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Warm	up:	Bundles	on	Calabi-Yau
• The	moduli	space	of	a	Calabi-Yau	compactification	in	
the	presence	of	a	gauge	bundle	is	not described	in	
terms	of

• It	is	described	in	terms	of	a	subspace	of	
these	cohomology	groups	determined	by	the	
kernel	of	certain	maps

• Those	maps	are	determined	by	the	
supergravity	data	of	the	solution.

• To	see	this	we	can	analyze	the	supersymmetry	
conditions.

H1(TX)�H1(TX_)�H1(End0(V ))



• Supersymmetry	conditions:

• Perturb	all	of	the	fields:

• From	the	left	two	equations	we	obtain	the	
usual:



• To	perturb	the	remaining	equations	use	projectors:

and	rewrite	our	equation	in	a	more	usable	form

• And	work	out	the	perturbed	equation	to	first	order:	

What	are	the	moduli	according	to	this	equation?



• Bundle	moduli	are	still	in	the	game:

• But	not	all	of	the	complex	structure.	The	allowed	
moduli	are	in	the	following	kernel:

(notice	the	map	is	defined	by	the	supergravity	data).

•We	can	also	rewrite	this	result	in	terms	of	a	single	
sheaf	cohomology	group.	Define:

ker(H1(TX)
F�! H2(End0(V )))

H1(End0(V ))

0 ! End0(V ) ! Q ! TX ! 0



• Then	a	little	sequence	chasing	and	facts	about	
Calabi-Yau/stable	bundles	reveals:

• So	the	moduli	of	heterotic	Calabi-Yau	
compactifications	are	given	by	this,	not	the	naïve	
complex	structure	and	bundle	moduli.

• Can	we	see	similar	structure	in	other	cases?...
Anderson,	JG,	Lukas	Ovrut	arXiv:1107.5076
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Non-Kahler	Heterotic	
Compactifications:
• Follow	the	same	procedure	with	the	Strominger	
system: Hull,	Strominger
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• For	the	perturbation	analysis	the	Atiyah	computation	
goes	through	unchanged.

• The	other	equations	are	somewhat	more	messy.

Lemma: Let	 be	a	compact	Kähler	manifold.	For	 a	
-closed		 form,	the	following	statements	are	

equivalent.	

For	some					,					,					,						and					.

Assumption:



• Here	is	what	you	find	for	the	moduli:

• Again	this	is	a	subset	of	what	you	might	very	naively	
write	down	(up	to	some	subtleties).

• The	relevant	subset	is	picked	out	as	nested	kernels	of	
maps	where	the	maps	are	defined	by	the	supergravity	
data.

our discussion in the case where H0(TX) 6= 0. In addition, we will show that the extension class
associated to (3.2), defined by the Strominger system, is indeed an element of the correct cohomology
group.

3.1.2 Well-definedness of the map in cohomology

We have established that the tangent to the moduli space of the Strominger system is a subspace of
H1(H) as given by (3.7) and (3.8). We must now demonstrate that the maps in these expressions, as
given by (2.54), (2.55) and (2.56), are good maps in cohomology. In the case of the Atiyah groupoid,
(3.8) and (2.55) and (2.56), this is already well known and established [2–4, 47]. Thus, we need only
focus on the map in (3.7) and (2.54).

For a map to be well defined between cohomologies the following properties should hold:

1. the image does not depend upon the representative used to describe the element of the source,

2. the image of a closed form is a closed form,

3. the map on cohomology is gauge invariant.

Zeroth order in ↵0

To zeroth order in ↵0 the structure is easy to verify. We reiterate the structure we are investigating
at this order here for ease of presentation.

H1(H) =

8
>><

>>:

ker

✓
ker{H1(TX)

[F ],[R]�! H2(End
0

(V ))�H2(End
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(3.16)

Note that the non-trivial maps acting on the bundle moduli and spin connection fluctuations are
order ↵0 in (2.54) and thus drop out above.

At this order in ↵0 the Bianchi identity is simply @@J = 0. From here it is trivial to see that
a form �Jc

a = ravc for some vc maps to an exact form, and thus the map image does not depend
upon the representative used in a given class. The same Bianchi identity also makes it clear that the
map @J always takes the source to closed forms. Finally the map is clearly gauge invariant under
all symmetries in the problem and thus, at zeroth order in ↵0, the maps we have obtained are well
defined between the cohomology groups.

First order in ↵0

At first order in ↵0 the map @J is replaced by M , as implicitly encoded in equations (3.13) and
(3.15). In addition the maps on �A0 in (3.9) appearing in (2.54), and the analogous structure for the
perturbations in H1(End

0

(TX)), are non-zero at this order in ↵0. Given all of this, the structure we
now have is as follows.
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• Consider	M-theory	on	a	Calabi-Yau	fourfold:

• So	the	allowed	complex
structure	are:

G(0,4) = 0 )

G(1,3) = 0 )

(@�C)abcd = 0

3

2
i�J b

[b
Gacd]b + (d�C)abcd = 0

ker

✓
H1(TX)

G(2,2)

�! H3(TX_)

◆

Does	this	work	in	non-heterotic	
cases? Becker,	Becker	hep-th/9605053



• How	about	type	IIB?

• First	column	just	is	just	Strominger again	and	we	
know	that	works…

IIB a = 0 or b = 0 (A) a = ±ib (B) a = ±b (C) (ABC)

1 W1 = F (1)
3 = H(1)

3 = 0
8 W2 = 0

6
F (6)

3 = 0
W3 =

± ∗H(6)
3

W3 = 0
eφF (6)

3 =

∓ ∗H(6)
3

H(6)
3 = 0
W3 =

±eφ ∗ F (6)
3

(3.20)

3

W̄5 = 2W4 =

∓2iH(3̄)
3 =

2∂̄φ
∂̄A = ∂̄a = 0

eφF (3̄)
5 = 2

3 iW̄5 =
iW4 = −2i∂̄A =
−4i∂̄ log a
∂̄φ = 0

±eφF (3̄)
3 = 2iW̄5 =
−2i∂̄A =
−4i∂̄ log a =
−i∂̄φ

(3.21)

F eφF (3̄)
1 = 2eφF (3̄)

5 =
iW̄5 = iW4 = i∂̄φ

Table 3.4: Possible N = 1 vacua in IIB.

These two angles parameterize a U(1)R subspace in the SU(2)R symmetry of the N = 2
underlying effective theory [74].

Note that in IIA there are no intermediate solutions (the solutions on the second column of
Table 3.3, for which the susy parameters are of “interpolating” type BC, do not depend on the
interpolating parameter β). Type A corresponds to a solution with NS flux only (plus, in IIA,
possible additional RR flux in singlet representations) which is common to IIA, IIB and the
heterotic theory, found in Ref. [2] (see Ref. [75] for an extensive analysis). It involves a complex
non Kähler manifold (W1 = W2 = 0, but W3 ̸= 0). In the second column, Type BC, the solu-
tion has RR flux only, and corresponds to the dimensional reduction of an M-theory solution on
a seven-dimensional manifold with G2 holonomy [54]. The fact that there are no intermediate
solutions was explained in Ref. [60] by looking at the eleven dimensional origin of the solu-
tions: M-theory compactifications on seven manifolds with G2 structure group where shown in
Ref. [76] to forbid fluxes, thus leading to compactifications on manifolds of G2 holonomy. Their
dimensional reduction gives the second column of Table 3.3. In order to allow non-trivial fluxes,
the structure group on the seven dimensional manifold should be further reduced to SU(3) or
subgroups thereof. An SU(3) structure in seven dimensions involves a vector in addition to
the fundamental 2-form and holomorphic 3-form of its six dimensional counterpart . If the
reduction to six dimensions involves a second vector, then the resulting structure group of the
six-dimensional manifold is SU(2) rather than SU(3). In order to get SU(3) structure in six
dimensions, the two vectors should coincide. In this case, the M-theory four-form flux reduces
purely to NS three-form flux (plus possibly some additional RR flux in singlet representations,
corresponding to M-theory flux along space-time) giving the first column in Table 3.3.

In IIB, on the contrary, there are solutions with intermediate values of α and β. Types A,
B and C are special because these angles are constant. Type A solution in the first column is
the same as the first column in IIA (setting the RR singlets in the latter case to zero), and
corresponds to the solution with NS flux only [2]. Type C, S-dual to type A, has RR flux
only, and the same non-vanishing torsion classes as type A. Type B, on the other hand, have,
besides RR 5-form flux, RR as well as NSNS 3-form fluxes. They are related by a Hodge duality
[12, 13], usually expressed in terms of the complex 3-form flux

G3 = F3 − ie−φH3 = F̂3 − τH3 (3.23)
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• For	example

and

together	imply

• In	fact	a	map	structure	can	be	written	for	all	three	of	
these	columns	(although	perhaps	not	in	general	for	a	
type	IIB	vacuum).

• Lets	look	at	how	this	works	in	a	case	everyone	is	very	
familiar	with.

W3 = ± ⇤H(6)
3 W4 = ⌥iH

(3)
3



• Take	a	Calabi-Yau	and	imaginary	self	dual	flux.

Define:

Then	we	have:

• Perform	the	perturbation	analysis	and	we	obtain	for	
the	allowed	complex	structure	moduli:

G3 = F3 � ie��H3

⇤G3 = iG3 G(0,3) = 0

ker(H1(TX)
G(2,1)�! H2(TX_))



• In	this	case	note	that

by	Serre duality.	

• So	if	your	map	is	sufficiently	general	it	will	be	
surjective,	and	all	of	the	complex	structure	would	be	
fixed.

• This	is	the	analogue	in	this	picture	of	the	counting	
matching	the	number	of	F-terms	to	the	number	of	
moduli	to	be	fixed.

h1(TX) = h2(TX_)



Higher	order	obstructions:	Warm	
up.
• How	do	higher	order	obstructions	appear	for	
bundle	moduli	in	Calabi-Yau	compactifications?
• Just	perturb	to	second	order:	

• And	expand	the	equations	of	motion	as	before:

A = A(0) + �(1)A+ �(2)A

f
xyz

�A(1)y
a

�A(1)z

b

= 2
⇣
D(0)

[a �A(2)

b]

⌘

x



• This	can	be	viewed	as	a	non-linear	map	structure.	
The	allowed	bundle	moduli	at	second	order	are:

(the	kernel	of	the	Kuranishi	map).

• In	terms	of	superpotentials,	this	is	associated	with	
a	cubic	interaction:

ker
�
H1(End0(V )) �! H2(End0(V ))

�

Z

X
⌦ ^ Tr

⇣
�(1)A

h
�(1)A, �(1)A

i⌘

Berglund,	Candelas,	de	la	Ossa,	Derrick,	
Distler,	Hubsch:	arXiv:9505164



•What	about	the	case	of	heterotic	compactifications	
where	we	are	interested	in														rather	than	

?

•We	have	the	sequence:

• So	we	can	compute:

H1(Q)
H1(End0(V ))

0 ! End0(V ) ! Q ! TX ! 0

H1(Q) =

8
<

:

H1(End0(V ))
�

ker
�
H1(TX) ! H2(End0(V ))

�

H2
(Q) =

8
<

:

coker

�
H1

(TX) ! H2
(End0(V ))

�

�
H2

(TX)



• And	you	would	think:

• Does	the	low	energy	supergravity	description	of	the	
string	agree?	We	might	look	for	a	map	structure	
something	like:

• Then,	for	example,	we	would	look	for	something	like:

in	rearranging	the	perturbed	equations	of	motion.

Now consider the following kernel,

↵ ⇠= ker(H1(Q) ! H2(Q)) , (1.13)

where

0 ! End0(V) ! Q ! T X ! 0 . (1.14)

Looking at the long exact sequence in cohomology associated to (1.14) we find the following
expressions for the two relevant cohomologies of Q (here I am assuming h0(T X ) = 0 for simplicity).

H1(Q) =

8
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H1(End0(V))
�

ker(H1(T X ) ! H2(End0(V)))
(1.15)

H2(Q) =

8
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�

H2(T X )
(1.16)

Given the above analysis, the quantity ↵ in (1.13) has two contributions:

↵ =

8
<

:

ker(H1(End0(V)) ! H2(Q))
�

ker(ker(H1(T X ) ! H2(End0(V))) ! H2(Q))
(1.17)

which correspond to the unstabilized bundle moduli and complex structure at second order respec-
tively. We will consider each of these in turn.

1.2.1 Connecting to supergravity

First we consider Equation (1.10). Firstly, this equation enforces the allowed �J
(1)c

b

to lie in the

kernel of the Atiyah map and thus be associated to an element of H1(Q). The �A(1) which solves
this equation can be broken in to two pieces. We have

�A(1) = �A
(1)
�J

+ �A
(1)
M

. (1.18)

In this expression, �A(1)
�J

is any particular solution to (1.10) and can be regard as the backreaction
on the gauge connection of the perturbation in complex structure (this is how the gauge connection

adjusts in order to remain holomorphic). The contribution �A
(1)
M

is then closed and, after considering
gauge transformations, therefore an element of cohomology. This is the bundle modulus part of the
perturbation of the connection and is associated to H1(End0(V)) ⇢ H1(Q).

Let us now give an example of a map from H1(Q) to H2(End0(V))�H2(T X ) which is of second
order. An element of the source would be of the form

 
�A

(1)
M

�J
(1)c
a

!
(1.19)

where �J (1) obeys (1.10) and thus has an associated �A
(1)
�J

. We define the following map into H2(Q).

 
�A

(1)
M

�J
(1)c
a

!
!

0

@
f
xyz

�A
(1)y
a

�A
(1)z

b

+ i(�J (1)c
[a D

(0)
|c| �A

(1)

b]
)x

�J
(1)c

[b
@|c|�J

(1)a
c]

1

A (1.20)
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There are several things to note with this expression. Firstly, we should mention that this is not
quite a well defined map in cohomology - we will modify it shortly so it becomes so. Secondly a lot
is rather implicit in the map as �A(1) is built out of two pieces as detailed in (1.18) and thus not all
of the dependence on �J (1) is immediately manifest on the right hand side.

Now we are interested in a map where the target is not H2(End0(V))�H2(T X ) but rather H2(Q).
Further more we are interested in the kernel of such a map. Using (1.20) as a starting point, we can
see that this map will specialize to one with the right target, and that the left hand side of (1.20)
will be in the kernel of this map if

f
xyz

�A
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[a D
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and �J
(1)c

[b
@|c|�J

(1)a
c] = @[b⇤

a

c] (1.22)

for some arbitrary ⇤ and � and some � 2 H1(T X ). The exact pieces on the right hand sides of the
above equations simply enforce the requirement that we hit zero in the target cohomology. The final
term in the first of the two equations ensures that we hit zero in coker(H1(T X ) ! H2(End0(V)))
and not simply in H2(End0(V)) (we are allowed to hit a piece of the form �c

[b
F x

a]c in the image of

(1.20) and still be in the zero element of this cokernel).
Let us relate this discussion to the field theory analysis of Subsection 1.1. First we note, from

Equation (1.8), that we may write,

�J
(2)a
a

= �J a

a

+ �J (c)a
a

. (1.23)

Here �J a

a

is any particular chosen solution to (1.8) and �J (c)a
a

is an arbitrary closed form of its type.
We can then write Equations (1.8) and (1.11) as follows. For Equation (1.8) we have,
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And for Equation (1.11) we have,
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Equations (1.24) and (1.25) are almost exactly of the same form as Equations (1.22) and (1.21)

if we make the identifications ⇤a

c

= 2i�J a

c

, �x

b

= 2�A(2)x

b

� i�J
(1)c

b

�A
(1)
c

and �c

b

= �i�J (c)c

b

. The

only di↵erence is the term i�J c

[b
F

(0)x
a]c in Equation (1.25). This is a modification to our naive guess

for the map (1.20). This term is a second order map from H1(T X ) to the target and so is perfectly
allowed. One might worry that because of the freedom in choosing �J that it is not uniquely defined
in terms of �J (1) and is therefore not uniquely defining a map. The di↵erence between the possible
choices is precisely something closed, however, and thus could be absorbed into the final term in
Equation (1.25), resulting in the same kernel expression, irrespective of how �J is chosen (the map is
unique given the cokernel nature of the target). Note that in the above discussion the map is purely
a function of �J (1) and �A(1) as it should be.
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• Indeed	you	do	find	something	like	this	– albeit	it	a	
little	bit	more	complicated	(due	to	a	piece	in	the	
second	order	correction	to							mixing	in).

• So	indeed	the	obstructions	are	captured	by	

�J
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0 ! End0(V) ! Q ! T X ! 0 . (1.14)
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H1(Q) =

8
<

:

H1(End0(V))
�

ker(H1(T X ) ! H2(End0(V)))
(1.15)

H2(Q) =

8
<

:

coker(H1(T X ) ! H2(End0(V)))
�

H2(T X )
(1.16)

Given the above analysis, the quantity ↵ in (1.13) has two contributions:

↵ =

8
<

:

ker(H1(End0(V)) ! H2(Q))
�

ker(ker(H1(T X ) ! H2(End0(V))) ! H2(Q))
(1.17)

which correspond to the unstabilized bundle moduli and complex structure at second order respec-
tively. We will consider each of these in turn.

1.2.1 Connecting to supergravity

First we consider Equation (1.10). Firstly, this equation enforces the allowed �J
(1)c

b

to lie in the

kernel of the Atiyah map and thus be associated to an element of H1(Q). The �A(1) which solves
this equation can be broken in to two pieces. We have

�A(1) = �A
(1)
�J

+ �A
(1)
M

. (1.18)

In this expression, �A(1)
�J

is any particular solution to (1.10) and can be regard as the backreaction
on the gauge connection of the perturbation in complex structure (this is how the gauge connection

adjusts in order to remain holomorphic). The contribution �A
(1)
M

is then closed and, after considering
gauge transformations, therefore an element of cohomology. This is the bundle modulus part of the
perturbation of the connection and is associated to H1(End0(V)) ⇢ H1(Q).

Let us now give an example of a map from H1(Q) to H2(End0(V))�H2(T X ) which is of second
order. An element of the source would be of the form

 
�A

(1)
M

�J
(1)c
a

!
(1.19)

where �J (1) obeys (1.10) and thus has an associated �A
(1)
�J

. We define the following map into H2(Q).

 
�A

(1)
M

�J
(1)c
a

!
!

0

@
f
xyz

�A
(1)y
a

�A
(1)z

b

+ i(�J (1)c
[a D

(0)
|c| �A

(1)

b]
)x

�J
(1)c

[b
@|c|�J

(1)a
c]

1

A (1.20)

2



Final	Comments

• It	would	be	nice	to	perform	a	similar	second	order	
analysis	for	the	Strominger	system	to	look	at	cubic	
interactions	in	that	case.

• In	the	future	we	would	like	to	map	some	of	this	
across	to	F-theory	using	Het/F	duality	(for	
example).
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