Maps, Moduli Spaces and Higher Order Constraints

James Gray
(Virginia Tech)

New stuff to appear in:

J.G. and Hadi Parsian arXiv:17??.?????

Lara Anderson, J.G., Magdalena Larfors and Andre Lukas

String Pheno 2017

July $3^{\text {rd }}-7^{\text {th }} 2017$, Virginia Tech

stringpheno2017 @phys.vt.edu
IDIVIViniaTech

Local Organizers:

Lara Anderson
Xin Gao
James Gray
Seung-Joo Lee Eric Sharpe
Jonathan Heckman Jonathan Link Djordje Minic llarion Melnikov

Warm up: Bundles on Calabi-Yau

- The moduli space of a Calabi-Yau compactification in the presence of a gauge bundle is not described in terms of

$$
H^{1}(T X) \oplus H^{1}\left(T X^{\vee}\right) \oplus H^{1}\left(\operatorname{End}_{0}(V)\right)
$$

- It is described in terms of a subspace of these cohomology groups determined by the kernel of certain maps
- Those maps are determined by the supergravity data of the solution.
- To see this we can analyze the supersymmetry conditions.
- Supersymmetry conditions:

$$
\begin{array}{ll}
\mathcal{J}^{2}=-1 & F_{a b}=F_{\bar{a} \bar{b}}=0 \\
N(\mathcal{J})=0 & g^{a \bar{b}} F_{a \bar{b}}=0
\end{array}
$$

- Perturb all of the fields:

$$
\mathcal{J}=\mathcal{J}^{(0)}+\delta \mathcal{J} \quad A=A^{(0)}+\delta A
$$

- From the left two equations we obtain the usual:

$$
\delta \mathcal{J}_{\bar{a}}^{b} \in H^{1}(T X)
$$

- To perturb the remaining equations use projectors:

$$
\bar{P}_{I}^{J}=\frac{1}{2}(1+i \mathcal{J})_{I}^{J}
$$

and rewrite our equation in a more usable form

$$
F_{\bar{a} \bar{b}}=0 \Rightarrow \bar{P}_{I}^{I^{\prime}} \bar{P}_{J}^{J^{\prime}} F_{I^{\prime} J^{\prime}}=0
$$

- And work out the perturbed equation to first order:

$$
i \delta \mathcal{J}_{[\bar{a}}^{d} F_{\bar{b}] d}=2 D_{[\bar{a}} \delta A_{\bar{b}]}
$$

What are the moduli according to this equation?

- Bundle moduli are still in the game:

$$
H^{1}\left(\operatorname{End}_{0}(V)\right)
$$

- But not all of the complex structure. The allowed moduli are in the following kernel:

$$
\operatorname{ker}\left(H^{1}(T X) \xrightarrow{F} H^{2}\left(\operatorname{End}_{0}(V)\right)\right)
$$

(notice the map is defined by the supergravity data).

- We can also rewrite this result in terms of a single sheaf cohomology group. Define:

$$
0 \rightarrow \operatorname{End}_{0}(V) \rightarrow \mathcal{Q} \rightarrow T X \rightarrow 0
$$

- Then a little sequence chasing and facts about Calabi-Yau/stable bundles reveals:

$$
H^{1}(\mathcal{Q})=\left\{\begin{array}{c}
H^{1}\left(\operatorname{End}_{0}(V)\right) \\
\oplus \\
\operatorname{ker}\left(H^{1}(T X) \rightarrow H^{2}\left(\operatorname{End}_{0}(V)\right)\right)
\end{array}\right.
$$

- So the moduli of heterotic Calabi-Yau compactifications are given by this, not the naïve complex structure and bundle moduli.

Anderson, JG, Lukas Ovrut arXiv:1107.5076

- Can we see similar structure in other cases?...

Non-Kahler Heterotic

Compactifications:

- Follow the same procedure with the Strominger system:

Hull, Strominger

$$
\begin{gathered}
F_{a b}=F_{\bar{a} \bar{b}}=0 \quad H=i / 2(\bar{\partial}-\partial) J \\
d H=-\frac{1}{30} \alpha^{\prime} \operatorname{tr} F \wedge F+\alpha^{\prime} \operatorname{tr} R \wedge R \\
g^{a \bar{b}} F_{a \bar{b}}=0 \quad H_{\bar{b} c \bar{a}} g^{\bar{b} c}=-6 \bar{\partial}_{\bar{a}} \phi
\end{gathered}
$$

Gillard, Papadopoulos and Tsimpis hep-th/0304126

Non-Kahler Heterotic Compactifications:

- Follow the same procedure with the Strominger system:

Hull, Strominger

$$
\begin{gathered}
F_{a b}=F_{\bar{a} \bar{b}}=0 \quad H=i / 2(\bar{\partial}-\partial) J \\
d H=-\frac{1}{30} \alpha^{\prime} \operatorname{tr} F \wedge F+\alpha^{\prime} \operatorname{tr} R \wedge R \\
g^{a \bar{b}} F_{a \bar{b}}=0 \quad H_{\bar{b} c \bar{a}} g^{\bar{b} c}=-6 \bar{\partial}_{\bar{a}} \phi
\end{gathered}
$$

Gillard, Papadopoulos and Tsimpis hep-th/0304126

Assumption:

Lemma: Let X be a compact Kähler manifold. For A a d-closed (p, q) form, the following statements are equivalent.

$$
\begin{gathered}
A=\bar{\partial} C \Leftrightarrow A=\partial C^{\prime} \Leftrightarrow A=d C^{\prime \prime} \\
\Leftrightarrow A=\partial \bar{\partial} \tilde{C} \Leftrightarrow A=\partial \hat{C}+\bar{\partial} \check{C}
\end{gathered}
$$

For some $C, C^{\prime}, C^{\prime \prime}, \tilde{C}$ and \check{C}.

- For the perturbation analysis the Atiyah computation goes through unchanged.
- The other equations are somewhat more messy.
- Here is what you find for the moduli:

$$
H^{1}(\mathcal{H})=\left\{\begin{array}{c}
\operatorname{ker}\left(\operatorname{ker}\left\{H^{1}(T X) \xrightarrow{[F],[R]} H^{2}\left(\operatorname{End}_{0}(V)\right) \oplus H^{2}\left(\operatorname{End}_{0}(T X)\right)\right\} \xrightarrow{M} H^{2}\left(T X^{\vee}\right)\right) \\
\operatorname{ker}\left(H^{1}\left(\operatorname{End}_{0}(V)\right) \xrightarrow{-\frac{4}{30} \alpha^{\prime}[F]} H^{2}\left(T X^{\vee}\right)\right) \oplus \operatorname{ker}\left(H^{1}\left(\operatorname{End}_{0}(T X)\right) \xrightarrow{4 \alpha^{\prime}[R]} H^{2}\left(T X^{\vee}\right)\right) \\
\oplus \\
H^{1}\left(T X^{\vee}\right) .
\end{array}\right.
$$

- Again this is a subset of what you might very naively write down (up to some subtleties).
- The relevant subset is picked out as nested kernels of maps where the maps are defined by the supergravity data.

Does this work in non-heterotic cases?

- Consider M-theory on a Calabi-Yau fourfold:

$$
\begin{aligned}
& G^{(0,4)}=0 \Rightarrow \quad(\bar{\partial} \delta C)_{\overline{a b c d}}=0 \\
& G^{(1,3)}=0 \Rightarrow \\
& \frac{3}{2} i \delta \mathcal{J}_{[\bar{b}}^{b} G_{a \bar{c} \bar{d}] b}+(d \delta C)_{a \bar{b} \bar{c} \bar{d}}=0
\end{aligned}
$$

- So the allowed complex structure are:

$$
\operatorname{ker}\left(H^{1}(T X) \xrightarrow{G^{(2,2)}} H^{3}\left(T X^{\vee}\right)\right)
$$

- How about type IIB?

IIB	$a=0$ or $b=0$ (A)		$a= \pm i b$ (B)	$a= \pm b$ (C)	(ABC)
1	$W_{1}=F_{3}^{(1)}=H_{3}^{(1)}=0$				
8	$W_{2}=0$				
6	$\begin{gathered} F_{3}^{(6)}=0 \\ W_{3}= \\ \pm * H_{3}^{(6)} \end{gathered}$		$\begin{gathered} W_{3}=0 \\ e^{\phi} F_{3}^{(6)}= \\ \mp * H_{3}^{(6)} \end{gathered}$	$\begin{gathered} H_{3}^{(6)}=0 \\ W_{3}= \\ \pm e^{\phi} * F_{3}^{(6)} \end{gathered}$	(3.20)
3	$\begin{gathered} \bar{W}_{5}=2 W_{4}= \\ \mp 2 i H_{3}^{(\overline{3})}= \\ 2 \bar{\partial} \phi \\ \bar{\partial} A=\bar{\partial} a=0 \end{gathered}$		$\begin{gathered} e^{\phi} F_{5}^{(\overline{3})}=\frac{2}{3} i \bar{W}_{5}= \\ i W_{4}=-2 i \bar{\partial} A= \\ -4 i \bar{\partial} \log a \\ \bar{\partial} \phi=0 \end{gathered}$	$\begin{gathered} \pm e^{\phi} F_{3}^{(\overline{3})}=2 i \bar{W}_{5}= \\ -2 i \bar{\partial} A= \\ -4 i \bar{\partial} \log a= \\ -i \bar{\partial} \phi \end{gathered}$	(3.21)
		F	$\begin{gathered} e^{\phi} F_{1}^{(\overline{3})}=2 e^{\phi} F_{5}^{(\overline{3})}= \\ i \bar{W}_{5}=i W_{4}=i \bar{\partial} \phi \end{gathered}$		

Table 3.4: Possible $\mathcal{N}=1$ vacua in IIB.
Grana, Minasian, Petrini, Tomasiello hep-th/0406137

- First column just is just Strominger again and we know that works...
- For example

$$
W_{3}= \pm * H_{3}^{(6)} \quad \text { and } \quad W_{4}=\mp i H_{3}^{(\overline{3})}
$$

together imply $\quad H=i / 2(\bar{\partial}-\partial) J$

- In fact a map structure can be written for all three of these columns (although perhaps not in general for a type IIB vacuum).
- Lets look at how this works in a case everyone is very familiar with.
- Take a Calabi-Yau and imaginary self dual flux.

Define: $\quad G_{3}=F_{3}-i e^{-\phi} H_{3}$
Then we have:

$$
* G_{3}=i G_{3} \quad G_{(0,3)}=0
$$

- Perform the perturbation analysis and we obtain for the allowed complex structure moduli:

$$
\operatorname{ker}\left(H^{1}(T X) \xrightarrow{G_{(2,1)}} H^{2}\left(T X^{\vee}\right)\right)
$$

- In this case note that

$$
h^{1}(T X)=h^{2}\left(T X^{\vee}\right)
$$

by Serre duality.

- So if your map is sufficiently general it will be surjective, and all of the complex structure would be fixed.
- This is the analogue in this picture of the counting matching the number of F-terms to the number of moduli to be fixed.

Higher order obstructions: Warm

 up.- How do higher order obstructions appear for bundle moduli in Calabi-Yau compactifications?
- Just perturb to second order:

$$
A=A^{(0)}+\delta^{(1)} A+\delta^{(2)} A
$$

- And expand the equations of motion as before:

$$
f_{x y z} \delta A_{\bar{a}}^{(1) y} \delta A_{\bar{b}}^{(1) z}=2\left(D_{[\bar{a}}^{(0)} \delta A_{\bar{b}]}^{(2)}\right)_{x}
$$

- This can be viewed as a non-linear map structure. The allowed bundle moduli at second order are:

$$
\operatorname{ker}\left(H^{1}\left(\operatorname{End}_{0}(V)\right) \longrightarrow H^{2}\left(\operatorname{End}_{0}(V)\right)\right)
$$

(the kernel of the Kuranishi map).

- In terms of superpotentials, this is associated with a cubic interaction:

$$
\int_{X} \Omega \wedge \operatorname{Tr}\left(\delta^{(1)} A\left[\delta^{(1)} A, \delta^{(1)} A\right]\right)
$$

Berglund, Candelas, de la Ossa, Derrick, Distler, Hubsch: arXiv:9505164

- What about the case of heterotic compactifications where we are interested in $H^{1}(\mathcal{Q})$ rather than $H^{1}\left(\operatorname{End}_{0}(V)\right)$?
- We have the sequence:

$$
0 \rightarrow \operatorname{End}_{0}(V) \rightarrow Q \rightarrow T X \rightarrow 0
$$

- So we can compute:

$$
\begin{aligned}
& H^{1}(\mathcal{Q})=\left\{\begin{array}{c}
H^{1}\left(\operatorname{End}_{0}(V)\right) \\
\oplus \\
\operatorname{ker}\left(H^{1}(T X) \rightarrow H^{2}\left(\operatorname{End}_{0}(V)\right)\right)
\end{array}\right. \\
& H^{2}(\mathcal{Q})=\left\{\begin{array}{c}
\operatorname{coker}\left(H^{1}(T X) \rightarrow H^{2}\left(\operatorname{End}_{0}(V)\right)\right) \\
\oplus \\
H^{2}(T X)
\end{array}\right.
\end{aligned}
$$

- And you would think:

$$
\alpha \cong \operatorname{ker}\left(H^{1}(\mathcal{Q}) \rightarrow H^{2}(\mathcal{Q})\right)
$$

- Does the low energy supergravity description of the string agree? We might look for a map structure something like:

$$
\binom{\delta A_{M}^{(1)}}{\delta J_{\bar{a}}^{(1) c}} \rightarrow\binom{f_{x y z} \delta A_{\bar{a}}^{(1) y} \delta A_{\bar{b}}^{(1) z}+i\left(\delta J_{[\bar{a}}^{(1) c} D_{|c|}^{(0)} \delta A_{\bar{b}]}^{(1)}\right)^{x}}{\delta J_{[\bar{b}}^{(1) c} \partial_{|c|} \delta J_{\bar{c}]}^{(1) a}}
$$

- Then, for example, we would look for something like:

$$
f_{x y z} \delta A_{\bar{a}}^{(1) y} \delta A_{\bar{b}}^{(1) z}+i\left(\delta J_{[\bar{a}}^{(1) c} D_{|c|}^{(0)} \delta A_{\bar{b}]}^{(1)}\right)^{x}=\left(D_{[\bar{a}}^{(0)} \Gamma_{\bar{b}]}\right)^{x}+\Delta_{[\bar{b}}^{c} F_{\bar{a}] c}^{x}
$$

in rearranging the perturbed equations of motion.

- Indeed you do find something like this - albeit it a little bit more complicated (due to a piece in the second order correction to $\delta \mathcal{J}$ mixing in).
- So indeed the obstructions are captured by

$$
\alpha \cong \operatorname{ker}\left(H^{1}(\mathcal{Q}) \rightarrow H^{2}(\mathcal{Q})\right)
$$

Final Comments

- It would be nice to perform a similar second order analysis for the Strominger system to look at cubic interactions in that case.
- In the future we would like to map some of this across to F-theory using Het/F duality (for example).

String Pheno 2017

July $3^{\text {rd }}-7^{\text {th }} 2017$, Virginia Tech

stringpheno2017 @phys.vt.edu
IDIVIViniaTech

Local Organizers:

Lara Anderson
Xin Gao
James Gray
Seung-Joo Lee Eric Sharpe
Jonathan Heckman Jonathan Link Djordje Minic llarion Melnikov

