Evidence Towards a Swampland Conjecture

Eran Palti
University of Heidelberg

1602.06517 (JHEP 1608 (2016) 043) with Florent Baume 1609.00010 (JHEP 01 (2017) 088) with Daniel Klaewer

Physics and Geometry of F-theory, Trieste, February 2017

In Quantum Field Theory there is no universal connection between the vacuum expectation value of a scalar field and a physical mass scale

Does gravity behave in the same way?

Important to understand how effective theories can support $\Delta \phi > M_p$, while keeping $\Lambda < M_p$

Will present evidence towards a universal relation between $\Delta\phi$ and the mass scale of quantum gravity physics, which emerges at $\Delta\phi>M_p$

The Weak Gravity Conjecture

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

In a theory with a U(1) gauge symmetry, with gauge coupling g, there must exist a state of charge q and mass m_{WGC} such that

$$qgM_p \ge m_{\text{WGC}}$$

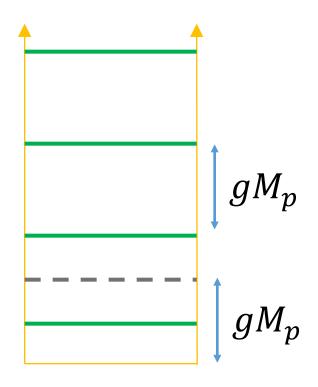
It is natural to associate gM_p to the scale of quantum gravity physics

Lattice WGC: The state satisfying the WGC is the first in an infinite tower of states, of increasing mass and charge, all satisfying the WGC

[Heidenreich, Reece, Rudelius '15]

Evidence

- Appears to be the case in String Theory
- Black Holes charged under both KK U(1) and gauge
 U(1) violate the WGC unless there is such a tower
- Sharpening of Completeness Conjecture [Polchinski '03]
- Matches cut-off constraint for monopole to not be a Black Hole $\Lambda < gM_p$, $gM_p^2 > \rho(r_{\!\Lambda})^{\frac{1}{2}}$



The Swampland Conjecture (Conjecture 2 of [Ooguri, Vafa '06]):

If a scalar field undergoes a variation $\Delta \phi$, then there is an infinite tower of states whose mass changes by a factor of order $e^{-\alpha \Delta \phi}$, for some constant $\alpha > 0$.

We interpret the conjecture as a statement about the asymptotic structure of moduli space $\Delta\phi \to \infty$.

In order to quantify, let us define a Refined Swampland Conjecture:

$$m_{\rm SC} (\phi_0 + \Delta \phi) = m_{\rm SC} (\phi_0) \Gamma (\phi_0, \Delta \phi) e^{-\alpha \frac{\Delta \phi}{M_p}}$$

with $\Gamma\left(\phi_0,\Delta\phi\right)e^{-\alpha\frac{\Delta\phi}{M_p}}<1$ and monotonically decreasing at an exponential rate for

$$\Delta \phi > \mathcal{O}(1) M_p$$

(Conjecture applies to all fields, not just strict moduli)

Evidence based on String Theory

Moduli:

Moduli in string theory have approximately logarithmic canonical normalisation

They universally control the mass of infinite towers of states

$$\phi \sim \log s$$

$$M_{tower} \sim s^{-\alpha} \sim e^{-\alpha \phi}$$

Axions:

Periodic axions are incompatible with monotonic $e^{-\alpha\Delta\phi}$ behaviour. This is ok as long as $\Delta\phi < M_p$.

Appears to be the case in string theory*

*body of work on possible ways around this, though no explicit example

Evidence based on String Theory

Monodromy axions have their periodic symmetry spontaneously broken

$$L = f^2(\partial a)^2 - m^2 a^2$$

De-compactify the axion field space allowing $\Delta a \rightarrow \infty$

The axion decay constant f is independent of the axion a, appears to contradict the Swampland Conjecture

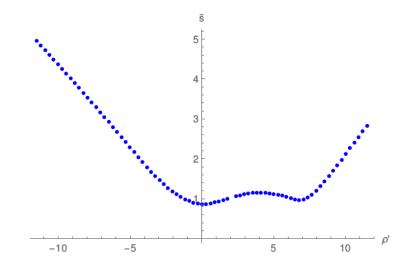
Can test in string theory in compactifications of type IIA string theory on a Calabi-Yau in presence of fluxes

[Baume, EP'16]

Evidence based on String Theory

• Find that as the axion develops a large vev, the gravitational backreaction of its potential m^2a^2 causes moduli fields to track the axion s=a

• This modifies its own field space metric $f(s) \to f(a)$, leading to logarithmic normalisation $L = \left(\frac{\partial a}{a}\right)^2$



• Induces a power-law dependence of the mass of a tower of states on a Find that the SC behavior emerges at $\Delta \phi > M_p$, independently of fluxes Generality of result in String Theory / F-theory under investigation

(eg. [Valenzuela '16; Bielleman, Ibanez, Pedro, Valenzuela, Wieck '16; Hebecker et al. '15; ...])

Evidence not based on String Theory

Consider a theory with gravity, gauge field, and scalar field

$$S = \frac{1}{2} \int \sqrt{g} d^4x \left[R - 2 (\partial \phi)^2 - \frac{1}{2g(\phi)^2} F^2 \right]$$
 (M_p = 1)

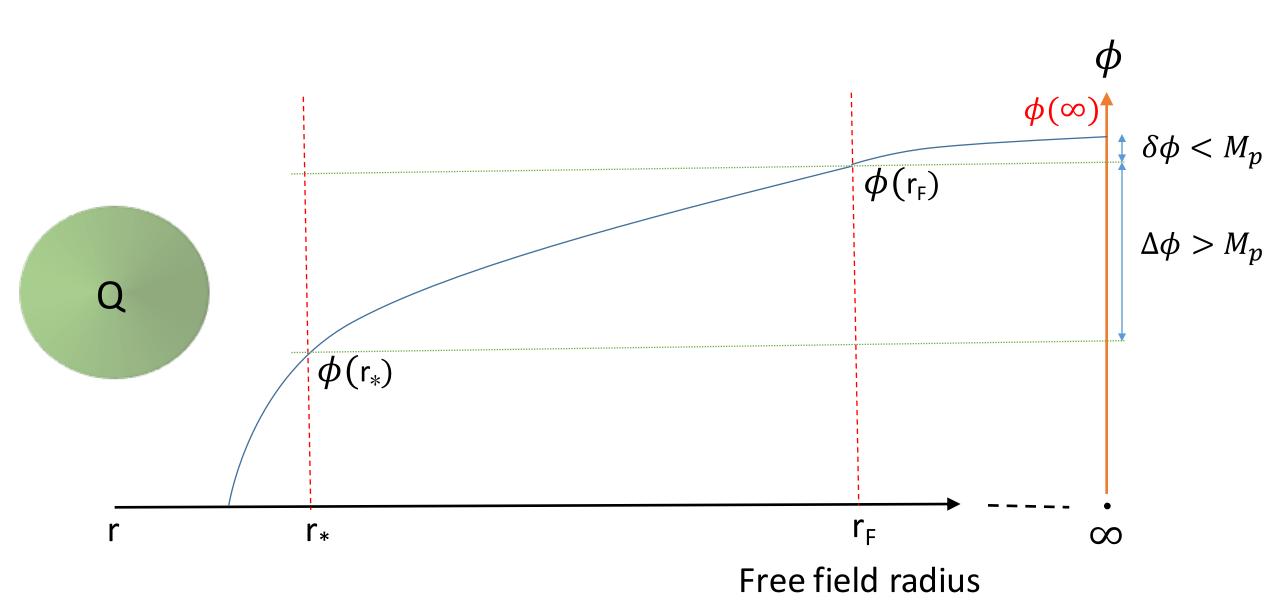
Can utilise the Weak Gravity Conjecture to write the Swampland Conjecture as

$$g(\phi_0 + \Delta\phi) = g(\phi_0) \Gamma(\phi_0, \Delta\phi) e^{-\alpha \frac{\Delta\phi}{M_p}}$$

Consider spherical charged sources in this theory: Black Holes, Monopoles, charge distributions.

A source induces a spatial gradient flow for $g(\phi)$ and ϕ

Evidence not based on String Theory



Gravitational effect of kinetic term

The Newtonian potential Φ sets the scale of strong gravity physics

$$ds^{2} = -[1 + 2\Phi(r)] dt^{2} + [1 - 2\Phi(r)] (dr^{2} + r^{2}d\Omega)$$

Consider an arbitrary power-law profile for a scalar field

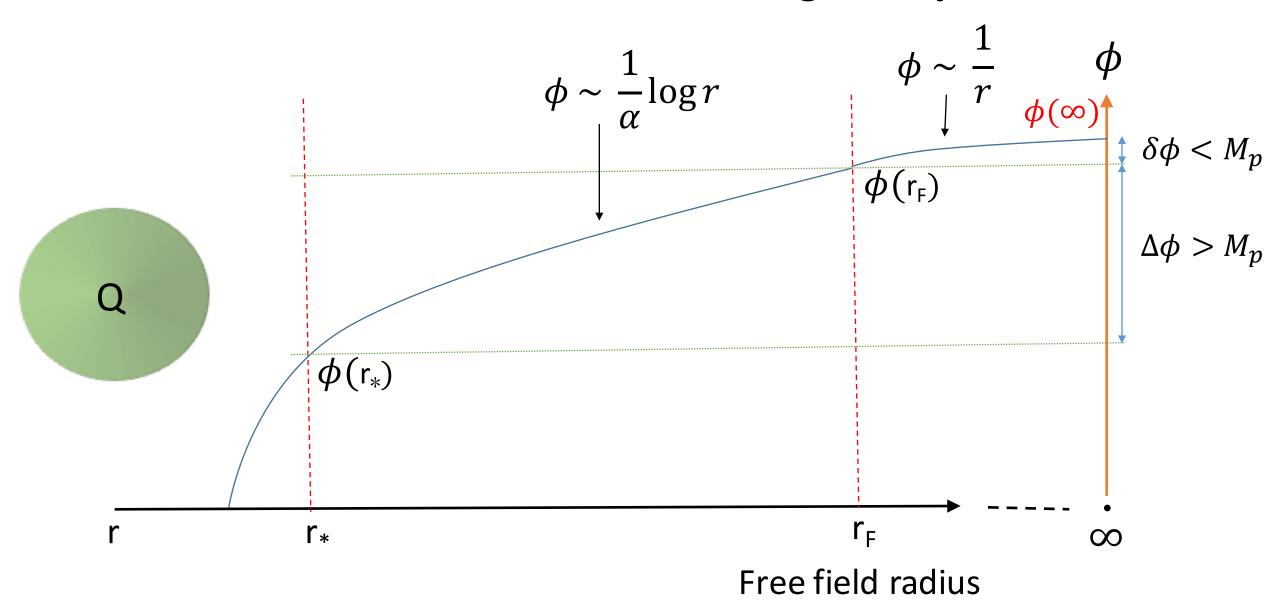
$$\phi\left(r\right) = \frac{\beta}{\alpha} \left(\frac{r}{r_F}\right)^{\frac{1}{\beta}}$$

Find that for a variation from r_* to r_F have

$$\Delta \phi = \frac{\beta}{\alpha} \left(1 - \left(\frac{r_*}{r_F} \right)^{\frac{1}{\beta}} \right) \qquad \Phi > \frac{\Delta \phi^2}{\beta} \left(\frac{1 + \left(\frac{r_*}{r_F} \right)^{\frac{1}{\beta}}}{1 - \left(\frac{r_*}{r_F} \right)^{\frac{1}{\beta}}} \right) \qquad |\Phi| < 1 \implies \beta > (\Delta \phi)^2$$

As
$$\Delta\phi\to\infty$$
 we have $\Delta\phi\to \frac{1}{\alpha}\log\left(\frac{r_F}{r_*}\right)$, converging rapidly for $\Delta\phi>1$

Evidence not based on String Theory

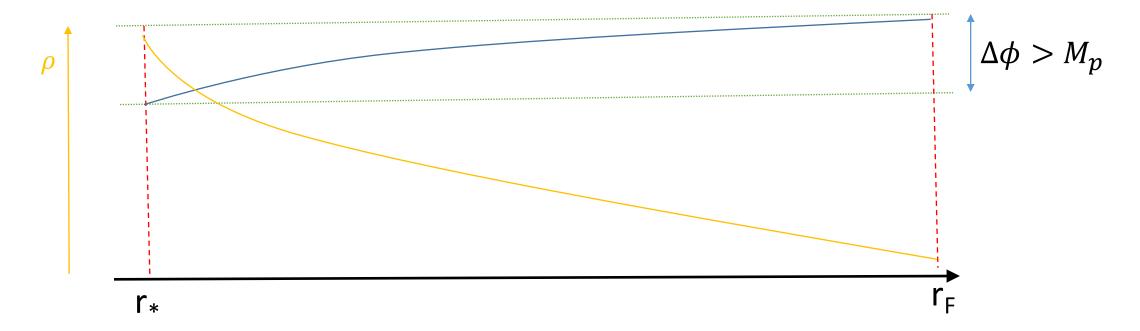


For logarithmic spatial running of the scalar field we have

$$\rho(r)^{\frac{1}{2}} > \partial \phi = \frac{1}{\alpha r}$$

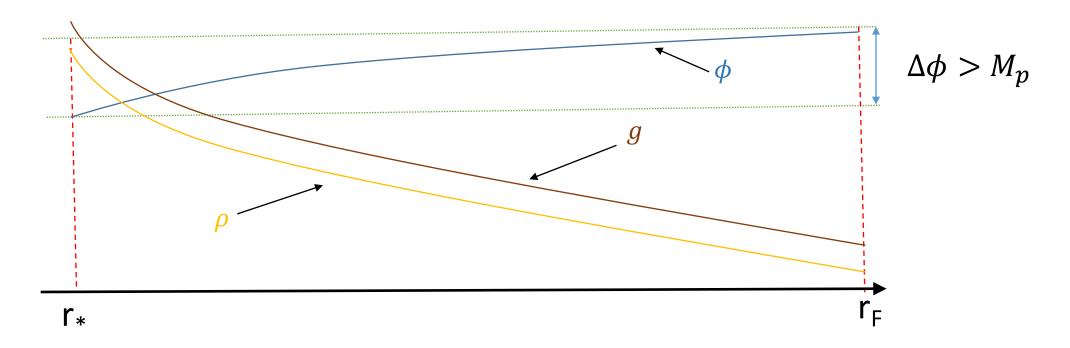
Therefore the energy density is exponentially decreasing

$$\frac{\rho(r_F)^{\frac{1}{2}}}{\rho(r_*)^{\frac{1}{2}}} = \frac{r_*}{r_F} \le e^{-\alpha\Delta\phi}$$



The gauge coupling must track the energy density:

- The (Local) Weak Gravity Conjecture implies $g(r) > \rho(r)^{\frac{1}{2}}$ (Black Holes describable in a semi-classical gravity regime outside horizon)
- At the free-field radius can show $g(r_F) < \rho^{\frac{1}{2}}(r_F) \left(-\alpha \partial_{\phi}(\ln g)\big|_{\phi(r_F)}\right)$



Find $g(\phi + \Delta \phi) \le g(\phi) \Gamma(\phi, \Delta \phi) e^{-\alpha \Delta \phi}$ with $\Gamma(\phi, \Delta \phi) e^{-\alpha \Delta \phi} < 1$ for $\Delta \phi > 1$

Logarithmic spatial dependence at Strong Curvature

Extend the Newtonian analysis to an arbitrary spherically symmetric background

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left(dr^{2} + f(r)r^{2}d\Omega^{2}\right)$$

Re-parameterise
$$U=-rac{lpha}{1+lpha^2}\ln\left(H_1^{lpha}H_2^{rac{1}{lpha}}
ight)+rac{1}{2}\ln f\;,\;\;\phi=rac{lpha}{1+lpha^2}\ln\left(rac{H_1}{H_2}
ight)$$

Can show that if H_1 and H_2 are Eigenfunctions of the Laplacian then for large spatial variation $\Delta \phi \gg 1$ have $\phi \simeq \frac{\alpha}{1+\alpha^2} \log r$

Imposing a relativistic version of the local WGC $\sqrt{R\left(r\right)} < g\left(r\right)M_{p}$

We have that $\sqrt{R\left(r\right)}\sim r^{-\frac{\alpha^{2}}{1+\alpha^{2}}}$ leads to the same exponential behaviour

Summary

Introduced the Refined Swampland Conjecture

$$m_{\rm SC} (\phi_0 + \Delta \phi) = m_{\rm SC} (\phi_0) \Gamma (\phi_0, \Delta \phi) e^{-\alpha \frac{\Delta \phi}{M_p}}$$

Evidence for the conjecture from string theory

Evidence for the conjecture based on Quantum Gravity expectations

If true, the scale of Quantum Gravity physics is exponentially sensitive to $\Delta\phi$ for $\Delta\phi>M_p$

The physical implications are wide-ranging and not explored as yet

Thank You

Super-Planckian Field Variations in Cosmology: Inflation

If the Swampland Conjecture holds then there is a tower of states with mass

$$m = \beta M_p e^{-\alpha \Delta \phi}$$
 for $\Delta \phi > \gamma M_p$

This implies an exponential tension between a high energy scale cut-off and large field variations.

Primordial tensor modes in large field inflation requires both

Lyth bound:
$$\frac{\Delta \phi}{M_P} \ge 0.25 \left(\frac{r}{0.01}\right)^{\frac{1}{2}}$$
 Energy scale: $V^{\frac{1}{4}} \sim \left(\frac{r}{0.01}\right)^{\frac{1}{4}} 10^{16} GeV$

For $\beta = \gamma = 1$ we have that $\alpha = 2, 3, 4$ implies a bound on the tensor-to-scalar ratio of r < 0.22, 0.11, 0.06.

Super-Planckian Field Variations in Cosmology: Dark Energy

Power-law quintessence as a model of dark energy, $V \sim \frac{M^{4+p}}{\phi^p}$

Field mass:
$$m^2 \sim \frac{\partial^2 V}{\partial \phi^2} \sim \frac{\rho_{\phi}}{\phi^2}$$

Hubble scale:
$$H^2 \sim \frac{\rho_{\phi}}{M_P^2}$$

Onset of dark energy is at $m \sim H$ which implies $\phi \sim M_P$.

Super-Planckian fields are generic in quintessence models [Copeland, Sami, Tsujikawa '06]

Infrared gravity physics tied to Ultraviolet gravity physics!

Evidence for gM_p as a QG cut-off

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

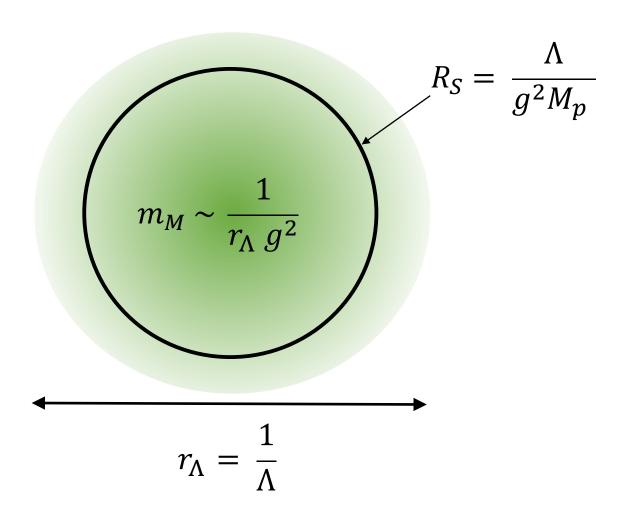
Sending $g \to 0$ turns a gauge U(1) symmetry into a global symmetry

General Black-Hole based arguments against global symmetries in Quantum Gravity

Evidence for gM_{v} as a QG cut-off

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

Consider the magnetic dual of the WGC $\frac{q_M}{g} M_p \ge m_M$, apply to monopole:



- Apply magnetic WGC
- Require unit-charged monopole to not be a classical Black Hole

$$\Lambda < gM_p$$

$$\Rightarrow gM_p^2 > \rho(r_{\Lambda})^{\frac{1}{2}}$$

Super-Planckian Field Variations in Cosmology

Interested in variations of scalar fields that are larger than the Planck mass

$$\Delta \phi > M_p$$

Arise often in scalar field cosmology and impact our understanding of contemporary observational cosmology

Lyth bound:
$$\frac{\Delta \phi}{M_P} \ge 0.25 \left(\frac{r}{0.01}\right)^{\frac{1}{2}}$$

[BICEP3, Spider, CMBPol, ...]: $r \sim 0.001$

Is Quantum Gravity physics sensitive to $\Delta \phi$?

Quantum gravity physics is typically associated to <u>energy scales</u> of order the Planck mass

There is no general link between the energy scales of a theory and the field variations (applying QFT logic)

$$V = m^2 \phi^2 \ll M_p^4$$

Will present evidence towards a conjecture that the scale of Quantum Gravity physics is exponentially sensitive directly to $\Delta\phi$, and can lie far below the Planck scale