

How to use image information?

Paweł Kukołowicz

Verification of radiotherapy

- In space of dose
 - Comparison of prescribed and delivered dose (dose distribution)
 - Eg. In-vivo dosimetry
- In space of location
 - Portal control
 - image based

To minimize the set-up error

- There are systematic and random errors in patient positioning
 - systematic errors deteriorate the dose delivery much more than random errors (3x)
 - The aim of portal control is to minimize the systematic error!

Veryfication of geometry

Geometry

- Comparison of
 - reference image and
 - treatment field image

Simultor image

7/42

DRR digitally reconstructed radiograph

Quality of DRR

Depends on

- slice separation
 - it is recommended to use 3 mm slice separation
 - but
- 3 mm slice separation makes contouring very tedious
 - interpolation tools
 - □ these tools must be checked !

Portal images

Courtesy of B.Heijmen

Edges zero of the second derivative of intensity

Matching of reference and portal images

Structures to be matched brain

AP

lateral

Structures to be matched H&N

lateral

AP

lateral

Correction strategies

Systematic and random errors – 2D

Cortesy of B.Heijmen

Systemic and random errors Group of "similar" patients A few patients R CENTER Mean group error M_x : $< m_{i,x} > \approx 0$ head M_v : $< m_{i,v} > \approx 0$ Distribution of systematic errors Σ_{x} : SD(m_{i.x}) Σ_{v} : SD(m_{i,v}) m_4 Random group error left $\sigma_{x} = \frac{1}{N} \sqrt{\sum_{i} \sigma_{i,x}^{2}}$ m_2 $\sigma_y = \frac{1}{N} \sqrt{\sum_i \sigma_{i,y}^2}$

Cortesy of B.Heijmen

600 prostate patients

(De Boer and Heijmen, IJROBP, 2001)

Strategies

On-line protocols

- measure and correct in the same fraction

Off-line protocols

- measure during first few fractions

correct if needed

٠

- •SAL Shrinking Action Level (Amsterdam)
- NAL No Action Level (Rotterdam)
- eNAL extended NAL

On-line correction

AP displacements (mm)

Data for on- off-line corrections

2DEPID

3D

- 2 orthogonal iamges
- CT type control
 - kV cone beam CT
 - MV cone beam CT
 - CT on rails

NAL (de Boer and Heijmen, IJROBP, 2001)

- Fraction 1,2, and 3
 - set-up a patient according to protocol
 - □ portal control, (m_{ix}, m_{iy}, m_{iz}) , i =1 ,2,3

before 4th fraction

- calculate the systematic error (m_{x,mean},m_{y,mean},m_{z,mean})
- from 4th fraction on
 - set-up a patient according to prtocol
 - shift couch with $-(m_{x,mean}, m_{y,mean}, m_{z,mean})$
 - irradiate

NAL results

600 prostate patients

(De Boer and Heijmen, IJROBP, 2001)

How precise may be radiotherapy?

Residual (after NAL) bony anatomy displacements [mm]:

		LR	CC	AP
(1) Prostate	σ	1.7	1.5	1.6
	Σ_{res}	1.1	1.1	1.1
Cervix ⁽²⁾	σ	2.6	2.9	2.7
	Σ_{res}	1.2	1.7	1.6
Lung ⁽³⁾	σ	2.0	2.4	2.4
	Σ_{res}	1.3	0.6	1.2
(4) head & neck	σ	1.6	1.6	1.4
	Σ_{res}	1.0	1.1	1.2

- ⁽¹⁾ De Boer et al. 2002
- ⁽²⁾ Kaatee et al. 2002
- ⁽³⁾ De Boer et al. 2003
- (4) De Boer et al. 2004

Why on-line verification is not recommended?

Because

- □ It is time consuming.
- Systemtic error influence on the margin three times more than random error.

However,

- It might be resonable if
 - random error is large
 - very high accuracy is needed.

Margins

Set-up margin

- to compensate set-up errors
 - errors measured with respect to external coordinate system (laser system)

Internal margin

- to compensate movement of the target caused by physiology (eg. breathing)
 - errors measured with respect to internal anatomy coordinate system (eg. pubis symphisis)

ICRU 62 Definitions

GTV

C

How to add margins?

 If set-up and internal errors may be treated as not correlated, than we add errors in quadrature

$$\Delta_{tot} = \sqrt{\left(\Delta_{set-up}\right)^2 + \left(\Delta_{int\ ernal}\right)^2}$$

$$\sigma_{tot} = \sqrt{(\sigma_{set-up})^2 + (\sigma_{int\ ernal})^2}$$

random

systematic

Margins

Two formulas

$$M = 2 \cdot \Delta_{tot} + 0, 7 \cdot \sigma_{tot}$$

To cover the CTV for 90% of the patients with the 95% isodose (analytical solution). Herk Red, 47: 1121 - 1135, 2000

$$M = 2,5 \cdot \Delta_{tot} + 0,7 \cdot \sigma_{tot}$$

Margin size which ensures at least 95% dose is delivered to (on average) 99% of the CTV. Stroom, Red, 43: 905-919,1999 Implementation of geometry control

- The most important task in radiotherapy department
 - "Lens of quality"
- This can't be an incidental action
 - This must be a program for the systematic monitoring and evaluation of the various aspects of radiotherapy quality

Data

Must be collected and regurarly analysed

- feed back is a must
 - in our department ones a year all results are presented to doctors, radiation technologiests and physicists
- □ big errors must be analysed as quickly as possible
 - conclusions must be drawn
- group systematic errors (mean of means) play an important role in general evaluation of the quality of work and quality of equipment
 - group systematic error should not be different from zero

Breathing and related problems

TABLE II. Abdominal motion data. The mean range of motion and the (minimum-maximum) ranges in millimeters for each site and each cohort of subjects. The motion is in the superior-inferior (SI) direction.

		Breathing mode	
Site	Observer	Shallow	Deep
Pancreas	Suramo (Ref. 57)	20 (10-30)	43 (20-80)
	Bryan (Ref. 59)	20 (0-35)	-
Liver	Weiss (Ref. 66)	13±5	-
	Harauz (Ref. 67)	14	-
	Suramo (Ref. 57)	25 (10-40)	55 (30-80)
	Davies (Ref. 58)	10 (5-17)	37 (21-57)
Kidney	Suramo (Ref. 57)	19 (10-40)	40 (20-70)
	Davies (Ref. 58)	11 (5-16)	-
Diaphragm	Wade (Ref. 68)	17	101
	Korin (Ref. 64)	13	39
	Davies (Ref. 58)	12 (7–28)	43 (25-57)
	Weiss (Ref. 66)	13±5	-
	Giraud (Ref. 63)	-	35 (3-95)
	Ford (Ref. 76)	20 (13-31)	-

CT for planning

Artefacts

without breathing control

with breathing control

In relations to bronchial tree

With breathing control

RPM system

Pattern of breathing

Patient A

Deep-inspiration breath hold technique

DIBH

for patients with left breast cancer

 for some of tchem (they have to inhale and keep inhale for some time 10 – 15 sec)

Fig. 2. Axial, sagittal and coronal images of one patient (a) FB (b) DIBH showing the displacement of the breast PTV (green) and boost PTV (orange) away from the heart in DIBH and the inferior movement of the heart in the DIBH image in line with diaphragmatic expansion. Tangential and SIB beams are displayed.

DIBH - advantages

Table 1. Comparison of volume and dosimetric data for FB and DIBH plans for left-sided adjuvant breast radiotherapy

	DIBH mean	FB mean	P-value
Total lung volume (cc)	2051	1126	P < 0.0001
Left lung V20 (Gy)	22.1	23.2	P = 0.1366
Mean left lung dose (Gy)	12.77	13.41	P = 0.0584
Heart V30 (Gy)	2.45	7.06	P < 0.0001
Mean heart dose (Gy)	3.96	6.88	P < 0.0001
Irradiated heart volume (cc)	2.1	36.9	P < 0.0001
Maximum heart depth (cm)	1.17	2.08	P < 0.0001
Mean LAD PRV dose (Gy)	21.94	33.67	P < 0.0001
Maximum LAD PRV dose (Gy)	45.62	51.59	P = 0.0032
Mean contralateral breast dose (Gy)	0.61	0.63	P = 0.4758
Boost volume (cc)	286	272	P = 0.0006

DIBH, deep inspiration breath hold; FB, free breathing; LAD, left anterior descending coronary artery; PRV, planning risk volume.

Thank you for your attention!

p.kukolowicz@zfm.coi.pl