

Special techniques overview : IORT

School on Medical Physics for Radiation Therapy International Center for Theoretical Physics , Trieste 31 March 2017

Mara Severgnini, mara.severgnini@asuits.sanita.fvg.it

What is Intraoperative Electron Beam Radiation Therapy (IOERT)?

Intraoperative Electron Beam Radiation Therapy is the application of radiation directly to the residual tumor or tumor bed during cancer surgery

History

IORT is NOT a new approach to cancer management. As the result of pioneering work by Dr. Abe in Kyoto, Japan, IORT using linear accelerators has been used in the U.S.A., Europe and Japan for the treatment of malignancies in the abdomen (sarcomas, rectum, gynecologic and retroperitoneal tumors)

- 1909: Beck treated a patient with colon cancer using low-energy X-rays
- Early 1970, Dr. Abe in University of Kyoto, Japan
- 1978, IORT pioneered in the U.S.A.: - Howard University/N.C.I., Washington, D.C.
 - Massachusetts General Hospital

IOERT Advantages and Benefits

• The treatment is performed at the time of surgery, when the target area (the tumor bed) is exposed and the applicator can be placed directly over the target

• Organs at risk may be retracted and shielded as necessary

• Residual tumor and tumor bed can be irradiated without irradiating sensitive skin.

Patients with advanced disease can safely receive a higher dose of radiation, Substantially increases the effective dose of radiation to the tumor bed

IOERT Advantages and Benefits

•More rapid return to better quality of life by often eliminating of pre/post operative external beam radiation treatments

• Convenience and cost effectiveness

• Breadth of IOERT Clinical Applications (Locally advanced and recurrent rectal, Locally advanced and recurrent GYN, Pancreatic, Gastric, Bladder, Soft tissue, bone and retroperitoneal sarcomas, Head and Neck, Hepatabiliary, Esophageal, Central Nervous System Tumors, Breast, Prostate)

IORT Low kV DEVICE₁

INTRABEAM[™]

- INTRABEAM[™] Radiotherapy System (IORT) (Zeiss Surgical, Oberkochen Germany) has a miniature X-ray source at the end of a long 10-cm probe, 3.2 mm in diameter. At its end, the accelerated electrons strike a gold target resulting in a nearly isotropic X-ray distribution around the tip
- The miniature X-ray source delivers up to 50kV of energy to the target tissue, and the steep dose fall-off ensures that most of the dose stays in the target tissue. The decrease in radiation protects surrounding healthy tissue and minimises shielding requirements.
- Because the X-ray are of low energy, no special wall, floor or ceiling shielding is required and the treatment can be carried out in conventional ORs, which normally have adequate shielding for intraoperative diagnostic radiology.
- A typical dose rate is 2Gy/min at 1 cm from the center of target

http://www.targit-research.org/clinics/intrabeam/mode-of-action/ Intraopearative Irradiation, Techniques and Results, Humana Press

COMMISSIONING

IOP PUBLISHING

Phys. Med. Biol. 55 (2010) N359-N369

PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/55/12/N02

NOTE

Dosimetry measurements with an intra-operative x-ray device

D J Eaton and S Duck

Radiotherapy Physics, Royal Free Hospital, London, NW3 2QG, UK

E-mail: davideaton@nhs.net

Received 16 December 2009, in final form 19 March 2010 Published 26 May 2010 Online at stacks.iop.org/PMB/55/N359

Abstract

The INTRABEAM 50 kV x-ray device can be used for intra-ope breast irradiation. Spherical applicators are added to the source proa radially symmetric radiation dose. Dosimetric data for calculatio dose were measured for this unit and a superficial unit with a quality, as defined by half value layer (HVL). Chamber calibration and chamber correction factors, kch, were determined based on HV to the IPEMB code of practice and addendum. Depth doses were a using an ionization chamber and GafChromic EBT film. HVL w as 0.85-1.30 mm Al across the range of applicator sizes. Value: kch were found to be similar for the two units and all INTRABEA sizes. Therefore, calibration of ionization chambers, radiochro other relative dosimeters could be performed on the superficial u the advantage of higher dose rates and lower dependence on sm in detector positioning. Depth dose measurements performed us agreed with chamber values, published and manufacturer data, giv and robust method for commissioning and regular quality assurar

1. Introduction

1.1. The INTRABEAM system

Partial breast irradiation after surgery is a topic of extensive current investigation of cancer. Several randomized trials are underway (Offersen et al 2009), o

Figure 5. PDD curves for (a) Therapax 3, and INTRABEAM unit with (b) 1.5 cm, (c) 3.0 cm, (d) 3.5 cm and (e) 5.0 cm diameter applicators. Data are normalized to the point of clinical dose prescription: at the surface for the Therapax 3; and 10 mm from the applicator surface for the INTRABEAM unit. Error bars show estimated uncertainties in measurement, at the 1σ level.

IORT Low kV DEVICE₂

Low KV-IORT AXXENT Xoft

The Xoft S700 Axxent system is an electronic brachiterapy device that operates at energy between 20 and 50 kV. The Axxent[®] Electronic Brachytherapy System[®] utilizes a proprietary miniaturized X-ray source to apply radiation directly to a tumor bed within the body. The Axxent X-ray Source delivers high-dose rate, low energy radiation treatment without the use of radioactive isotopes.

It's a flexible device.

A microminiature X-ray tube is located inside a flexible, disposable sheath that permits water cooling of X-ray tube.

Source is designed for single patient use of 10 fractions.

The manufacturer quotes a nominal dose rate of 0,6 Gy/min at 3 cm in water.

Commissioning

Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment^{a)}

Yi Rong^{b)}

Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494

James S. Welsh

Department of Human Oncology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494

(Received 26 April 2010; revised 10 August 2010; accepted for publication 11 August 2010; published 29 September 2010)

Purpose: The Xoft Axxent[®] x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model \$700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic[®] EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators.

Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with \pm 5% variation for 16 sources. The dose-rate output and stability (within \pm 5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be measured for each case with varying shapes of cutouts.

Conclusions: Together with TG-61, the authors' methodology provides comprehensive calibration procedures for medical physicists for using the Xoft eBx system and skin applicators for nonmelanoma skin cancer treatments, © 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3489379]

Key words: nonmelanoma skin cancer, basal cell carcinoma, squamous cell carcinoma, electronic brachytherapy, surface applicator

Med. Phys. 37(10), October 2010

Brief comment on Low kV QA

Daily and Pre-Treatment Checks:

For Intrabeam:

-mechanical checks on the probe straightness,

-verification of the symmetry of the dose in a plane orthogonal to the probe axis

-calibration of both internal and external radiation monitor

For Axxent system self-checks similar to brachitherapy system

Monthly Checks:

Only for Axxent system Output of the X-ray device is checked by means of an on-board well chamber; this also serves to check source positional accuracy and timer accuracy and linearity.

Annual Checks:

For Intrabeam:

-distance dose curve should be measured for every voltage and current settings and compared with those taken at the time of the commissioning using the water phantom.

-For Axxent system a more extensive set of tests is performed: source position accurancy and timer accuracy, the marker catheters are checked for their overall condition

Electron beam characteristics

- Rapid rise to 100%
- Region of uniform dose (proximal 90% to distal 90%)
- Rapid dose fall-off
- High surface dose
- Clinically useful range up to 5-6 cm depth

With conventional LINAC

IOERT with Conventional Equipment Using

- Patient Transportation
- Remove malignancy in operating room
- Temporarily close or cover the surgical wound
- Move the patient with all monitoring and anesthesia equipment– Out of Operating Room– Into radiation oncology treatment bunker
- Reopen surgical wound
- Treat with electron radiation from conventional accelerator
- Return to operating room
- Complete the surgery and close surgical wound

With dedicated linear Accelerators₁

IOERT dedicated, selfshielded, mobile, electron linear accelerator available when needed in a standard operating room, SOFT DOCKING system Dose per pulse = conventional linac

4 energy (4, 6, 9, 12 MeV) 90% isodose cm (1.1, 1.9, 2.9, 3.5) SSD=50 cm 45 applicators (3 sets with 0°, 15°, 30° bevel angle)

With mobile Linear Accelerators₂

LIAC

Model	LIAC 10 MeV	LIAC 12 MeV		
Nominal Energy	4 - 6 - 8 - 10	6 - 8 - 10 - 12		
Beam current	1.5 mA	1.5 mA		
Frequency of emission	1 – 60 Hz (variabile)	1 – 60 Hz (variabile)		
Scattering foil	75 micron brass	850 micron aluminum		
Dose rate	2-30 Gy/min	3-40 Gy/min		
Field Diameter	3,4,5,6,7,8,10 & 12 opz	3,4,5,6,7,8,10 & 12 opz		
X-ray contamination	< 0.5 %	< 0.5 %		
Power dissipation	2 kW	2 kW		

Table 2. Liac® system characteristics

NOVAC

SSD=80 cm

Model	Old Novac7 (Hitesys)	New Novac7 (NRT)		
Nominal Energy	3 - 5 - 7 - 9 MeV	4 - 6 - 8 - 10 MeV		
Beam current	1.5 mA	1.5 mA		
Frequency of emission	5 Hz	9 Hz		
Scattering foil	No	No		
Dose rate	9 > e < 21 Gy/min	>6 e < 39 Gy/min		
Field Diameter	4,5,6,7,8,10	3,4,5,6,7,8,10		
X-ray contamination	< 0.2 %	< 0.2 %		
Power dissipation	<1kW	<1kW		

Table 1. Novac system evolution

- High dose per pulse (up to 12 cGy/p @ zmax)

http://cdn.intechopen.com/pdfs/34246.pdf

Docking

Fig. 2

Hard and soft docking technique in electron IORT. a Hard docking: the applicator is attached to a receptor on the accelerator head by a sterile person while a second sterile person holds the applicator in place. (shown for a Liac accelerator). b Soft docking: the applicator is attached to the couch with a table stand. There is no mechanical connection between applicator and accelerator. (shown for a Mobetron accelerator). c The alignment of accelerator and applicator is adjusted with a laser alignment system. (Shown for a Siemens Mevatron ME accelerator)

(Present state and issues in IORT Physics, Frank W. Hensley, Radiation Oncology (2017)

Properties of IORT Electron Cones

Shapes

- Circular
- Rectangular

Ends

- 0º 15º 30º bevel
- Material able to be sterilized
- Able to shield surrounding material from scattered electrons

Typical materials

Lucite, stainless steel, chrome-plated brass

Able to view irradiated volume

Direct visual viewing, Mirror reflector, Camera

Treatment Delivery

- Visual verification of treatment field
- Target volume in field of view
- Critical structures avoided
- Treatment field free of blood
- All personnel evacuated from room
- Deliver radiation as rapidly as possible
- High dose rate option useful (e.g. 600-1000 MU/min)
- visual monitoring of patient
- Blood pressure and pulse and breathing

Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72

A. Sam Beddar^{a)}

Department of Radiation Physics, Division of Radiation Oncology, Unit 94, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030

Peter J. Biggs

Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114

Sha Chang Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599

Gary A. Ezzell

Department of Radiation Oncology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259

Bruce A. Faddegon Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143

Frank W. Hensley

Department of Radiation Oncology, University of Heidelberg, 69120 Heidelberg, Germany

Michael D. Mills

Department of Radiation Oncology, James Graham Brown Cancer Center, Louisville, Kentucky 40202

Received 16 September 2005; revised 10 March 2006; accepted for publication 15 March 2006;

TABLE OF CONTENTS

Radiation protection

The manufactures usually provide diagrams of stray radiation which can also be found in **publications**.

References:

Mobetron (Daves, Mills MD. Shielding assessment of a mobile electron accelerator for intraoperative radiotherapy. J. Appl Clin Med Phys. 2010; 11:3151)

LIAC (Ciocca M, Pedroli G, Orecchia R, Guido A, Cattani F, Cambria R, Veronesi U, Radiation survey around a Liac mobile electron linear accelerator for intraoperative radiation therapy. J Appl Clin Med Phys. 2001; 2: 165-73)

Novac7 (Andreoli S, Moretti R, Catalano M...Internal report to Ospedale di Bergamo on stray radiation of Novac7, Bergamo 2006)

Pay attention on the workload!!!!!

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009

Dose consumption for quality assurance and maintenance with a dedicated IORT accelerator

Frank W. Hensley Department of Radiation Oncology, University Clinics Heidelberg, 69120 Heidelberg, Germany frank_hensley@med.uni-heidelberg.de

Received 21 February 2008; accepted 26 May 2009

Radiation protection MOBETRON

TABLE II. Allowable monitor units per week for walls.

Lead	Concrete	1				
(mm)	(mm)	1	2	3	4	5
0	0	600	2400	5 400	9 500	15 000
5	25	800	3100	7 100	13 000	19 600
10	50	1000	4200	9 300	17 000	26 000
15	75	1400	5500	12 000	22 000	34 000
20	100	1800	7200	16 000	29 000	45 000
25	125	2400	9600	22 000	38 000	59 800

1000 MU/min

Controlled

Lead	Concrete	Distance to occupied area (meters)							
(mm)	(mm)	1	2	3	4	5			
0	0	29 700	120 000	270 000	480 000	740 000			
5	25	39 000	160 000	350 000	630 000	980 000			
10	50	52 000	210 000	470 000	830 000	1 300 000			
15	75	69 000	270 000	620 000	1 100 000	1 700 000			
20	100	91 000	360 000	810 000	1 400 000	2 300 000			
25	125	120 000	480 000	1 100 000	1 900 000	2 980 000			

1000 MU/min

3

FIG. 5. Exposure curves in the X plane.

Radiation protection NOVAC

Reference dosimetry

For dedicated accelerators, characterized by a high dose/pulse, it is impossible to follow all the recommendations of the protocols (IAEA TRS 398, AAPM TG 51)

Ionization chambers cannot be employed and no published dosimetry protocol can be used."

In AAPM guidelines for the mesurement of the absorbed dose to water in reference conditions the use of the absolute dosimetric system of Fricke is recommended. A good solution is represented also by Alanine dosimetry. Fricke (ferrous sulfate) or alanine/EPR dosimetry

IAEA TRS-398

D_{w,Q} = k_{t,p} * k_{pol} * k_{sat} * M_Q * N_{D,w,Q0} * K_{Q,Q0}
 Conventional Dose-per-pulse:

the TVA method BU

$$k_s = a_o + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2$$

This works for only 0.1-0.6 cGy/pulse

Due to the high density of electric charge produced in the chamber's volume per radiation pulse, the correction factor for ion recombination can be largely overestimated (up to 20%, **Piermattei, PMB, 45, 2000) if the correction** methods recommended by the international protocols are used (**TVA**)

With ionization chamber?

 "Di Martino" Method "Ion recombination correction for very high dose-per-pulse high-energy electron Beams"; Med. Phys. 32 (7), 2204-2210 (2005)

Ion recombination correction for very electron beams	high dose-per-pulse high	-energy
* Di Martini, ¹⁶ M. Garrenti, A.G. Tairo, and W. 20. Proc. Exempt. Science & Price Middle Accession without and ACM Control Proc. Phys.	Lander ¹⁰ Gandelina Constationis Planas	
(Received 9 December 2004 accepted to publication	30 April 2009, pathonal 13 June 2009	
The parallel picks institution sharehold in the sciences in plotting picks and picks and picks of the picks of picks decoupled at stars in the Net TA Crybind's (Met Science Picks and Sciences and Scie	and hold the fit attributed data transmission to the second second second second second second second second second second second second second second second second second second second secon	에 (1) 가장 (1) 가장 (1) 1) 가장 (1) 1) 1) 가장 (1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1
L WTHODUCTION		
The parallel plane instantant strandstrates for momenty tool recommended by the international sports for the political	$h_{n} = \frac{1}{p} \left(1 + \frac{e^{n-1}}{p}\right)^{n}$	(D)
Eigh-earing 11:0 XEV) Another local destination. The Analysis and heated by the interaction can be converted in no struct to material VD ₄ ² in the information point (2 ₁₀) by the separated.	where pi to the Ree electron fraction, i super-intrachement to gas incluination and a in free placement and	r., doornes itui rs- u roodi darateveniti
$H_{c}(z_{a}) = H_{ca}H_{b \to 0} + g_{ab} + g_{ab}$ (1)	$m = \frac{i \hbar d^2 q_F}{N}$.	m
where $N_{acc} = 4 D_{ac} A_{acc}^{-1} + \mu_{ac}^{-1}$ is the stading of the character (B) prime $D_{acc} = A_{acc}^{-1} + D_{acc}^{-1}$ is the collection factors in every of the physical state of the state of the state of the state of the state of the model beam provided (D^{-1}, A_{acc}, h) is the collection state in the theory of the state of the state of the state of the state of the theory of the state of the state of the state of the state of the theory of the state of the state of the state of the state of the the state of the state of the state of the state of the state of the the state of the state of the state of the state	where q_{1} (arXV) is a constant depend only character (Con) in the dataset inter q_{1} (Con) is the dataset interposed of the policy and it (Mall 1) the indexet. The three-bounds theorem (Lo angle) and its obser character propose pred of the inter-term (Lo and the policy of the intervention) and a start dataset intervention. The high-reserves the dataset intervention is a start of the dataset intervention is a start of the dataset intervention. The high-reserves the dataset intervention is a start of the dataset intervention.	ng can the pay to the strenge the chapter of a size per pay of the veltage suggety of the parate on the vertage chart at size can the vertage of internet in er pada vertage of two and, converging the car descet plane paraflet.

In this work the dependence of k_s on the doseper-pulse value is derived, based on the general equation that describes the ion recombination in the **Boag theory**.

A new equation for k_s, **depending on known** or measurable quantities, is presented.

The new equation is experimentally tested by comparing D_w measured with p-p IC to that measured using dose-per-pulse independent dosimeters, such as radiochromic films and Fricke dosimeters.

Laitano *et al.* method (PMB, 51, 2006)

in high- dose-per-pulse beams starting from the Boag et al expressions The aim of the work was to determine chamber collection efficiencies and <u>not requiring any chamber calibration</u>.

equations that strictly refer to the experimental conditions of interest. The implementation of the Boag et al. procedure requires however to numerical values for the physical parameters entering the relevant take a decision on the three models they propose and on the

The 1st objective of the study was then to choose these appropriate values for Boag-equations.

independent methods, the validity of each of the three models on The 2nd objective was to assess, by means of experimental which the collection efficiency expressions are based.

Commissioning

Measurements	Comment
Beam profiles (depth dose and cross plane profiles	Measurements are done for each applicator and beam energy and should extend to region outside the treatment area
Applicator factors	Applicators factors are relative to a 10 cm circular cone, and the measurements are done at dmax for each applicator and beam energy
Air gap factors	The air gap factor is the ratio of dose with an air gap to the dose without one at dmax. Air gap factors are measured at the appropriate depths of dmax for each combination of applicator and beam energy
TG51 output calibration/IAEA TRS 398	Output calibration is done at the TG-51 reference depth dref using the 10 cm circular applicator. From these measurements the dose/UM at dmax is determined
Leakage Profiles	Measurements are done for a limited sample of applicators and beam energy (including the highest beam energy) and should be made lateral to the applicator walls at various depths

Central axis percentage depth dose for a 10 cm circular applicator- MOBETRON

Beam profile at dmax and at different depth- MOBETRON

12 MeV, applicator diameter = 5 cm

Typical isodose distribution measured from MOBETRON 12 MeV

Leakage beams profile that extend beyond the applicator walls are needed to estimate the dose to normal tissue close to the applicator

Dosimetry in non-reference condition

Isodose distribution, MOBETRON 12 MeV

Flat applicator

30° beveled applicator

		Constitution	Collection							
				Raw Data	Raw Data	Raw Data	Raw Data		Haw Uata	Raw Data
		SSD	[cm]	20,0	50.0	50.0	500		20,00	20'0
		ffset eas.Ang	2	•00	• 0.0	.00	.00		. 0'0	.00
	8 Antorio	Crossplane 0.	[mm]	00	0.0	00			n'n	0,0
	Q :	Inplane Offset	[um]	80	0.0	00	S O		8	0'0
	()	Collimator	=	00	0.0	0.0	00		20	0,0
		Gantry	= 3	0,0	0.0	00	800		8	0,0
		Diach	DIOCK	None	None	None	None	N	None	None
		Andre-to-	HCCEREIGIU	10BETRON	10BETRON	ICRETRON	IUBETRON	NOUL THON	AUBE I HUN	10BETRON
			ommel	ž	×	2	. 2		2	2
	۽ 💽	Common of	aupudnoin							
		o louuse	weuge/App	A 3.5	A 35	A 35	v 20 0 00	ז µ ז ר נ ⊲	0,2,A 1,0	A_3,5
		OffAxis .	[mm]	000	000	UUU	000	000	no'n	0,00
		Depth	[mm]	5,00	18.00	27.00	S UD R	0020	37,000	45,00
~		Field	[cm x cm]	3.5 × 3.5	35×35	35,35	35,35		C(2×C(2)	3,5 x 3,5
Mindow	******	Energy	[MV/MeV]	9,00 9,00	9.00	UU 6	806	8 8	9,00	9,00
c Tools	s Louis	Madalh.	Minuality	Electrons	Electrons	Flectrons	Flantrone		Electrons	Electrons
)ataAnalyze View Granhic		Time Jare	pup	Inplane Profile	Inplane Profile	Innlane Profile	Innlane Profile	Implante Fronte	Inplane Profile	Inplane Profile
C-WIG		Theorem 1	AISIDIE		>	5		3 0	2	2

Applicator factors

(# energy * # applicators= 132 combinations)

$$OF_{gap} = OF_{50} [50/(50+gap)]^2$$

÷											
	Dimensione	Gap	OF	Energia (MeV)							
	applicatore	aria									
	(cm)	(cm)		6	9	12					
	10	0,5	misurato	0,991	0,981	0,989					
			formula	0,980	0,980	0,980					
		1	misurato	0,975	0,971	0,976					
			formula	0,961	0,961	0,961					
	5	0,5	misurato	0,972	/	0,986					
			formula	0,980	/	0,980					
		1	misurato	0,958	/	0,972					
			formula	0,961	/	0,961					

Radiation leakage

- It is recommended to estimate the % of <u>the radiation</u> <u>scattered</u> through the applicator's walls, as a function of the beam energy and of the distance from the walls and from the base of the applicator
- Solid phantom plus radiochromic films or TLD

Quality Assurance recommendations

TABLE IV. Summary of the quality assurance recommendations for mobile electron accelerators used for IORT.

Parameter	Tolerance	Action level
Day of use		
Output constancy	3%	Recommended
Energy constancy	Range of energy ratios corresponding to 2-mm shift in depth dose	Recommended
Door interlocks	Functional	Recommended
Mechanical motions	Functional	Recommended
Docking system	Functional	Recommended
Monthly		
Output constancy	2%	Recommended
Energy constancy	Range of energy ratios corresponding to 2-mm shift in depth dose	Recommended
Flatness and symmetry constancy	3%	Recommended
Docking system	Functional	Recommended
Emergency off	Functional	Recommended
Annually		
Output calibration for reference conditions	2%	Required
Percent depth dose for standard applicator	2 mm in depth over the range of clinical interest	Required
Percent depth dose for selected applicators	2 mm in depth over the range of clinical interest	Recommended
Flatness and symmetry for standard applicator	2%	Required
Flatness and symmetry for selected applicators	3%	Recommended
Applicator output factors	2-3%	Recommended
Monitor chamber linearity	1%	Recommended
Output, PDD, and profile constancy over the range of machine orientations	As above	Recommended
Inspection of all devices normally kept sterile	Functional	Recommended

TRIESTE EXPERIENCE in breast IOERT

In 2012, the Department of Radiotherapy of the "Ospedali Riuniti di Trieste" has acquired a dedicated accelerator, the Mobetron for an intraoperative radiation therapy (IORT), and the clinical activity has started at the end of June 2012

More than 90 patients have been treated for breast cancer.

a) OUTPUT CONSTANCY

b) ENERGY CONSTANCY

c) LASER DOCKING SYSTEM FUNCTIONALITY

d) MOVIMENTS FUNCIONALITY

Periodic QA

FMECA: Methodological steps

Failure Mode and Effects Analysis (FMEA) and Failure Modes, Effects and Criticality Analysis (FMECA) are methodologies designed to identify potential failure modes for a product or process, to assess the risk associated with those failure modes, to rank the issues in terms of importance and to identify and carry out corrective actions to address the most serious concerns.

•Step 1 define analysis object (breast IOERT)

•Step 2 establish working group (Radiation Oncologist, Medical Physicist, Surgeon, Anasthesiologist, Radiotherapy Technicians, nurse)

•Step 3 describe the process (flow chart of IOERT)

•Step 4 analysis (identify the criticisms, sources of risk potential failure mode (FM), evaluate risk priority number (RPN))

Step 5 corrective actions

FMECA

(Failure Mode and Effects Criticality Analisys)

The risk analysis was completed by asking the members of the team to evaluate the **Risk priority number (RPN)** of each FM, obtained by multiplying the estimated frequency of occurrence (O) by the detectability (D) of the FM and the expected severity of the damage to the patient (S), using a 5-point scale (from 1 to 5) for each parameter; thus the lowest score is 1 and the highest score is 125. The smaller the RPN, the lower is the risk; the larger the RPN, the higher is the risk.

FMECA High risk processes

÷															
	PROCESS STEP	PROFESSIONAL FIGURES	PROCEDURE	FAILURE MODE	FAILURE EFFECTS	FAILURE CAUSES		INIT RA	IAL NK	RISK ING	CORRECTIVE ACTIONS	REVISED RISK RANKING		RISK NG	
	14	Radiation Oncologist -Surgeon	Definition of the CTV	Wrong definition of the CTV	Underdose of the CTV and/or unintended normal tissues irradiation	Inadequate evaluation of the CTV	4	4	4	64	Evaluation of the tumour dimensions on preoperative medical imaging; accurate intraoperative definition of the CTV	4	2	2	16
	18	Phisicist	Preparation of gafchromic film and placement on the perspex bolus	1) Inadequate placement 2) Wrong calibration, use, conservation of the gafchromic film	Wrong measure of the delivered dose	Erroneous observation of the "In vivo dosimetry" Procedure	4	3	5	60	Careful observation of the "In vivo dosimetry" Procedure	4	2	4	32
	19	Radiation Oncologist -Surgeon	Applicator placement	Absent or incomplete adherence of the applicator to the tumour bed	Non- homogeneous irradiation	Air gap presence, blood accumulation, very sloping tumour bed	4	4	4	64	Accurate visual control, correct placement of the patient on the operating table	4	3	3	36
	20	Radiation Oncologist -Surgeon	Alignement of the protective plate	Misalignement of the protective plate	Unintended normal tissues irradiation below the tumour bed	Low accuracy in the alignement	5	4	4	80	Selection of a plate much larger than the applicator size	5	3	4	60

IOERT in vivo dosimetry

Fig. 1 Reference to World J Surg (2009) 33:2587–2592

Fig.2 Picture of the shielding placement and gafchromic films at the two side of the shield after treatment

EBT3 gafchromic film analysis

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 1, 2015

In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

Mara Severgnini, ^{1a} Mario de Denaro, ¹ Marina Bortul, ² Cristiana Vidali, ³ Aulo Beorchia³ Department of Medical Physics; ¹ Department of Surgery; ² Department of Radiation

Oncology,³ A.O.U. Ospedali Riuniti, Trieste, Italy

mara.severgnini@aots.sanita.fvg.it

Most critical step											
PROCESS S STEP	PROFESSIONAL FIGURES	PROCEDURE	FAILURE MODE	FAILURE EFFECTS	FAILURE CAUSES	INITIAL RISK RANKING					
20	Radiation Oncologist - Surgeon	Alignment of the protective plate	Misalignment of the protective plate	Unintendee normal tissues irradiation below the tumour bee	5 4 4 80						
					Fic: parl0.txt Collimator diameter : 65 mm Estimated dose : 10.4 Gy Area outside shielding : 4.9 cm ² (1	11.9 Gy 11.2 Gy 4.9%) 9.7 Gy 8.9 Gy 8.2 Gy 7.5 Gy 6.7 Gy					
		A	INITIAL F RANKII	RISK NG CO	RRECTIVE ACTION	S REVISED RISK RANKING					
		34	5 4 4	80 ^S	Selection of a plate uch larger than the applicator size and new setup	5 3 4 60					

Ultrasound introduction

Immediate Feedback!

Thick measurement: comparison between needle and

ultrasound

Negligible average difference of 0,1 mm (range 0,1-1,2)

			point1	point2	point3	point4	point5	average	STD	ultrasound vs needle
patient	data	method	mm	mm	mm	mm	mm	mm		mm
44	21/11/14	needle	14,0	13,0	9,0	10,0	14,0	12,0	2,3	0,2
		ultrasound	11,8	10,3	n.a.	n.a.	14,5	12,2	2,1	
45	05/12/14	needle	11,0	13,0	18,0	17,0	n.a.	14,8	3,3	-0,3
		ultrasound	10,3	14,0	16,9	16,6	n.a.	14,4	3,1	
46	19/12/14	needle	7,0	11,0	6,0	10,0	13,0	9,4	2,9	-0,4
		ultrasound	8,8	9,3	9,0	8,9	n.a.	9,0	0,2	
47	09/01/15	needle	10,0	13,0	11,0	8,0	8,0	10,0	2,1	0,4
		ultrasound	9,4	12,0	12,8	8,1	9,5	10,4	2,0	
48	16/01/15	needle	11,0	14,0	12,0	10,5	11,0	11,7	1,4	0,3
		ultrasound	10,4	15,0	11,5	11,5	11,8	12,0	1,7	
49	23/01/15	needle	15,0	9,0	12,0	9,0	13,0	11,6	2,6	0,0
		ultrasound	11,5	10,8	13,4	7,9	14,6	11,6	2,6	
50	29/01/15	needle	5,0	5,0	6,0	6,0	6,0	5,6	0,5	0,2
		ultrasound	5,0	5,9	6,4	5,3	6,4	5,8	0,6	
51	29/02/15	needle	5,0	9,0	6,0	9,0	4,0	6,6	2,3	0,5
		ultrasound	5,6	8,7	5,7	10,1	5,2	7,1	2,2	
52	05/03/15	needle	15,0	14,0	11,0	14,0	12,0	13,2	1,6	-0,8
		ultrasound	13,4	14,0	10,9	13,5	10,3	12,4	1,7	
53	19/03/15	needle	15,0	14,0	20,0	15,0	18,0	16,4	2,5	-0,5
		ultrasound	16,6	14,3	18,4	13,9	16,2	15,9	1,8	
54	23/04/15	needle	10,9	12,0	11,2	10,0	13,0	11,4	1,1	-0,4
		ultrasound	10,0	12,0	12,0	9,0	12,0	11,0	1,4	
55	30/05/15	needle	11,0	6,0	13,0	15,0	9,0	10,8	3,5	-1,2
		ultrasound	10,0	5,2	13,5	10,7	8,4	9,6	3,1	
56	07/05/15	needle	8,0	10,0	9,0	9,0	9,0	9,0	0,7	0,2
		ultrasound	7,6	9,1	10,6	9,1	9,5	9,2	1,1	
57	14/05/15	needle	7,0	8,0	5,0	5,0	5,0	6,0	1,4	0,3
		ultrasound	7,1	7,5	6,4	4,7	6,1	6,3	1,1	
58	28/05/15	needle	10,0	10,0	14,0	10,0	11,0	11,0	1,7	-0,4
		ultrasound	10,9	9,0	14,5	9,0	9,5	10,6	2,3	
59	11/06/15	needle	13,0	9,0	9,0	15,0	8,0	10,8	3,0	-0,6
		ultrasound	11,3	8,3	8,3	14,6	8,5	10,2	2,8	
60	18/06/15	needle	5,5	5,5	9,0	4,0	n.a.	6,0	2,1	0,9
		ultrasound	6,1	5,8	8,7	6,8	n.a.	6,9	1,3	
61	08/10/15	needle	16,0	9,0	16,0	11,0	15,6	13,5	3,3	-0,1
		ultrasound	16,0	8,7	15,5	12,0	14,7	13,4	3,0	
62	15/10/15	needle	10,0	10,0	9,0	5,0	9,0	8,6	2,1	-0,1
		ultrasound	9,9	9,8	10,3	4,1	8,4	8,5	2,5	
63	29/10/15	needle	9,0	11,0	7,0	7,0	15,0	9,8	3,3	0,1
		ultrasound	9,7	11.8	6,6	7.4	14.1	9,9	3,1	

The EBT3 in vivo dosimetry confirmed that the ultrasound application reduced the misalignment in terms of electrons field area outside the shielding disk from 5.6cm² to 2.6cm²
The percentage of patients in which the shield is perfectly aligned (field totally inside the shield) after sonography introduction improved from 23% to 68%

3 time more probable to have perfect alignment between collimator and disk

- Intraoperative Sonography showed to be accurate in the evaluation of target depth
- After US addition very good results in term of dose delivered and shielding alignment have been obtained
- Significant reduction of undesiderable dose

Reduction of disk misalignement score from high risk to medium risk!

Therefore, patients treated after IOUS guidance had less acute toxicity from radiation therapy (35% vs. 52%).

Thank you for your attention!

