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IMRT is 35 years old this year!

Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in 

rotation therapy. Phys Med Biol1982;27:1221–9.

3



Introduction to IMRT and 
the inverse problem
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Slide from Charlie Ma
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Slide from Charlie Ma
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Simple Example of Optimization
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Assume that intensity's add and no attenuation
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Simple Example of Optimization

0 0 0 100 100 100 0 0 0
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0 0 0 0 100 100 100 0 0 0

Beam 1

Beam 2

If we have a critical structure we want to avoid we can lower the 
intensity of one or more of the beamlets that that cross that 
structure
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Simple Example of Optimization

Beam 1

Beam 2

This results in a decrease in dose to the critical structure but also 
to other parts of the dose distribution.

0 0 0 100 50 100 0 0 0

0 0 0 0 100 50 100 0 0 0

0 0 0 0 100 50 100 0 0 0

0 0 0 0 100 50 100 0 0 0

100 100 100 100 200 150 200 100 100 100

100 100 100 100 200 150 200 100 100 100

50 50 50 50 150 100 150 50 50 50

0 0 0 0 100 50 100 0 0 0

0 0 0 0 100 50 100 0 0 0

0 0 0 0 100 50 100 0 0 0 B
as

e
d

 o
n

 s
lid

e
s 

b
y 

Pe
te

r 
B

al
te

r

10



Simple Example of Optimization

Beam 1

Beam 2

This underdose can be made up from other beamlets in other beams restoring 
dose to the target but resulting in dose inhomogeneity in the target, the more 
beam angles to more opportunity to achieve an optimal plan.
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Dose 
calculation

Multiple fields:

Simplified:

Desired dose:

1

000 
 CD/CDW

00 CWD 

CWD 

jij

nj

i WCD 



1

 

Beamlet weight:
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Can we solve this? 

• No

• Huge problem

• Degenerate problem – many solutions

• Ideal dose may not be achievable

• Many unknowns (>1000s beamlet weights)

• Conflicting requirements…..not all of which are clear

• Lots of structures……

• Etc….
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A simple objective function:
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Partially based on slides from Charlie Ma

• Not necessarily looking for the true optimum plan 

• Many constraints such as deliverability, type of radiation, beam geometry, 
planning time….

• Many a priori choices (reduce search space) – constrained optimization 

• Beam energy, gantry and collimator angles

What is meant by optimization?
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From Webb, The British Journal of Radiology, 76 (2003), 678–689
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Partially based on slides from Charlie Ma
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Coverage Good coverage of PTV

Look at 100% and 98% coverage

Hot Spots < 5%

Cord < 46 Gy

Exp Cord 50Gy isodose line shouldn’t cross

Parotid Mean dose ~ 26Gy

Uninvolved 

Larynx / post 

cricoid

< 60 Gy 

(attempt to approach 50Gy)

Oral cavity No hot spots outside volumes (>60 Gy) 

and not hot spots in the mandible

What needs to be in the cost function?



Defining the prescription
(and cost functions)
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The prescription

• The prescription defines the goals of the treatment.  

• Target DVH

• Sensitive structure DVH

• Set goals, priorities, penalties

• The plan quality can be scored using either physical or biological criteria.

• It is difficult to reduce all of our treatment planning goals into a set of 
equations or a single scoring function

• Warning: no consistency expected in terminology used by different 
vendors!
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Based on a slide from Yakov Pipman
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Objective (Pinnacle)
Constraint (Pinnacle)



The Cost Function
• Cost functions are built based on objectives, there 

are a number of objective types possible. 

• Minimum Dose

• Maximum Dose

• DVH constraint no more than “x” % of the 
structure can exceed a dose of “y”.

• Equivalent Uniform Dose

• …

• Each objective can have a weighting factor

• If the weighing Factor is very high (infinite) that 
objective becomes a “Constraint” (in Pinnacle, at 
least)
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Minimum/Maximum Dose

• Constraints can be used guarantee adequate 
dose uniformity in the tumor.

• Useful for serial structures such as the spinal 
cord.

Advantages

• Allowing small hot and/or cold spots are 
often provide a significant improvement in 
dose conformity.

• One point can dominate the optimization.

• If target and RAR are in close proximity, 
these constraints often cannot be satisfied.

Disadvantages
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Mean Dose

• Easy to formulate.

Advantages

Disadvantages

• Of limited value for most sensitive 
structures.

• Dramatically different dose distributions can 
have the same mean dose.
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Setting constraints
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Biological Objective 
Functions and 
Constraints
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Biological Objectives/Constraints

• Biological objective functions and constraints 
are outcome related.

• Biological models are used to predict 
treatment outcome.

• Tumor Control Probability (TCP).

• Normal Tissue Complication Probability 
(NTCP).

• Uncomplicated TCP (UTCP or P+).

• Equivalent Uniform Dose (EUD).
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Equivalent Uniform Dose (EUD)

EUD  viDi
a

i1












1

a

• Two dose distributions are equivalent if the corresponding 
biological/clinical outcomes are equivalent 

• Normal structures and targets.

*Niemierko A. Med Phys, 26(6), 1999.
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Structure (Source) End-point a 

Chordoma base of skull (MGH) Local control -13 

Squamous cc (Brenner) Local control -13 

Melanoma (Brenner) Local control -10 

Breast (Brenner) Local control -7.2 

Parotids (Eisbruch) Salivary function (<25%) <0.5 

Parotids (Chao) Salivary function (<25%) 0.5 

Liver (Lawrence) Liver failure 0.6 

Liver (Dawson) Liver failure 0.9 

Lung (Kwa) Pneumonitis 1.0 

Lung (Emami) Pneumonitis 1.2 

Kidney (Emami) Nephritis 1.3 

Liver (Emami) Liver failure 2.9 

Heart (Emami) Pericarditis 3.1 

Bladder (Emami) Symptomatic contracture 3.8 

Brain (Emami) Necrosis 4.6 

Colon (Emami) Obstruction/perforation 6.3 

Spinal cord (Powers) White matter necrosis 13 

Esophagus (Emami) Perforation 18 

Spinal cord (Schultheiss) Paralysis 20 
 

Equivalent Uniform Dose (EUD)

Example values – no guarantees!
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Biological 
Objectives/Constraints

Advantages

• Our goal is to improve 
patient outcome, and this 
is precisely what is 
modeled with these 
techniques.

Disadvantages

• Because of uncertainties in 
the parameters included in 
the models, the accuracy of 
the models is often called 
into question.

Based on a slide from David Shephard
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Plan Optimization
Fixed Field IMRT

• Beamlet based optimization

• Direct aperture optimization

31



The Beamlet Model

Before an IMRT optimization, each beam is divided into 
a number of smaller beamlets (pencil beams), and the 
corresponding dose distributions are computed.

Slide from David Shephard
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Beamlet-Based Inverse Planning

Beamlet weights are optimized to produce an 
optimized fluence map for each beam direction.
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Eclipse’s IMRT dashboard
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Leaf sequencing
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Intensity Modulation

• Step and shoot MLC
• The intensity pattern developed by 

the TPS is converted into a finite 
number of segments

• For each segment the MLCs leaves 
are set and the beam is on for a 
determined amount of time

• The summation of all the 
segments is equal to the planned 
intensity

• Pinnacle

Slide from Peter Balter
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Intensity Modulation

• Sliding Window MLC
• MLC leaves move continuously 

while the treatment machine is 
on

• The field is divided into a 
number of control points that 
have target positions for each 
leaf at each fraction amount of 
dose delivered

• The linac modulates leaf speed, 
then dose rate to ensure the 
targets for each control point 
are within tolerance values.

Slide from Peter Balter
37



Dose

Position
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How Can We Make Any Intensity 

Shape with an MLC?

Slide from Chen Chui
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Dose
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From Optimized Intensity Map to Treatment
Leaf Sequencing

• The optimized treatment plan is not immediately ready 
for delivery.

• A leaf sequencing algorithm needs to be applied to 
translate the each optimized (theoretical) fluence map 
into a set of deliverable aperture shapes.

• The constraints imposed by the multileaf collimator are 
accounted for in the leaf sequencing step.

• Final plan dose distribution changes

• This is the approach taken by Eclipse for dynamic IMRT.

• It was the approach used by Pinnacle for step-and-shoot 
IMRT (older versions)

Based on a slide from David Shephard
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Direct aperture 
optimization
(DAO)
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1. Inverse planning technique where the aperture 
shapes and weights are optimized 
simultaneously.

2. All of the MLC delivery constraints are included 
in the optimization

3. The number of aperture per beam angle is 
specified in the prescription.

Direct Aperture Optimization (DAO)
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Simulated Annealing
• DAO uses simulated annealing, an optimization technique using 

random sampling techniques.

• The term simulated annealing derives from the roughly analogous 
physical process of heating and then slowly cooling a substance to 
obtain a strong crystalline structure. 

• In each simulation, a minima of the cost function corresponds to this 
ground state of the substance. 

• The basic principle is that by allowing occasional ascent in the search 
process, we might be able to escape the trap of local minima.

Figure from Webb – the first 
person to introduce SA to 
radiotherapy in the late 80’s59



DAO Optimization via Simulated Annealing

1) Pick a parameter (leaf position, aperture weight) 
randomly

2) Change the parameter by a random amount

3) Calculate objective function based on the new 
dose distribution

4) Objective function lower: accept change

5) Objective function higher: accept change with 
certain probability
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Prescription: 3 apertures per angle

Begin with 3 identical copies
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Pick an Parameter and Make a Change

Aperture 1

Leaf pair 6

Left leaf position

Move leaf in 2cm
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Keep or Reject the Change

Based on:

1. MLC constraints.

2. Cost function & Annealing Rules.
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MLC Constraints

1)  Opposed leaves 
cannot come closer 
than 1-cm from one-
another

2)  Opposed-adjacent 
leaves cannot come 
closer than 1-cm from 
one-another

< 1cm

Not allowed

< 1cm

Not allowed

Some sample Elekta constraints:
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After numerous iterations...

Add them up along with their weights…
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Final intensity map from DAO
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Small number of apertures can produce large
number of intensity levels

Example:  3 apertures/angle

3 separate
weights

1 2 3 4 5 6 7
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Small number of apertures can produce large
number of intensity levels

12  n

nN

N = Number of intensity levels
n = Number of apertures

For 3 apertures, 7 intensities
For 4 apertures, 15 intensities
For 5 apertures, 31 intensities
For 6 apertures, 63 intensities
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Volume-Modulated Arc 
Therapy
VMAT

69
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Eclipse VMAT

• In Otto’s paper, he used DAO to 

produced IMAT plans.

• Two key innovations:

1. Focused on a single arc approach with more 

control points in the single arc.  Termed “VMAT”.

2. Progressive sampling was used to improve the 

speed of the algorithm.

• This is the approach utilized in Eclipse
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Dynamic Source Model

Gantry 

Arc

Sample

Spacing

Sampling Flexibility Accuracy

Coarse  X

Sampling Flexibility AccuracySampling Flexibility Accuracy

Coarse 

Courtesy of Karl Otto72



Dynamic Source Model

Gantry 

Arc

Sample

Spacing

Sampling Flexibility Accuracy

Coarse  X

Fine 

Sampling Flexibility Accuracy

Coarse  X

Fine X 

Sampling Flexibility Accuracy

Coarse  X

Courtesy of Karl Otto73



Progressive Sampling

Gantry 

Arc

Sample

Spacing
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Sampling Flexibility Accuracy
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Progressive 

Sampling Flexibility Accuracy
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Progressive  

Courtesy of Karl Otto74
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Varian Eclipse

• Planning is performed using Direct Aperture Optimization.

• Typical plan uses 1 arc with 177 control points.

• For some cases, multiple arcs are use to improve the plan 

quality or provide adequate coverage of large targets.
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SmartArc Optimization (Philips)

1. Beams are generated at the start and the stop angles and at 24

increments from the start angle.

2. A fluence map optimization is performed.

3. The fluence maps are sequenced and filtered so that there are 

only 2 control points per initial beam angle.

4. These control points are distributed to adjacent gantry angles 

and additional control points are added to achieve the desired 

final gantry spacing. 

5. All control points are processed to comply with the motion 

constraints of VMAT.

6. The DMPO algorithm is applied with an aperture based 

optimization that takes into account all of the VMAT delivery 

constraints.

7. The jaws are conformed to the segments based on the 

characteristics of the linac.

Courtesy of Philips Medical
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Treatment planning is an art

Figure from Hunt et al, IJROBP 54(3), 953-962, 2002
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Multi-criteria 
optimization (MCO)
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IMRT planning process is complex
• Long planning time

• Not clear which knobs to turn

• Tradeoffs unclear

• Clinician’s judgment indirect (the 
process does not encourage physician 
participation

N=167, ASTRO 2004

Time for IMRT planning for a 
complex case (excluding 
contouring)

Target coverage

Efficien
cy

Normal tissue sparing

Based on slides by Thomas Bortfeld
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Craft et al, IJROBP 82, e83-e90, 2012

Pareto surface

Utility curves = 
equivalent plans 
(determined by the MD 
– these are not well 
determined)

Pareto surface (or the Possibility Frontier)
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• PC1: Liver and stomach vs. left and right kidneys

• PC2: Right kidney and stomach vs. left kidney and liver
Spalke et al, PMB 54, 3741-3754, 2009
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MCO PLANNING (PARETO OPTIMIZATION) - RAYSEARCH

RaySearch

Vilfredo Pareto, born 1848 
(Paris) – died 1923 (Geneva)
Industrialist, Sociologist, 
Economist, Philosopher
Taught in Lausanne, lived in 
Céligny near Geneva

Pareto-optimality, “efficient”:
“You cannot make anybody better off 
without making someone else worse off”



MCO PLANNING (PARETO OPTIMIZATION) - RAYSEARCH

RaySearch

Pareto-optimality, “efficient”:
“You cannot make anybody better off 
without making someone else worse off”



Increased physician involvement
Reduced planning time

Craft et al, IJROBP 82, e83-e90, 2012
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Technique comparison
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Technique comparison: MU/cGy

McCarroll et al, Journal of Global Oncology 2017

• Dynamic IMRT is less MU-efficient than step-and-shoot or VMAT

Pinnacle, DAO Eclipse
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Technique comparison: Treatment time

McCarroll et al, Journal of Global Oncology 2017

Pinnacle, DAO
Eclipse
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End on a happy thought: 

• The combination of 

• IMRT

• IGRT

• 4DCT

• Increased 

• Local control

• Overall Survival

• Decreased

• Pneumonitis

IMRT/4DCT

3D CRT/CT
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The Radiotherapy Process - IMRT

Patient selection

Imaging studies

Immobilization 
devices

Target definition 
(anatomy, physiology 

and the natural 
history of the disease)

Organs at risk 
delineation

Planning Treatment 
and at-risk Volumes 

Prescription goals

Inverse optimization
Treatment Delivery 

plan (dMLC, S&S, etc)

Dose distribution 
calculation

Plan evaluation and 
approval

Treatment parameter 
transfer to R&V and to 
treatment unit control

Plan test and 
verification

Verification of Patient 
Position and Beam 

Placement

Treatment Delivery 

Slide from Yakov Pipman
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