)(X�○) = 18 which accounts for two E6

singularities (to be more precise, its resolutional divisors), two SU(3) singularities, the class
of the fiber as well as the base. In addition, the Mordell Weil group equals Z3. Thus, the
full gauge group is given by ((E6 × SU(3))�Z3)2.

Again, after the compactification to six dimensions, the two SU(3) singularities merge
into a curve of SU(3) singularities. From the field theory perspective, it is again the sym-
metric combination of the two SU(3) factors which survives in this limit.

4.3.2 The dual geometry with fiber ambient space P2

We analyse the dual geometry by assigning the following coordinates to the points (4.2)

(−1,−1,0)� x1, (1,0,0)� x2 (0,1,0)� x3,(−1,−1,1)� U, (−1,−1,−1)� V . (4.31)

In this way, one obtains the following hypersurface constraint:

� ∶= s1x31 + s2x21x2 + s3x1x22 + s4x32 + s5x21x3 + s6x1x2x3 + s7x22x3 + s8x1x23 + s9x2x23 + s10x33 = 0 .
(4.32)

Here, the si take explicitly the form

s1 = s11U
6 + s12U5V + ... + s17V 6 ,

s2 = s21U
4 + s22U3V + ... + s25V 4 ,

s3 = s31U
2 + s32UV + s33V 2 ,

s4 = s41 ,

s5 = s51U
4 + s52U3V + ... + s55V 4 ,

s6 = s61U
2 + s62UV + s63V 2 ,

s7 = s71 ,

s8 = s81U
2 + s82UV + s83V 2 ,

s9 = s91 ,

s10 = s10 . (4.33)

A closer inspection of this geometry reveals that there are apart from the zero section two
further linear independent sections, which is confirmed by the computation of h(1,1)(X2).
In fact, these three sections will glue into a tri-section, once one compactifies further down
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6D:

1 Geodesics of the Optical metric
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1.1 Projective symmetry

Any spherically symmetric 3-metric may be cast in the form

du2

k2(u)
+

1

k(u)
d⌦2

2

. (3)

this typo has been corrected

In [1] it was shown in [1] that the Weyl projective tensor depends only on
k0 and k00. For metrics of the form (3) In fact, we may assume that coordinates
may be chosen so that any geodesic lies in the equatorial plane ✓ = ⇡

2

The
geodesics then satisfy

�du
d�

�
2

+ k =
1

h2

(4)

where h is Clairaut’s constant which may be thought of as angular momentum
or impact parameter. Di↵erentiating (4) we obtain the second order equation

d2u

d�2

+
1

2
k0 = 0 . (5)

Obviously k and h0 give the same unparameterised geodesics. Thus we re-obtain
an explicit demonstraion of the the projective symmetry of the metrics of the
form (3).

1.2 Reissner-Nordstrom-de-Sitter

In the special case of Reissner-Nordstrom-de-Sitter spacetime the spacetime
metric is of the form

ds2 = ��(R)dt2 +
dR2

�
+R2d⌦2

2

(6)

and hence

ds2
opt

=
dR2

R4g(R)2
+

1

g(R)
d⌦2

2

. (7)

This is of the form (3) with

k(u) = u2 + 2Mu+Q2u4 � ⇤

3
. (8)

It follows that the unparameterised geodesics are independent of ⇤. Moreover,
since k0 is cubic in u the geodesics are given by Weierstrass elliptic functions
[3] .
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Example with Z3 symmetry 

These examples demonstrate: 
toric CY’s with MW torsion of order-n, 

via Heterotic duality related to
mirror dual toric CY’s with n-section.  

Related:  [Klevers, Peña, Piragua, Oehlmann, Reuter ‘14]

Polytope:



Non-Abelian Discrete Symmetries – less understood 
F-theory - limited exploration
[Grimm, Pugh,Regalado ’15],  c.f., T. Grimm’s talk
[M.C., Lawrie, Lin,  work in progress] [M.C., Donagi, Lin, work progress]

Type II string compactification

Important progress in these directions builds on the work 
[Camara, Ibanez, Marchesano ’11] 
Abelian discrete gauge symmetries realized on Calabi-Yau threefolds
with torsion.

stoop down to weak coupling

Non-Abelian Heisenberg-type discrete symmetries realized  on
Calabi-Yau threefolds with torsion classes that have specific non-trivial 
cup-products.
[Berasaluce-Gonzales, Camara, Marchesano, Regalado, Uranga ’12]  



Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) , (2.1)

associated with the torsion one-cycles (and Poincaré dual torsion four-cycles) and
torsion two-cycles (and Poincaré dual torsion three-cycles), respectively.

In the following, we shall first restrict our discussion to the case that

Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) = Zk ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.2)

The Poincaré dual cohomology groups which are needed for the dimensional reduction
of Ramond-Ramond fields are accordingly given as

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk ,

Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.3)

Let ⇢2, �3, !̃4, and ⇣5 represent the generators of the torsion cohomologies
Torsion (H2(X6,Z)), Torsion (H3(X6,Z)), Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)),
respectively. They satisfy the following relations

d�1 = k⇢2, d⇢̃4 = k⇣5,

d↵3 = k0!̃4, d!2 = k0�3 , (2.4)

where �1, !2, ↵3 and ⇢̃4 are non-closed one-, two-, three- and four-forms on X6,
respectively, and they satisfy:

Z

X6

�1 ^ ⇣5 =

Z

X6

⇢2 ^ ⇢̃4 =

Z

X6

↵3 ^ �3 =

Z

X6

!2 ^ !̃4 = 1 . (2.5)

Here k�1 and k0�1 are the torsion linking numbers between dual torsion p- and (5�p)-
cycles (p = 1, 3). Note, eqs.(2.4) and (2.5) can be obtained from expressions that
determine torsion linking numbers, c.f., appendix C of [11].

The cup-product of two torsion classes is again a torsion class. Thus the product
⇢2 ^ ⇢2 is some multiple of the generator !̃4 of Torsion (H4(X6;Z):

⇢2 ^ ⇢2 = M !̃4 , M 2 Z . (2.6)

The coefficient M is an invariant of the manifold X6. Sometimes it vanishes, and
sometimes it does not. In this work we describe an example where it is non zero. By
employing (2.4) this cup-product integrates to ⇢2 ^ �1 = M 0 ↵3, where M 0 2 Z and
kM = k0 M 0.

These torsion subgroups give a priori rise to three non-commuting discrete cyclic
groups in the effective four-dimensional Type IIB action. This can be seen from
the following Kaluza-Klein reduction Ansatz for the Type IIB closed string sector
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Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) , (2.1)

associated with the torsion one-cycles (and Poincaré dual torsion four-cycles) and
torsion two-cycles (and Poincaré dual torsion three-cycles), respectively.

In the following, we shall first restrict our discussion to the case that

Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) = Zk ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.2)

The Poincaré dual cohomology groups which are needed for the dimensional reduction
of Ramond-Ramond fields are accordingly given as

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk ,

Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.3)

Let ⇢2, �3, !̃4, and ⇣5 represent the generators of the torsion cohomologies
Torsion (H2(X6,Z)), Torsion (H3(X6,Z)), Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)),
respectively. They satisfy the following relations

d�1 = k⇢2, d⇢̃4 = k⇣5,

d↵3 = k0!̃4, d!2 = k0�3 , (2.4)

where �1, !2, ↵3 and ⇢̃4 are non-closed one-, two-, three- and four-forms on X6,
respectively, and they satisfy:

Z

X6

�1 ^ ⇣5 =

Z

X6

⇢2 ^ ⇢̃4 =

Z

X6

↵3 ^ �3 =

Z

X6

!2 ^ !̃4 = 1 . (2.5)

Here k�1 and k0�1 are the torsion linking numbers between dual torsion p- and (5�p)-
cycles (p = 1, 3). Note, eqs.(2.4) and (2.5) can be obtained from expressions that
determine torsion linking numbers, c.f., appendix C of [11].

The cup-product of two torsion classes is again a torsion class. Thus the product
⇢2 ^ ⇢2 is some multiple of the generator !̃4 of Torsion (H4(X6,Z)):

⇢2 ^ ⇢2 = M !̃4 , M 2 Z . (2.6)

The coefficient M is an invariant of the manifold X6. Sometimes it vanishes, and
sometimes it does not. In this work we describe an example where it is non zero. By
employing (2.4) this cup-product integrates to ⇢2 ^ �1 = M 0 ↵3, where M 0 2 Z and
kM = k0 M 0.

These torsion subgroups give a priori rise to three non-commuting discrete cyclic
groups in the effective four-dimensional Type IIB action. This can be seen from
the following Kaluza-Klein reduction Ansatz for the Type IIB closed string sector
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forms satisfying:

When:                        ,     M non-vanishing 
Upon KK reduction, Heisenberg discrete symmetry specified by k, k’, M:

(consequence of 
expressions for torsion 
linking numbers)

Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) two-form fields
C2, B2, respectively and RR four-form field C4:

B2 = b1 ^ ⇢2 + A1 ^ �1 (2.7)
C2 = b2 ^ ⇢2 + A2 ^ �1 (2.8)
C4 = b3!̃4 + A3 ^ ↵3 + V 3 ^ �3 + c2 ^ !2 , (2.9)

where bi and Ai (i = 1, 2, 3) are the three axions and three U(1) one-form gauge
potentials, respectively. (One-form potential V 3 and two-form potential c2, are not
independent fields, due to the self-duality of the five-form field strength F5 in Type
IIB supergravity.)

These Ansätze ensure that the Kaluza-Klein reduction of Type IIB supergravity
results in an effective four-dimensional field theory with three massive U(1) one-form
gauge potentials Ai (= i = 1, 2, 3). (For further details, see section 4 of [10].) E.g.,
for B2 one obtains:

Z

M10=M4⇥X6

dB2 ^ ⇤dB2 �! (2.10)
Z

M4

(db1 � kA1) ^ ⇤(db1 � kA1)

Z

X6

⇢2 ^ ⇤⇢2 +
Z

M4

(dA1) ^ ⇤(dA1)

Z

X6

�1 ^ ⇤�1 ,

which results in a Stückelberg mass term for A1. The Stückelberg mass contributions
for all three gauge fields A1, A2, A3 in the effective four-dimensional action is of the
following schematic form:

L � Gij ⌘
i
µ⌘

µ j , (2.11)

where

⌘iµ = @µb
i � k Ai

µ , i = 1, 2 ,

⌘3µ = @µb
3 � k0A3

µ �Mb2(@µb
1 � k A1

µ) . (2.12)

This four-dimensional action is therefore invariant under the following non-commuting
discrete gauge transformations:

Ai
µ ! Ai

µ + @µ�
i , bi ! b1 + k�i , i = 1, 2 ,

A3
µ ! A3

µ + @µ�
3 +M 0k�2A1

µ +M 0b1@µ�
2 , b3 ! b3 +Mkb1�2 + k0�3 ,(2.13)

where M 2 Z, M 0 2 Z and kM = k0M 0. This corresponds to a set of non-commuting
Zk, Zk, Zk0 factors as long as M 6= 0, resulting in a non-Abelian discrete gauge
symmetry of the four-dimensional action, specified by k, k0 and M .

Altogether there are three generators T1, T2, T3 associated with the discrete sym-
metry groups Zk,Zk,Zk0 , respectively. The important fact to note is that these gen-
erators T1, T2, T3 do not commute, provided that there is a non-trivial cup-product
(2.6).

These discrete gauge symmetries of the effective four-dimensional action lead to
the following discrete symmetry operations on a four-dimensional state  (x), with
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Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) , (2.1)

associated with the torsion one-cycles (and Poincaré dual torsion four-cycles) and
torsion two-cycles (and Poincaré dual torsion three-cycles), respectively.

In the following, we shall first restrict our discussion to the case that

Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) = Zk ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.2)

The Poincaré dual cohomology groups which are needed for the dimensional reduction
of Ramond-Ramond fields are accordingly given as

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk ,

Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk0 . (2.3)

Let ⇢2, �3, !̃4, and ⇣5 represent the generators of the torsion cohomologies
Torsion (H2(X6,Z)), Torsion (H3(X6,Z)), Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)),
respectively. They satisfy the following relations

d�1 = k⇢2, d⇢̃4 = k⇣5,

d↵3 = k0!̃4, d!2 = k0�3 , (2.4)

where �1, !2, ↵3 and ⇢̃4 are non-closed one-, two-, three- and four-forms on X6,
respectively, and they satisfy:

Z

X6

�1 ^ ⇣5 =

Z

X6

⇢2 ^ ⇢̃4 =

Z

X6

↵3 ^ �3 =

Z

X6

!2 ^ !̃4 = 1 . (2.5)

Here k�1 and k0�1 are the torsion linking numbers between dual torsion p- and (5�p)-
cycles (p = 1, 3). Note, eqs.(2.4) and (2.5) can be obtained from expressions that
determine torsion linking numbers, c.f., appendix C of [11].

The cup-product of two torsion classes is again a torsion class. Thus the product
⇢2 ^ ⇢2 is some multiple of the generator !̃4 of Torsion (H4(X6;Z):

⇢2 ^ ⇢2 = M !̃4 , M 2 Z . (2.6)

The coefficient M is an invariant of the manifold X6. Sometimes it vanishes, and
sometimes it does not. In this work we describe an example where it is non zero. By
employing (2.4) this cup-product integrates to ⇢2 ^ �1 = M 0 ↵3, where M 0 2 Z and
kM = k0 M 0.

These torsion subgroups give a priori rise to three non-commuting discrete cyclic
groups in the effective four-dimensional Type IIB action. This can be seen from
the following Kaluza-Klein reduction Ansatz for the Type IIB closed string sector
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When:                                     ,  w/ M non-vanishing    
à Heisenberg discrete symmetry specified by k1, k2, k3 and M:

Calabi-Yau threefold X6 withTorsion
another example

charges (q1, q2, q3) under (Zk, Zk,Zk0) :

T̃1 :  (x) �! e2⇡ik
�1q1 (x)

T̃2 :  (x) �! e2⇡ik
�1q2U (x)

T̃3 :  (x) �! e2⇡ik
0�1q3 (x) , (2.14)

where the charge redefinition matrix U is of the form:
0

@
q1
q2
q3

1

A 7!

0

@
1 0 M 0

0 1 0
0 0 1

1

A

0

@
q1
q2
q3

1

A , kM = k0M 0 . (2.15)

Thus, one observes that
T̃1T̃2 = T̃M

3 T̃2T̃1 , (2.16)

resulting in a non-commuting discrete gauge symmetry, a Heisenberg discrete sym-
metry group (Zk ⇥ Zk0) o Zk, specified by k, k0 and M . In special cases, say, when
k = k0, M = 1 the non-Abelian discrete gauge symmetry is given by (Zk ⇥ Zk)o Zk

and further specializations of k reduce to, e.g., Dih4 for k = 2 and �(27) for k = 3.

2.1 Generalizations

It is straightforward to generalize this analysis to the case when the second torsion
cohomologies have multiple discrete factors. (For further details, see [19], section 2.)

Let us focus on the following specific examples, which shall be relevant for the
rest of our analysis. The torsion cohomologies are chosen to be:

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk1 ⇥ Zk2 ,

Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk3 , (2.17)

and the nontrivial cup product of the generators ⇢(i)2 2 Zki (i = 1, 2) is of the following
form:

⇢
(1)
2 ^ ⇢(2)2 = M !̃4 , (2.18)

where !̃4 is the generator of Torsion (H4(X6,Z)) = Zk3 .
These generators satisfy the following relations3:

d�
(i)
1 = ki⇢

(i)
2 , d⇢̃4(i) = ki⇣5(i) , i = 1, 2 ,

d↵3 = k3!̃4, d!2 = k3�3 , (2.19)

where �3, and ⇣5(i) (i = 1, 2) represent the generators of the torsion cohomologies
Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)), respectively, and �1(i), !2, ↵3 and ⇢̃4(i)
are non-closed one-, two-, three- and four-forms that satisfy:

Z

X6

�
(i)
1 ^ ⇣5(j) =

Z

X6

⇢
(i)
2 ^ ⇢̃4(j) = �ij ,

Z

X6

↵3 ^ �3 =
Z

X6

!2 ^ !̃4 = 1 . (2.20)

3For the sake of simplicity, we chose specialized relations; for the analysis of more general cases,
see [19].
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the following Kaluza-Klein reduction Ansatz for the Type IIB closed string sector
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Kaluza-Klein Ansätze for B2, C2 and C4 gauge potentials, parallel those of (2.9):

B2 = b1(i) ^ ⇢
(i)
2 + A1

(i) ^ �
(i)
1 (2.21)

C2 = b2(i) ^ ⇢
(i)
2 + A2

(i) ^ �
(i)
1 (2.22)

C4 = b3!̃4 + A3 ^ ↵3 + V 3 ^ �3 + c2 ^ !2 , (2.23)

In the four-dimensional effective action there are five massive U(1) gauge fields A1
(i),

A2
(i) and A3, and five associated axions b1(i), b2(i), and b3, respectively. (Again, V 3 and

c2 are not independent fields, due to the self-duality of F5.)
The Stückelberg mass contributions for to the effective action again takes the

schematic form:
L � GIJ⇤ ⌘

I
µ⌘

µJ⇤ , (2.24)
where ⌘Iµ, complexified four-vectors, which take the following form:

⌘µ(i) = @µb
2
(i) � ⌧@µb

1
(i) + ki

�
A2

µ(i) � ⌧A1
µ(i)

�
, i = 1, 2 ,

⌘3µ = @µb
3 + k3A

3
µ �M

�
b2(1) � ⌧b1(1)

�
k2 A

1
µ(2) . (2.25)

and ⌧ = C0+ie�� denotes the complexified string coupling of Type IIB string theory.
This structure results in the discrete gauge invariance of the effective four-dimensional
action, which corresponds to the Heisenberg discrete symmetry specified by k1, k2, k3
and M . For further details see [10] section 2 and [19], section 3.

Thus, in order to determine the Heisenberg discrete group of Type IIB string
compactifications on a Calabi-Yau threefold with torsion, the plan is to identify sec-
ond cohomology torsion classes and to determine their non-trivial cup products. As
explained in the introduction, we proceed to relate the Calabi-Yau threefold X6 with
torsion to a simpler space Y0, a submanifold, where the cup product is under con-
trol. In particular, we exhibit a torsion class t in the second cohomology H2(X6,Z)
whose restriction to Y0 is non-zero and squares to a non- zero class on the auxiliary
Y0. Functoriality of this cup product then fixes the rest. In this paper we apply this
strategy the example of the Calabi-Yau threefold X6, defined in the section below,
and explicit calculations are derived in the subsequent two sections 4 and 5.

3 The Calabi-Yau Manifold
Our Calabi-Yau threefold X4 will be the quotient of a six-torus (in fact the product
of three elliptic curves) by a finite group action. The first and best known example of
such a quotient was studied by Vafa and Witten in [21]. Let Ei = C/(Z+ ⌧iZ) 3 zi,
be three elliptic curves, i = 0, 1, 2. Their product admits an action of the group
G = Z2 ⇥ Z2, generated by the transformations;

g01 : (z0, z1, z2) 7!
�
z0, �z1, �z2

�
,

g02 : (z0, z1, z2) 7!
�
� z0, z1, �z2

�
.

(3.1)

4For simplicity, in the rest of the paper we shall omit the subscript 6 for a Calabi-Yau threefold,
i.e. X6 ! X.
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c2 are not independent fields, due to the self-duality of F5.)
The Stückelberg mass contributions for to the effective action again takes the

schematic form:
L � GIJ⇤ ⌘

I
µ⌘

µJ⇤ , (2.24)
where ⌘Iµ, complexified four-vectors, which take the following form:

⌘µ(i) = @µb
2
(i) � ⌧@µb

1
(i) + ki

�
A2

µ(i) � ⌧A1
µ(i)

�
, i = 1, 2 ,

⌘3µ = @µb
3 + k3A

3
µ �M

�
b2(1) � ⌧b1(1)

�
k2 A

1
µ(2) . (2.25)

and ⌧ = C0+ie�� denotes the complexified string coupling of Type IIB string theory.
This structure results in the discrete gauge invariance of the effective four-dimensional
action, which corresponds to the Heisenberg discrete symmetry specified by k1, k2, k3
and M . For further details see [10] section 2 and [19], section 3.

Thus, in order to determine the Heisenberg discrete group of Type IIB string
compactifications on a Calabi-Yau threefold with torsion, the plan is to identify sec-
ond cohomology torsion classes and to determine their non-trivial cup products. As
explained in the introduction, we proceed to relate the Calabi-Yau threefold X6 with
torsion to a simpler space Y0, a submanifold, where the cup product is under con-
trol. In particular, we exhibit a torsion class t in the second cohomology H2(X6,Z)
whose restriction to Y0 is non-zero and squares to a non- zero class on the auxiliary
Y0. Functoriality of this cup product then fixes the rest. In this paper we apply this
strategy the example of the Calabi-Yau threefold X6, defined in the section below,
and explicit calculations are derived in the subsequent two sections 4 and 5.

3 The Calabi-Yau Manifold
Our Calabi-Yau threefold X4 will be the quotient of a six-torus (in fact the product
of three elliptic curves) by a finite group action. The first and best known example of
such a quotient was studied by Vafa and Witten in [21]. Let Ei = C/(Z+ ⌧iZ) 3 zi,
be three elliptic curves, i = 0, 1, 2. Their product admits an action of the group
G = Z2 ⇥ Z2, generated by the transformations;

g01 : (z0, z1, z2) 7!
�
z0, �z1, �z2

�
,

g02 : (z0, z1, z2) 7!
�
� z0, z1, �z2

�
.

(3.1)

4For simplicity, in the rest of the paper we shall omit the subscript 6 for a Calabi-Yau threefold,
i.e. X6 ! X.
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Non-Abelian Discrete Symmetry in Type IIB
Requires the study of Calabi-Yau threefolds with torsion by 
determining torsion cohomology groups and their cup-products
à technically challenging 

Choose a specific Calabi-Yau threefold X6: 
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[part of a general classification [Donagi, Wendland’09]]
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1
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�
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�
� z0, z1 +

1
2 , �z2 +

1
2

�
.

(3.2)

This modifies the Vafa-Witten action by adding some non-trivial shifts. It is these
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6
oG, (3.4)
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hpq
�
X
�
= 1

0
0

1

0
3

3
0

0
3

3
0

1
0

0
1 . (3.5)

For further details see [15]. In this work we will analyze the cohomology ring
of this Calabi-Yau manifold X of (3.3). In [15] it was noted (Lemma 1.7.1) that
this is one of four topologically inequivalent free quotients (the others are by various
abelian extensions of G). All are Calabi-Yau manifolds with Hodge numbers (3, 3),
and it seems plausible that similar calculations can be carried out for each of these
fixed-point free actions. We will not pursue these other manifolds in the present work.
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=xi+𝜏iyi
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Computation of cup-products: 

Cup-products in Y0 could be done explicitly by hand, but 
obtained as part of a computational scheme
(cellular model à co-chains of cubical cells)
that gives, among others, full integer cohomology of X6. 

Restriction i∗: H∗(X6, Z) → H∗(Y0, Z) - surjective, 
and exhibits H∗(Y0, Z) as a direct summand of H∗(X6, Z), 
along with the multiplicative structure of the cohomlogy ring of Y0 

Strategy: relate X6 to a submanifold Y0 :

four-dimensional sub-torus quotient, invariant under Z2 × Z2. 

4 Submanifolds
Since the group action eq. (3.2) only ever changes the imaginary part of the coor-
dinates zi by a sign, there are a number of G-invariant (real) submanifolds of the
product, hence submanifolds of the quotient X, obtained by setting the imaginary
part to zero. On the covering space, these are sub-tori of E0⇥E1⇥E2. After dividing
out the group action, we obtain the special Langrangian 3-manifold

Y ,!X, (x0, x1, x2) 7! (x0, x1, x2), (4.1)

three 4-dimensional submanifolds

Y0 ,!X, (x0, x1, x2, y0) 7! (x0 + ⌧0y0, x1, x2),

Y1 ,!X, (x0, x1, x2, y1) 7! (x0, x1 + ⌧1y1, x2),

Y2 ,!X, (x0, x1, x2, y2) 7! (x0, x1, x2 + ⌧2y2),

(4.2)

and three 5-dimensional submanifolds

Y01 ,!X, (x0, x1, x2, y0, y1) 7! (x0 + ⌧y0, x1 + ⌧y1, x2),

Y02 ,!X, (x0, x1, x2, y0, y2) 7! (x0 + ⌧y0, x1, x2 + ⌧y2),

Y12 ,!X, (x0, x1, x2, y1, y2) 7! (x0, x1 + ⌧y1, x2 + ⌧y2).

(4.3)

In addition to the submanifold embeddings, we note that there are also projection
maps X ! Yij, X ! Yi, and X ! Y by ignoring the imaginary part of one, two, and
all three complex coordinates. Therefore, these submanifolds are all retractions and
the relative cohomology long exact sequences split into

H⇤(X,Z) 'H⇤(Y,Z)�H⇤(X, Y,Z)

'H⇤(Yi,Z)�H⇤(X, Yi,Z), 0  i < 3,

'H⇤(Yij,Z)�H⇤(X, Yij,Z), 0  i < j < 3.

(4.4)

In the remainder of this section we now discuss the integral cohomology of these
submanifolds.

4.1 The Special Lagrangian Submanifold Y

Again, all constant 2-forms on the covering space torus are projected out by the
G-action. Hence, this is a rational homology sphere. Its fundamental group and
Abelianization is

⇡1(Y ) = Z

3
oG, H1(Y ) = ⇡1/[⇡1, ⇡1] = Z4 � Z4. (4.5)

To summarize, the integral cohomology is

Hd(Y,Z) =

8
>>><

>>>:

Z d = 3

Z4 � Z4 d = 2

0 d = 1

Z d = 0

(4.6)
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Determine cup-products of H2(X6, Z) torsion classes 
that are non-vanishing in H4(X6, Z).



Results:

Non-vanishing cup-products for Y0:

By identifying opposite sides, this is a 3-torus with real coordinates

(⇠0, ⇠1, ⇠2) = (2x0, 2x1, 2x2) 2 (R/2Z)3, (4.10)

and, using these coordinates, the G action becomes (compare [15], page 6 and Lemma
1.2.2):

g1 : (⇠0, ⇠1, ⇠2) 7!
�
⇠0 + 1, �⇠1,�⇠2

�
,

g2 : (⇠0, ⇠1, ⇠2) 7!
�
� ⇠0, ⇠1 + 1, �⇠2 + 1

�
.

(4.11)

The equivalence classes of cells under both the group action and identification of op-
posite sides in listed in Table 1. Using this notation, the two generators of H2(Y,Z) =
Z4 � Z4 can be written as cochains

ĉ1 =�
�
[0, 1]⇥ [0, 1]⇥ [0, 0]/ ⇠

�
,

ĉ2 =�
�
[0, 0]⇥ [0, 1]⇥ [0, 1]/ ⇠

�
+ �

�
[0, 1]⇥ [0, 0]⇥ [1, 2]/ ⇠

�
,

(4.12)

where �(c) denotes the cochain dual to the cell c, that is, the cochain that evaluates
to one on c and to zero on all other cells.

4.2 The Four-Dimensional Submanifold Y0

Note that Y0 is not orientable, so its top cohomology group is Z2. The fundamental
group and Abelianization of Y0 is

⇡1(Y0) = Z

4
oG, H1(Y0) = ⇡1/[⇡1, ⇡1] = Z2 � Z4 � Z4 � Z. (4.13)

Finally, its degree-3 cohomology is not going to be relevant for even-degree cup prod-
ucts in the following, but can easily be determined numerically from the cell complex
structure. To summarize, the integral cohomology is

Hd(Y0,Z) =

8
>>>>>><

>>>>>>:

Z2 d = 4

Z

2 d = 3

Z2 � Z4 � Z4 � Z d = 2

0 d = 1

Z d = 0.

(4.14)

We observe that the degrees are such that there can be a non-trivial cup product
H2 ⇥ H2 ! H4 involving torsion cohomology classes, which we will investigate in
subsection 5.1.

The cubical complex for Y0 is very similar to Table 1, the only change is that we
add a factor ⇥[0, 1] for the y0 coordinate, that is, use coordinates

(⇠0, ⇠1, ⇠2, ⌘0) = (2x0, 2x1, 2x2, y0) 2 (R/2Z)3 ⇥ (R/Z). (4.15)

Note that the group action

g1 : (⇠0, ⇠1, ⇠2, ⌘0) 7!
�
⇠0 + 1, �⇠1,�⇠2, ⌘0

�
,

g2 : (⇠0, ⇠1, ⇠2, ⌘0) 7!
�
� ⇠0, ⇠1 + 1, �⇠2 + 1,�⌘0

�
.

(4.16)
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never shifts ⌘0, which is why we do not need any subdivision in the cubical complex
in that direction. After identifying opposing sides and G-images, we can again write
down explicit cochains for the cohomology classes of interest. The generator of Z2 ⇢
H2(Y0,Z) can be chosen to be the 2-cochain

c0 =�
�
[0, 0]⇥ [0, 0]⇥ [0, 1]⇥ [0, 1]/ ⇠

�

� �
�
[0, 0]⇥ [0, 0]⇥ [1, 2]⇥ [0, 1]/ ⇠

�
.

(4.17)

By the retraction property, the 4-torsion part Z4 ⇥ Z4 ⇢ H2(Y0,Z) is necessarily the
pullback of H2(Y,Z). Hence the generators are

c1 =�
�
[0, 1]⇥ [0, 1]⇥ [0, 0]⇥ [0, 0]/ ⇠

�
,

c2 =�
�
[0, 0]⇥ [0, 1]⇥ [0, 1]⇥ [0, 0]/ ⇠

�

+ �
�
[0, 1]⇥ [0, 0]⇥ [1, 2]⇥ [0, 0]/ ⇠

�
,

(4.18)

see eq. (4.12). Finally, a free Z ⇢ H2(Y0,Z) is generated by

c3 =�
�
[0, 1]⇥ [0, 0]⇥ [0, 0]⇥ [0, 1]/ ⇠

�

+ �
�
[0, 1]⇥ [0, 0]⇥ [1, 1]⇥ [0, 1]/ ⇠

� (4.19)

4.3 Cohomology of the Calabi-Yau Manifold

We know already by eq. (4.4) that H⇤(Y0,Z) is a direct summand of the cohomology
of the Calabi-Yau manifold X. As far as cup products are concerned, this is all that
we will be using in the following. However, for completeness let us note that the
entire cohomology group can be computed numerically from the cubical cell complex,
and the result is

Hd(X,Z) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Z d = 6

Z

2
4 � Z

3
2 d = 5

Z

3 � Z

3
2 d = 4

Z

8 � Z

3
2 d = 3

Z

3 � Z

2
4 � Z

3
2 d = 2

0 d = 1

Z d = 0.

(4.20)

To the best of our knowledge, this is the first example of a self-mirror Calabi-
Yau threefold where the two (a priori independent) torsion groups H2(X,Z)

tors

=
H5(X,Z) and H3(X,Z)

tors

= H4(X,Z)
tors

actually differ.

5 Cup Product

5.1 Cup Product on Y0

For orientable manifolds, the cup product is dual to the cap (intersection) product.
Now Y0 is not orientable, so Poincaré duality does not hold over Z. However, any

12

c0 c1 c2 c3

Full cohomology for Y0:

manifold is Z2-orientable which is sufficient for our purposes since the codomain of
the cup product

[ : H2(Y0,Z)⇥H2(Y0,Z) ! H4(Y0,Z) = Z2 (5.1)

is two-torsion anyways. Furthermore, all relevant intersections turn out to be transver-
sal, which lets us read off the cup product from the cochain representatives in eqns. (4.17),
(4.12), and (4.19). The result is that

c0 [ c1 = c2 [ c3 6= 0 (5.2)

and all other products vanish.

5.2 Naturality and the Calabi Yau Manifold

Recall that the cup product is natural, that is, the diagram

H⇤(X,Z)⇥H⇤(X,Z)

f⇤

✏✏

[ // H⇤(X,Z)

f⇤

✏✏
H⇤(Y0,Z)⇥H⇤(Y0,Z)

[ // H⇤(Y0,Z)

(5.3)

commutes for any map f : Y0 ! X. When applied to our embedding map i :
Y0 ,! X, we note that i⇤ is surjective by eq. (4.4). In particular, there are elements
c̄i 2 H2(X,Z) such that i⇤(c̄i) = ci are our generators of H2(Y0,Z), i = 0, 1, 2, 3.
Their cup products

c̄0 \ c̄1, c̄2 \ c̄3 2 H4(X,Z) (5.4)

must be non-trivial cohomology classes because

i⇤(c̄0 \ c̄1) = i⇤(c̄2 \ c̄3) 6= 0 2 H4(Y0,Z) = Z2 (5.5)

To summarize, the resulting non-commuting discrete gauge symmetries of four
dimensional theory are associated with Z2 ⇥Z4 sectors of second torsion cohomology
and a Z2 sector of the fourth torsion cohomology, resulting in the Heisenberg group
determined by k1 = 2, k2 = 4, k3 = 2 and M = 1.6

6 Outlook
In this paper we provided the first explicit example of Type IIB string theory com-
pactification on a Calabi-Yau manifold, which leads to a non-Abelian discrete gauge
symmetry in four-dimensions. The compactification is based on the Calabi-Yau three-
fold whose torsion cohomology structure results in a non-trivial cup product of the
second cohomology torsion class elements, thus resulting in a non-Abelian gauge sym-
metry associated with a Heisenberg-type discrete group.

6Note that a cup product with the free sector of H2 does not result in a non-Abelian discrete
symmetry.
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c0 [ c1 = c2 [ c3 6= 0 (5.2)

and all other products vanish.

5.2 Naturality and the Calabi Yau Manifold

Recall that the cup product is natural, that is, the diagram

H⇤(X,Z)⇥H⇤(X,Z)

f⇤

✏✏

[ // H⇤(X,Z)

f⇤

✏✏
H⇤(Y0,Z)⇥H⇤(Y0,Z)

[ // H⇤(Y0,Z)

(5.3)

commutes for any map f : Y0 ! X. When applied to our embedding map i :
Y0 ,! X, we note that i⇤ is surjective by eq. (4.4). In particular, there are elements
c̄i 2 H2(X,Z) such that i⇤(c̄i) = ci are our generators of H2(Y0,Z), i = 0, 1, 2, 3.
Their cup products

c̄0 \ c̄1, c̄2 \ c̄3 2 H4(X,Z) (5.4)

must be non-trivial cohomology classes because

i⇤(c̄0 \ c̄1) = i⇤(c̄2 \ c̄3) 6= 0 2 H4(Y0,Z) = Z2 (5.5)

To summarize, the resulting non-commuting discrete gauge symmetries of four
dimensional theory are associated with Z2 ⇥Z4 sectors of second torsion cohomology
and a Z2 sector of the fourth torsion cohomology, resulting in the Heisenberg group
determined by k1 = 2, k2 = 4, k3 = 2 and M = 1.6

6 Outlook
In this paper we provided the first explicit example of Type IIB string theory com-
pactification on a Calabi-Yau manifold, which leads to a non-Abelian discrete gauge
symmetry in four-dimensions. The compactification is based on the Calabi-Yau three-
fold whose torsion cohomology structure results in a non-trivial cup product of the
second cohomology torsion class elements, thus resulting in a non-Abelian gauge sym-
metry associated with a Heisenberg-type discrete group.

6Note that a cup product with the free sector of H2 does not result in a non-Abelian discrete
symmetry.
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First explicit construction of a Type IIB a Calabi-Yau manifold 
that exhibits a Heisenberg- type discrete symmetry
w/ k1=2, k2=4, k3=2,  M=1  ( earlier example) 

For X6: 

For X6:

6

6
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Summary
• Abelian Discrete Symmetries in F-theory                    

Highlight insights into heterotic duality
• Non-Abelian discrete symmetries in 

Type IIB: Construction of CY manifold whose torsional  
classes have non-trivial cup-products
à Heisenberg discrete group - first explicit example

• Techniques presented here applicable to F-theory  
study of Heisenberg symmetries ([Grimm, Pugh, Regalado’15]

• Non-Abelian discrete symmetry in F-theory via Higgsing of 
higher index representations ([M.C.,Klevers,Taylor’15],       
[Klevers, Taylor’16], c.f., W. Taylor’s talk)

[M.C., Lawrie, Lin, work in progress]

Outlook

Presented at the next meeting on Geometry of  String Theory

c.f, T. Grimm’s talk)


