

X- Ray source

The same of diagnostic imaging (more colimationm less filtration low kV, less power and thermal dissipation

Energy : 50 - 120 kV Filtration: 3-15 mm AI

Detector Se-a flat panel detector High dynamic rate (until 60 fr/s)

Acquisition Geometry 200° - 360° rotation angle

A. Torresin- Fisica Sanitaria - Milan

Detector ADC addressing readout Figure 1. Schematic of a flat-panel detector. An array of amorphous-silicon diodes positioned on a glass plate is covered by a scintillator screen of columnar grown CsI:TI. Addressing lines and read-out lines are respectively coming from and going to chips at the edge of the plate (courtesy Philips Research Laboratories, Aachen). A. Torresin- Fisica Sanitaria - Milano

CBCT...some examples

AXIOM Artis FDi systems (Siemens)

- FPD 40x30 cm²
- a-i/CsI Trixel
- 0.154 mm pixel size 360°

A. Torresin- Fisica Sanitaria - Milar

	El	ekta XV	VI	
	For 2: Likes Sparge [®] at Determine of Ford			
Protocol	Head-and-neck*	Prostate	Pelvis	Chest
Phantom size (cm)	18	30	30	30
kV collimator	520	M10	M20	L20
kVp	100	120	120	120
mA	10	40	25	25
ms/frame	10	40	40	40
#frames	361	643	643	643
Total mAs	36.1	1028.8	643	643
Acquisition angle**	350° to 190°cw	273 to 269°cw	273° to 269°cw	273° to 269°cw
A. Torresin- Fisic	a Sanitaria - Milano	Song	WY et al, Med Phys, 2008 and	d <u>Elekta data Sheet</u>

Acceptance Test (AT) and Quality Control (CQ)

- Quality control begins when the equipment is installed, and continues throughout its lifetime.
- The acceptance test, commissioning, and status testing of equipment should ensure that the system is operational according to the manufacturer's specifications
- At the time of acceptance, baseline measurements of image quality and dosimetry should be taken along with parameters that affect these factors.
- These measurements will be used as a reference for comparison with later measurements, and can indicate if the system performance has degraded and needs corrective action.

📕 A. Torresin- Fisica Sanitaria - Milano

Acceptance Test (AT) and Quality Control (CQ)

- CBCT AT and CQ involve Image Quality&dose
- Large experience in Image Quality&dose in – Angiography
 - Dental

A. Torresin- Fisica Sanitaria - Milano

BUT in radiotherapy Image quality&dose needs different approaches

The EFOMP-ESTRO-IAEA protocol for quality control of CBCT

EFOMP CBCT working group

Authors (alphabetically)

Jonas Andersson Alexandru Dasu Sue Edyvean Julia Garayoa Roca Vesna Gershan Hugo de las Heras Gala * Irene Hernandez Giron John Holroyd Mats Nilsson Skane Primož Peterlin Osvaldo Rampado Christie Theodorakou Alberto Torresin**

Affiliation

 Norrlands University Hospital, Umea, Sweden Linkoping University, Linkoping, Sweden Public Health England (PHE), Chilton, Didcot, Oxfordshire, UK Fundacion Jimenez Diaz, Madrid, Spain Faculty of Natural Sciences and Mathematics, Skopje, Macedonia
 QUART GmbH, Zorneding, Germany Leiden University Medical Center, Leiden, The Netherlands Dental X-ray Protection Services, PHE, UK University Hospital, Malmo, Sweden Institute of Oncology Ljubljana, Slovenia University hospital, Turin, Italy The Christie NHS Foundation Trust, Manchester, UK Medical Physics Dep. Ospedale Niguarda Ca' Granda, Milano, Italy

Group leader

** EFOMP supervisor - Education and Training Chairperson of EFOMP

Officially approved from IAEA and ESTRO

This report is dedicated to our deceased colleague and friend Wil van der Putten, who co-founded the WG.

An approach to be applied all around the globe

Unified

Unite experts from different fields (radiology and radiotherapy) <u>Find a procedure applicable to all CBCT devices</u> (dental and interventional radiology & radiotherapy)

Justified

Use **as plain a language** as possible <u>Explain why it is necessary to perform the tests</u> Describe the **connections with other guidelines** (keep compliance)

Accessible to everyone

- Try to use **inexpensive or free** tools
- Recommend only **objective** and **feasible** tests
- <u>Publish it for free (all authors have worked on top of their duties!)</u>

📕 A. Torresin- Fisica Sanitaria - Milano

Important:

of this guideline • The purpose is to demonstrate that the same tools (phantoms geometrical setting with specific and software **QA** evaluation) can be used for all applications of **CBCT:** dental. interventional radiology and radiotherapy as shown below in the image

Issue:

• The ICRP publication 129:

"Radiological Protection in Cone Beam Computed Tomogra (CBCT)" Rehani MM, Gupta R, Bartling S, Sharp GC, Paux R, Berris T, et al. ICRP publication 129. Ann. ICRP 2015;44(1 127 n in Cone B

is the most recent international effort to provide unified recommendations for quality control of CBCT devices.

• However, the recommendations are focused on the measurement of dose and they only briefly mention measurements of image quality.

- Simplicity in terminology and methodology has been favoured where different but equivalent terms or methods were available.
- The presented tools and procedures aim to simplify the work of professionals involved in the quality control of CBCT.
- The document may also satisfy the research interest of many Medical Physicists in objective comparisons among different technologies.
- Consensus among the group and with existing national and international guidelines has been pursued to define action levels for the different technologies.

<section-header><text><section-header><section-header><text>

				Ph	ar	itor	ns				
Phantom	Diameter (mm)	Height (mm)	Materials	Noise/ Uniform ity	CNR	Spatial resolution	Contrast resolution	Voxel density values	Artefacts	Geometric accuracy	Applications
Quart DVT_AP	160	150	PMMA PVC Air Enhancement set ²	Y	Y	Y		o'	Y	Ŷ	Universal CBCT ¹
Quart DVT_KP CBCT 161	160	40	PMMA PVC Air	Y	Y	Y	0.	Y	Y	Y	Universal CBCT ³
Quart DVT_150	120 x 120 x	60 mm ³		N	N	Y	N	N	N	N	Dental 3D
SedentexCT IQ	160	162	PMMA Aluminium PTFE Delrin LDPE Air	Y	Y	r O	Y	Y	Y	Y	Dental CBCT
QRM ConeBeam CT	160	143	Water eq Bone eq Air -200HU to -3HU	Y	Č	Ŷ	Y	Y	N	N	Universal CBCT ⁴
Steiding et al	100	100	-1000HU -30HU 0 30HU HA100-bone eq	Y	Y	Y	N	Y	Y	N	Universal CBCT ⁵
Torgersen et al	160	70	Polyethene Nylon Acetal Teflon	Y	Y	Y	Y	Ŷ	N	Y	Dental CBCT
A. Torr	esin- Fisica	a Sanitai	ria - Milano								

Diameter (mm) Height (mm) Materials (mm) Noise/ (mm) CNR Uniform Spatial resolution Contrast resolution Voxel density Artefacts accuracy Geometric accuracy Application accuracy Catabhan 150 250 Polystyrene, Polystyrene, H20, LDFE, PMPK, Air Y	Phantoms											
Catphan Tefion, Delrin Acrylic, Polystyrene, H20, LDFE, PMP, Air Y <th>Phantom</th> <th>Diameter (mm)</th> <th>Height (mm)</th> <th>Materials</th> <th>Noise/ Uniform</th> <th>CNR</th> <th>Spatial resolution</th> <th>Contrast resolution</th> <th>Voxel density</th> <th>Artefacts</th> <th>Geometric accuracy</th> <th>Applications</th>	Phantom	Diameter (mm)	Height (mm)	Materials	Noise/ Uniform	CNR	Spatial resolution	Contrast resolution	Voxel density	Artefacts	Geometric accuracy	Applications
CIRS radiotherapy 250 330 Electron Density anatomic Insert, unform slab, bone, Y	Catphan	150	250	Teflon, Delrin Acrylic, Polystyrene, H20, LDPE, PMP, Air	Y	Y	Y	Y	Y	Y	Y	Universal CBC
 * The traditional, subjective evaluation of contrast resolution is substituted in these phantoms by an objective evaluation of contrast-to-noise ratio (CNR) * As stated by the manufacturer: dental volume tomography, C- arm angiography, CT * Enhancement set includes: Water, Soft Tissue, Bone and Bone and Tooth equivalent materials * As stated by the manufacturer: dental volume tomography, CECT, 3D imaging * As stated by the manufacturer: dental volume tomography, C-arm, angiography, CT scanners with large flat panel detectors * As stated by the manufacturer: GET systems 	CIRS radiotherapy	250	330	Electron Density anatomic insert , uniform slab, bone.	Y	Y	Y	×	Y	Y	Y	Universal CBC
	 * The tradition * As stated by ti ²Enhancement * As stated by ti * As stated by ti * As stated by ti 	al, subjective ne manutactu t set includes: ne manufactu ne manufactu ne manufactu	e evaluatio urer: dent : Water, Si urer: dent urer: dent urer: CBCT	bone, on of contrast resolu al volume tomograj oft Tissue, Bone and al volume tomograj al volume tomograj "systems	ition is subs bhy, C-arm a d Bone and T bhy, CBCT, 3 bhy, C-arm,	tituted i angiogra footh eo D imagii angiogra	 in these phanti phy, CT quivalent mate ng aphy, CT scann	 oms by an obje rials ers with large f	ctive evaluat	Lion of contra	 st-to-noise rati	 o (CNR)

Methodology

- Introduction
- Definition
- Purpose
- Equipment
- Test frequency
- Procedures – Freeware tip
- Action levels

A. Torresin- Fisica Sanitaria - Mila

Image quality assessment

The parameters used for image quality assessment are:

- > Uniformity
- accuracy of density values (or Hounsfield units where appropriate)
- geometrical evaluation
- Noise
- Iow-contrast resolution (including contrast-to-noise ratio)
- high-contrast resolution.

Detailed procedures using free software and commercially available test phantoms are described in the guidelines, which are currently under external review.

A. Torresin- Fisica Sanitaria - Milano

<u>Summary</u>	<u>table of i</u>	mage o	luality	param	eters, j	proced	lures
<u>Action le</u>	<u>evels</u> are h me	and ac ighly d thod us	ction lev epende sed to a	vels. nt on t ssess i	he pha t.	ntom	and
			Frequency*		A A	Action level	
Parameter	Procedures	Dental	Interventional radiology	Radiotherapy	Dental	Interven- tional rad.	Radiotherapy
3.1 Uniformity	XYZ uniformity curves	An	Annual Monthly or > 10% difference a		specifications, ence air water	Deviation from baseline > 10 HU	
	DIN method			Unifor	mity parameter	r U < 5	
	Geometrical accuracy	Annual	(or none)	Monthly	>1.mm	> 2 mm	> 2 mm for
	Linearity	Annual	(or none)	Monthly	- 1 11111	2 11111	conventional
3.2 Geometrical precision	Spatial Stability	n	S	Monthly (coincidence of isocentres daily)	n.r.	n.r.	treatments, >1 mm for SRS/SBRT
3.3 Voxel density values	Voxel values for different materials		nual	Monthly	Manufacturer specifications, or > 25% difference air water	Deviations > 5 baselir (still unde	60 HU from the ne value r research)
3.4 Noise	ROI standard deviation	An	nual	Monthly	Differen	ces from baseli	ne > 20%
3.5 Low contrast resolution	Contrast-to-noise ratio		Annual		Differen Accept	ces from baselir ance indicator	ne > 40% < 100 [§]
3.6 Spatial resolution	Frequency at 10 % of the modulation transfer function		Annual		< 10 lp/cm (high resolution mode)	< 5	p/cm

Procedure	Reported value	Method	Reference	
MV CBCT Head and neck MV CBCT	50–150 mGy	Absorbed dose at isocentre	Pouliot et al., 2005	Doses in (CBCT
Head and neck Pelvis	60-73 mGy 99-121 mGy	TLDs, film and ion chamber measurements in cylin drical and anthropo- morphic phantoms	Gayou et al., 2007	procedures in
kV CBCT Head and neck Chest Pelvis	1–17 mGy 11–18 mGy 24–54 mGy	CTDI _w	Song et al., 2008	radiotherapy.
kV CBCT Head and neck Pelvis Head and neck Pelvis Head and neck	36.6 mGy 29.4 mGy 1.7 mSv 8.2 mSv 3.8 mGy (new protocol) 59.4 mGy (old protocol)	CTDI _w Effective dose, TLDs in female phantom, absorbed dose to the lens of the eye	Cheng et al., 2011	
kV CBCT Head and neck Chest Pelvis Head and neck Chest Pelvis	2.1-10.3 mSv 5.2-23.6 mSv 4.9-22.7 mSv 13-67 mGy 14-64 mGy 12-54 mGy	Effective dose, TLDs in female phantom Mean skin dose at irradiated site, TLDs in female phantom	Kan et al., 2008	
kV CBCT Head and neck Pelvis	7±0.5 mGy (at simulator) 1±0.05 mGy (at linac) 12±3 mGy (at linac) 36±12 mGy (at linac)	Average absorbed dose, TLD measurements in anthropomorphic phantom	Stock et al., 2012	ICRP
kV CBCT Chest	Spinal cord: 8-22 mGy Left lung: 12-29 mGy Right lung: 16-40 mGy Heart: 17-30 mGy Body: 12-31 mGy	Absorbed doses from Monte Carlo simulation	Spezi et al., 2012	Annals of the ICRP ICRP Publication 129 Padiological Protection in Core Ream Computed
kV CBCT Head and neck	Spinal cord: 1.3–1.7 mGy Mandible: 4.5–8.3 mGy Right parotid: 0.3–2.7 mGy Left parotid: 0.3–2.7 mGy Left eye: 0.1–1.8 mGy Right eye: 0.1–1.8 mGy	Absorbed doses from Monte Carlo simulation	Spezi et al., 2012	

The dose	e is eval	luated b	y meas	suring	the KA	P or		
the incid	lent air	kerma	$(\mathbf{K}_{\mathbf{a},\mathbf{i}})$ a	t the d	etector			
		Frequency			Action level			
Parameter	Dental	Interventional radiology	Radiotherapy	Dental	Interventional radiology	Radiotherapy		
KAP (Kerma area product)		Annual		KAP larger than 250 mGy cm ²	Not available	Not available		
K _a (FDD) (air kerma at the detector)		Annual			D _{FOV} larger than 50 mGy (following equation 5.1)			
A. Torresin- Fisice	Sanitaria - Milan							

Open Questions (1/2)
Scattering within the patient:
 can contribute to additional dose to the patient
 reaching the detector can contribute to image degradation
 Add additional noise
– Reduce contrast
 Induce localized artifacts
A. Torresin- Fisica Sanitaria - Milano

Open Questions (2/2)

Frequent use of CBCT adds a significant amount of dose to the patients beside the already large doses from regular megavoltage photon beams

1) CBCT patient organ dose must be evaluated

A. Torresin- Fisica Sanitaria - Milan

2) CBCT patient organ dose should be calculated by TPS (Total _{dose}: kV_{dose} +MV_{dose})

Kerma in air						
	Pelvis on line Chest on line	Head and Neck on line S20	Prostate on line			
voltage	120 kV	100 kV	120 kV			
current	25 mA/frame	10 mA/frame	40 mA/frame			
Time per frame	40 ms/frame	10 ms/frame	10 ms/frame			
collimator	M20	S20	M10			
start> stop	-179,3° → 179,0°	-100° → 100°	-179,3° → 179,0°			
No. Frame	648	362	648			
→ mAs	648 mAs	36,2 mAs	1038,8 mAs			
K _{air} /frame @virtual iso	66,2 μGy / frame	3,77 µGy / frame	27,3 µGy / frame			
nK @virtual iso	6.6 mGy / 100mAs	3.8 mGy / 100mAs	6.6 mGy / 100mAs			

Patie p Typie	ent's O CT vs cal prostate	rgan Do CBCT a IGRT/IMI	DSE RT	
		Dose (mGy)		
	pCT/exam	CBCT/exam	In vivo CBCT/ exam	
Prostate	17	18		
Testis	8	11		
Bladder	21	24		
Rectum	16	17	17.2 (1)	
Kidney	2	2		
(1): C.Walter et al, Ra A. Torresin- Fisica Sanitaria - Milano	diotherapy and Oncology (85 (2007) 418–423		

Patient's Organ Dose IMRT vs CBCT

• For a typical prostate IGRT/IMRT course (~80 Gy)

Where?	IMRT dose/fraction (Gy)	kV CBCT dose/fraction (Gy)
PTV	2	
Rectum	0.9	0.017
Bladder	0.7	0.024

• The usage of kV CBCT in the clinical practice should be kept as minimum as possible (OAR)

A. Torresin- Fisica Sanitaria - Milan

Monte Carlo Setup Dose evaluation simulation 🗱 Patient input dose - U X Input dose quantity and unit: n 🔿 Han Fun 😥 Han Fun 🔒 Save Fun 🔒 Save Fun de 📄 📇 Dat As fun Input dose value: 1.0000 Air kerma at Ref distance (mGy) O Dose-Area Product (mGycm²) Exposure at Ref distance (mR) -73.20 F Incident air kerma va used in calculations: -----C Exposure -Area Product (Rcm^2) C Current -Time Product (mAs) Dise. (Input dose quantities are for measurements without BSF) [Corresponds to about 10.2mAs] R APATR OK ! Cancel 📕 A. Torresin- Fisica Sanitaria - Milano

S	patial	Resol	ution	
			2 km (*) 1 km (*) 21 km (*)	
Spatial Resolution				
	СВСТ	CT Philips	AngioCT Axiom	O-Arm
	Elekta XVI	Brilliance 16	Siemes	Medtronic
MTF%	7 lp/cm	6 lp/cm	8 lp/cm	9 lp/cm

Conclusions

- These guidelines include the minimum tests that should be performed to ensure reliable, safe and consistent performance of CBCT devices.
- This minimum has been sought to guarantee compatibility with all manufacturers, all cone beam modalities and existing national and international documents

A. Torresin- Fisica Sanitaria - Milai

For exercise

- Quality control in cone-beam computed tomography (CBCT): EFOMP-ESTRO-IAEA protocol
- Two open source sotware: ImageJ and IQ Works for image display and Image Analysis
- You can find an image acquisition of Cadphan Phantom acquired by Claudia Carbonini (Medical Physicis of Med Phys- Niguarda, MI, Italy) using Elekta Synergy CBCT.

• **<u>DEMO</u>** of some application of the protocol;

A. Torresin- Fisica Sanitaria - Mila

