School of Medical Physics for Radiation Therapy: Dosimetry and Treatment Planning for Basic and Advanced Applications

27-march—7-april 2017

IMRT pre-treatment verification basic approaches

Eugenia Moretti

ASUIUD Udine

DISCLAIMER

I do not endorse any products, manufacturers, or suppliers.

Nothing in this presentation should be interpreted as implying such endorsement

Topics

- Scopus
- Experimental methods & strategies (*classical approaches*)
- Gamma metric
- Critical aspects
- Guidelines

For alternative patient-QA solutions

- Not (or not-only) ${\color{black}\bullet}$ experimental strategies
- **Unconventional strategies**
- New trends •

IUSTUS ADAMSON, PHD

Assistant Professor of Radiation Oncology

Department:	Radiation Oncology		
Division:	Radiation Physics		
Address:	Radiation Physics Red Zone Bas		
	Box 3295		
	Durham, NC 27710		
Office Phone:	(919) 660-2180		
Email:	justus.adamson@duke.edu		

Warning

• IMRT is both static and dynamic IMRT (VMAT)

The concept of Patient-QA(QC) before IMRT

The concept of Patient-QA(QC) with IMRT

August 2003

Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee

Gary A. Ezzell Mayo Clinic, Scottsdale, Arizona 85259

James M. Galvin Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19019

Daniel Low Mallinckrodt Institute of Radiology, St. Louis, Missouri 63101 Jatinder R. Palta⁸⁾

University of Florida, Gainesville, Florida 32610

Isaac Rosen UT M.D. Anderson Cancer Center, Houston, Texas 77001

Michael B. Sharpe Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada

Ping Xia University of California at San Francisco, San Francisco, California 94101

Ying Xiao Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19019

Lei Xing Stanford University School of Medicine, Stanford, California 94305

Cedric X. Yu University of Maryland School of Medicine, Baltimore, Maryland 21201

(Received 27 August 2002; accepted for publication 21 March 2003; published 24 July 2003)

Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy since the advent of the medical linear accelerator. It allows the clinical implementation of highly conformal nonconvex dose distributions. This complex but promising treatment modality is rapidly proliferating in both academic and community practice settings. However, these advances do not come without a risk. IMRT is not just an add-on to the current radiation therapy process; it represents a new paradigm that requires the knowledge of multimodality imaging, setup uncertainties and internal organ motion, tumor control probabilities, normal tissue complication probabilities, three-dimensional (3-D) dose calculation and optimization, and dynamic beam delivery of nonuniform beam intensities. Therefore, the purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a viable and safe IMRT program. The scope of the IMRT program is quite broad, encompassing multileaf-collimatorbased IMRT delivery systems, goal-based inverse treatment planning, and clinical implementation of IMRT with patient-specific quality assurance. This report, while not prescribing specific procedures, provides the framework and guidance to allow clinical radiation oncology physicists to make judicious decisions in implementing a safe and efficient IMRT program in their clinics. © 2003 American Association of Physicists in Medicine. [DOI: 10.1118/1.1591194]

Key words: 3-D conformal radiotherapy, intensity-modulated radiation therapy, inverse planning, plan optimization, quality assurance

TABLE OF CONTENTS	II. DELIVERY SYSTEMS FOR IMRT 20	091
	A. General issues of IMRT delivered with MLC. 20	091
I. INTRODUCTION.	2090 1. MLC leaf positional accuracy 20	091
A. Relation of intensity-modulated radiation	2. Linac performance	
therapy (IMRT), three-dimensional	for small MU delivery 20	093
conformal radiation therapy (3DCRT), and	 MLC control issues	093
traditional practice	 MLC physical characteristics	093
B. Objectives for this document	2090 B. Additional issues with dynamic IMRT with	
C. Organization of this document.	2091 MLC	094
2089 Med. Phys. 30 (8), August 2003 0094-2405	(2003/30(8)/2089/27/\$20.00 @ 2003 Am. Assoc. Phys. Med. 20	089

QA of individual treatment plans

1. Independent calculation methods

Patient-specific calculations combined with frequent machine QA represent another approach.

2. Verification measurements Patient-specific verification measurements test many, but not all the aspects of planning and delivery in a combined fashion.

Patient-QA: the beginning

- Validation of complex systems such as a TPS with an enormous amount of data is a very cumbersome project for which other approaches than point-by-point comparisons should be available. During the introduction of IMRT, the physics community started to perform more extensive verification in 2D (planes) and even in 3D (volumes).
- In an early publication from the group of the Memorial Sloan Kettering Cancer Center in New York a <u>new concept for</u> <u>IMRT verification</u> was introduced
 - Burman C, Chui CS, Kutcher G, Leibel S, Zelefsky M, LoSasso T, Spirou S, Wu Q, Yang J, Stein J, Mohan R, Fuks Z and Ling CC.
 Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 39, 1997

- MSKCC strategy included (1997):
 - Verification of the planned dose distribution by performing an independent dose calculation
 - Comparison of the planned leaf sequence with that recorded in the MLC log files;
 - Confirmation of the initial and final positions of the MLC for each field by the R&V system
 - Comparison of the dose distribution measured in a flat phantom with that calculated by the TPS for the same experimental conditions;
 - IVD measurements

Memorial Sloan Kettering Cancer Center

The Patient-QA in IMRT: WHY?

- Higher complexity of planning, calculation and delivery compared to <u>3DCRT</u>
- Calculation critical points: MLC, head scatter, small fields
 - "IMRT doses are calculated by dividing beams into smaller sections, called *beamlets*, that have varying intensities. Because the dimensions of the *beamlets* may be too small to establish electronic equilibrium within them, calculations based on corrections to broad-beam data will not suffice." (Med Phys, 30(8))
- Defaillance of Treatment Delivery System
- We can do errors: "..there is evidence that IMRT treatments may not always be as accurate as users believe." (AAPM TG119, Med Phys, 36(11) 2009)

In 2008, the RADIOLOGICAL PHYSICS CENTER (RPC) reported that of the 250 irradiations of a H&N phantom as a part of an IMRT credentialing process, 71(28%) had failed to meet accuracy criteria of 7% for dose in a low gradient region and/or 4 mm DTA in a high gradient.. This results strongly suggest that some clinics have not been adequately commissioned their planning and delivery systems for IMRT

Patient-specific QA \rightarrow Accuracy (Safety)

SUPPLEMENTAL MATERIAL

Practical Radiation Oncology (2011)

practical radiation encology

Safety Considerations for IMRT

Jean M. Moran, Ph.D.,* Melanie Dempsey, M.S.,† Avraham Eisbruch, M.D.,* Benedick A. Fraass, Ph.D.*, James M. Galvin, D.Sc.,‡ Geoffrey S. Ibbott, Ph.D.,§ and Lawrence B. Marks, M.D.#

*Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; tion Sciences, School of Allied Health Professions, Virginia Commonwealth L ‡Department of Radiation Oncology, Thomas Jefferson University Hospital, . tion Physics, UT M.D. Anderson Cancer Center, Houston, TX; and #Departm University of North Carolina, Chapel Hill, NC

End-to-END TEST

4.2.4 Pre-treatment IMRT QA program

The current guidance from ACR and ASTRO for IMRT patient-specific quality assurance recommends verification of the IMRT treatment plan parameters and the use of dosimetric measurements to verify the accuracy of the dose delivery.⁽²⁶⁾ Due to safety considerations, these tests for acceptability should always be performed prior to the start of the patient's treatment with any given plan.

Machine-QA & Patient-QA

Machine-QA

- To check that the performance of the delivery system does not deviate significantly from their baseline values acquired at the time of acceptance and commissioning.
- These tests machine-specific are performed repeatedly and are performance-oriented.
- AAPM TG142 (2009)

Patient-specific QA

- To ensure the quality of each individual patient treatment.
 - The main purpose of these
 tests is to assure that the
 intended dose distribution
 for the specific patient is
 physically verifiable and that
 the intensity modulated
 beams or arcs are technically
 feasible.

ESTRO PHYSICS BOOKLET No 9 (2008)

In August 2001 the ESQUIRE project, funded by the European Communities, EC, strated for a period of two years to hoozen ESTRIO = fefforts to ingravor quality in radiobnergy. The elim of the part of the project called QUASIMODO (QUAlity AStarmore of Intensity MODuland radiation Oncology) was the safe introduction of advanced technology in radiobnergy first by developing procedures for the QA of treatment planning systems, and second by exploring new methodology for the verification of intensity-moduland radiation therapy. IMRT: From a review of national and intensitional documents discussing QA of treatment planning systems is became cleare that there was a need for a minimum number of tests that should not be too cumberone to perform. This first part of the QUASIMODD project was realised by drafting ESTRO Booklet No. 7 "Quality assumes of treatment planning systems – practical examples for non-IMRT beams".

The second part of the QUASIMODO project was to develop and discentinete nore uniform guidelines for validation of IMRT sechniques. Fithern European centres, which just started, or were in the pirocess of setting up IMRT, participated in this project. The experience gained by this rubit-centre quilty sustance network had to be "translated" into guidelines with respect to verification of IMRT techniques for those institutions having limited experience or strangt with MLRT, which resulted in this second ESTRD boolder.

In this boolder we first summarize the various approaches for DMRT verification and the methods of data analysis. After briefly comparing the various techniques for doinneric verification, quality assumance tests for accelerator and MLC performance are addressed. In separatic chapters the tuse of independent dose calculations and examples of patient-specific QA procedures we than discussed in a comprehensive way. These examples are taken from the valora centures that participated in the QUASIMODO project, as well as from some other European centres, and show a larger variety of IMRT QA tests performed in daily participin institutions having alteredy zone years of clinical experience with IMRT. The report ends with formulaing guidelines concerning type and telerances of tests to be performed for DRRT verification in their this chapter also a number of possible pitfulls and potential errors encountered by European centres are described and possible actions angested to solve these problems. In an appendix a list is given of commercial companies selling QA tools for IMRT verification.

Ben Mijnheer

The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands

Dietmar Georg Medical University Vienna-AKH Wien, Austria

Q

AND

OGY.

RADIOL

RAPEUTIC

THE

FOR

Supported by the EU "Europe against Cancer" Programme Grant Agreements N*SPC.2002480 \$12.322025

GUIDELINES FOR THE VERIFICATION OF IMRT

Edited by: Ben Mijnheer and Dietmar Georg

Ines Eichwurzel Per Engström Claudio Fiorino Dietmar Georg Günther Hartmann Tommy Knöös Antonio Leal Hans Martiphisen Ben Mijnheer Marta Patiusco Francisco Sánchez-Doblado Rainer Schmidt Milan Tomsej Hans Wellowerd

Markus Alber

Carlos De Wagter

Sara Broggi

EUROPEAN GUIDELINES FOR QUALITY ASSURANCE IN RADIOTHERAPY ESTRO BOOKLET No. 9

GUIDELINES FOR THE VERIFICATION OF IMRT

Markus Alber Sara Broggi Carlos De Wagter Ines Eichwurzel Per Engström Claudio Fiorino Dietmar Georg Günther Hartmann Tommy Knöös Antonio Leal Hans Marijnissen Ben Mijnheer Marta Paiusco Francisco Sánchez-Doblado Rainer Schmidt Milan Tomsej Hans Welleweerd

(Edited by: Mijnheer, Georg) 2008-First edition ISBN 90-804532-9 ©2008 by ESTRO

All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the copyright owners.

> ESTRO Mounierlaan 83/12 - 1200 Brussels (Belgium)

Patient-QA (Estro Booklet)

• The philosophy behind this new approach was that patientspecific verification was required for IMRT and that each plan should be checked prior to delivery

 This was different from the conventional approach where checks are generally performed during the commissioning process of a new TPS or before the implementation of a new technique, using generic or specific geometries in slab or more anthropomorphic phantoms.

IMRT verification: the concet of pyramid according to De Wagter

- 4 different levels of specificity
- Ideally, each time a new or modified IMRT technique is introduced in the clinic, QA starts at the top of the pyramid, i.e. by applying a 3D verification technique of the whole treatment planning and delivery process.
- If unacceptable discrepancies are detected between the 3D dose distribution and the results of the 3D dosimetry verification, the next step is to descend the pyramid to a lower, more specific, level.
- This can be repeated until the error source is revealed.

IMRT verification: the concet of pyramid according to De Wagter

Figure 3.1 (a) Conceptual pyramid that correlates the various levels of dosimetric QA in IMRT. Like the situation for a real pyramid, each level is based on the stability of the underlying levels. The two lower levels can be part of the periodic QA procedures of equipment used for IMRT planning and delivery. For QA of a new clinical IMRT solution, one may start at the top by applying a 3D dosimetric verification of an entire treatment. One descends the pyramid to the lower levels if the 3D dosimetric verification reveals unacceptable discrepancies with treatment planning. (b) Methodology and tools appropriate for each of the levels. (Courtesy Carlos De Wagter, Ghent University Hospital, Ghent, Belgium, and the Institute of Physics).

Patient-QA: the meaning

Once the entire chain of **TPS**, **Data Transfer** and **Treatment delivery** has been commissioned, one needs to ensure that for **a specific patient**

- 1. appropriate TX plans are made
- 2. these plans are transferred correctly to the linac
- 3. the plans are delivered accurately

DATA TRANSFER (Med Phys, 37(6), 2010])

♦ IMRT PLAN

- Rectum ca
- ♦ 5 Gy x 7 fx
- ♦ IMRT S&S
- 7 fields, 35 segments (10, 18 MV)
- 3D-EPID in-vivo dosimetery
 - \diamond Υ_{mean} =2.0;
 - reconstructed @iso: 4.56 Gy vs 4.87 Gy from TPS (under output).

Detected critical event

- 27 of 35 segments (control points) were corrupted
- ♦ Diagnosis
 - ♦ Transfer (d): ETC \rightarrow ETC Database

 - Leaves&jaws were stored in separate tables: probably, one record containing leaves posotions was lost, causing asynchrony among <u>leaves and jaws positions</u>

Catching errors with in vivo EPID dosimetry

A. Mans,^{a)} M. Wendling,^{b)} L. N. McDermott,^{c)} J.-J. Sonke, R. Tielenburg, R. Vijlbrief, B. Mijnheer, M. van Herk, and J. C. Stroom Department of Radiation Oncology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Fig. 1. Schematic overview data flow in our department. Solid lines indicate the route that the treatment plans follow (plan transfer steps are indicated with letters). Dashed lines indicate EPID dosimetry information transfer.

FiG. 3. Two examples of corrupted segments (control points) from a stepand-shoot IMRT plan. Due to a network transfer error, leaf positions of the next segment were used, while jaw positions were correct. MLC leaves are displayed in gray and jaw positions are indicated with dashed lines.

Patient-QA: the current paradigma

- Plan is approved
- Plan parameters are copied to a phantom (Verification Plan or hybrid plan)
- Plan is recalculated on the phantom geometry
 - Field-by-field verification: beams can be arranged to remove gantry, collimator and table angle
 - Composite verification plan: Beams can remain as planned for the verification plan (this is most common with VMAT)
- Calculated dose for a known plane location is exported and matched

Pre-treatment patient-QA: failed results

- ♦ Device Setup errors/phantom setup errors
- ♦ Exported planar dose of the wrong plane orientation
- ♦ Exported the "wrong plan"
- ♦ Delivered the "wrong plan"
- Exclusion of the couch could introduce error
- ♦ Detector was not warmed up
- ♦ Detector was used with a different machine user factor
- ♦ Detector was not calibrated correctly
- Wrong calibration curve was used (film/diodes)
- ♦ Detector does not have up to date calibration
- ♦ Dose gradients too steep for detector resolution

Failed results \rightarrow actions

- ♦ Re-measure
- ♦ Re-export
- ♦ Re-setup
- \diamond Re-evaluate
- Deeper investigation (De Wagter pyramid approach)
- ♦ Try to employ another device
- ♦ Try to predict the dose to patient, explain the estimate (with uncertainty) the clinical consequences and discuss with RO
- ♦ At the end.....re-plan

The dosimeter

In the evaluation of the match *calculated vs measure*, to find the eventual errors in the chain TPS-TDS, we must know and check our measurement system $\rightarrow 1^{st}$ step: characterization of the dosimeter and evaluation of its sensitivity to setup and dosimetric errors

In general the ideal dosimeter should

- 1. be accurate
- **2.** be precise
- 3. show a linear response to dose
- 4. have minimal variation with radiation quality
- 5. have minimal variation with absolute dose
- 6. have minimal variation with dose rate
- 7. have minimal directional dependence
- 8. have a high spatial resolution

The ideal dosimeter for intensity modulated radiation therapy (IMRT): What is required?

C De Wagter Department of Radiotherapy, Ghent University Hospital, Belgium

- The ideal dosimetry method should allow absolute dose determination (dose in Gy rather than in %) without the use of (re)normalization procedures to convert relative to absolute dose.
- 2 The <u>full 3D measured</u> dose distribution has to be "available" after IMRT treatment delivery to the dosimeter. (...). The <u>3D dosimeter</u> should supply enough volumetric data to support an iterative process between level 4 and the lower levels (<u>Pyramid concept</u>).
- 3 The <u>ideal dosimeter</u> is free of perturbation and its response is independent of orientation of irradiation. These requirements are ideally met if the dosimeter itself acts as a <u>tissue equivalent</u> <u>phantom</u> or a part of it.

The ideal dosimeter for intensity modulated radiation therapy (IMRT): What is required?

C De Wagter Department of Radiotherapy, Ghent University Hospital, Belgium

- ④ The dosimetric precision and accuracy should be rigorously specified at various dose levels.
- 5 The dosimeter response should have a sufficiently large dynamic range and be insensitive to photon energy spectrum and dose rate. By nature of IMRT, stray dose becomes important. Stray dose is deposited at low dose rate by photons of deviating energy spectrum. In complete-treatment or composite IMRT dose distributions, dose-rate effects in the detector might have higher impact than expected at first sight.
- 6 The dosimeter should allow dose measurements close to the surface or interfaces and controlling the tissue equivalence of the phantom in order to measure dose near and ultimately in high hand low-density regions (high spatial resolution)

The dosimeter

(...) Ideally the actual dose delivery, in **3D**, of patient treatments should be verified after performing a comprehensive acceptance testing and commissioning programme of the various phases of the planning and delivery process of IMRT. At this moment in vivo dose verification of IMRT is only employed in a few institutions* and pretreatment verification of IMRT delivery, applying a large variety of phantomdetector combinations, is more often employed clinically (...)

*Today, this is not longer true:
 IVD is still a complex matter but new modalities were studied.
 → Adamson's lectures

Ideal (3D) dosimeter: Gel

- Gel dosimeters are manufactured from radiation sensitive chemicals that, upon irradiation with ionising radiation, undergo a fundamental change in their properties as a function of the absorbed radiation dose.
- Fricke gel and polymer gel
- Readout system: >MRI, optical CT, x-ray CT, US, vibrational spectroscopy

Several "dosimeters"

- High dosimetric accuracy evaluation
 - Ionization chambers for individual point measurements
 - Different devices are commercially available consisting of a <u>phantom</u> with **multiple diodes/ICs (2D/3D matrix)** for <u>dose</u> <u>distribution at multiple points</u>

High-resolution evaluation

- Films
- EPID
- It is not easy to obtain a system that combines high dosimetric accuracy with a high spatial resolution

Ionizations Chambers

- Cylindrical ICs are used for point-dose measurements because of their stability, linear response to absorbed dose, small directional dependence, beam quality response independence, and traceability to a primary calibration standard
- ♦ All ICs exhibit some volume averaging due to their size. Therefore, care should be taken that Ics are only used in relatively homogeneous dose regions
- Measurements at field edges may lead to larger deviations because of the absence of charged particle equilibrium
- ♦ Large number of slit-like apertures in VMAT plans increase the likelihood of measuring at field edges, even if the composite dose distribution is homogeneous

Radiochromic films

Radiochromic films are commonly used as **reference dosimetry systems**, which means that they can measure absolute dose as other dosimeters (IC for example) as long as there is an <u>established</u> <u>conversion of the film response (absorbance) to dose deposited</u> <u>within reference medium (usually water) that caused measured</u> <u>change in absorbance</u>

Radiochromic films

- They change its color upon irradiation without the need for chemical development
- Dose deposited within a sensitive layer of the film produces polymerization of the active component, <u>the degree of which depends</u> <u>on the amount of energy deposited</u>
- Response of the film to radiation is commonly expressed in terms of optical density change, which can be easily measured by any photometric device (*Linear CCD-based flatbed document scanners as the most convenient and most commonly used optical densitometers*)
- They can be easily extended from 2D to 3D dosimetry by embedding the sheets between water equivalent plastics or even in-homogenous human like phantoms

Radiochromic films

Figure 1. Diagram of the Gafchromic[™] film structure/dimensions: (a) EBT2 (b) EBT3 (c) EBT-XD, (d) MD-V3, e) HD-V2, and (f) XR-QA2 film model.

Table 1

Available Gafchromic[™] film models for radiation therapy and diagnostic radiology dose measurements with useful dose ranges and chemical compositions of sensitive layers.

Film model	Dose Range	Sensitive layer elemental composition by atomic%						Zeff				
		Н	Li	С	N	0	Na	Al	S	Cl	Bi	
HD-V2	10-100 Gy	58.2	0.6	27.7	0.4	11.7	0.5	0.3	0.1	0.6		7.63
MD-V3	1-100 Gy	58.2	0.6	27.7	0.4	11.7	0.5	0.3	0.1	0.6		7.63
EBT-XD	0.04-40 Gy	57.0	0.6	28.5	0.4	11.7	0.1	1.5	0.1	0.1		7.46
EBT2	0.01-30 Gy	56.5	0.6	27.4	0.3	13.3	0.1	1.6	0.1	0.1		7.46
EBT3	0.01-30 Gy	56.5	0.6	27.4	0.3	13.3	0.1	1.6	0.1	0.1		7.46
XR-QA2	0.1-20 cGy	56.2	1.0	27.6	1.6	11.7				0.1	1.7	55.2

Arrays

Different types of detector arrays of diodes or Cis are available:
 2D consisting of arrays

"3D" consisting of biplanar arrays or cylindrical arrays or 2D-array that rotates synchronously with gantry in VMAT

- Shortcoming: low spatial resolution
 - Exceptions are arrays utilizing micro liquid-ICs which may have a resolution of 2.5 mm
- When performing gamma index analysis, depending on the algorithm used to calculate the gamma-values, low spatial resolution may lead to under-sampling

Arrays&VMAT

- Gantry angle dependence is observed for static planar 2-D arrays whereas this is not significant for bi-planar arrays
- To obtain an accurate measurement using static planar arrays, the use of correction factors is advised
- Another solution is to rotate the detector plane in conjunction with the gantry, so that it is always perpendicular to the beam axis
- This can for example be done by rotating the phantom synchronously with the gantry (using an inclinometer) or by using a dedicated holder with which the dosimetry system is mounted directly on the gantry

$2D \rightarrow 3D$ dosimeter

- A number of detector array systems offer the possibility of a 3D dose reconstruction in the phantom, based on the 2D measurements.
- Different methods are available to calculate a 3D dose reconstruction from 2D data.
- It is important that the reconstruction method and its limitations are well understood to interpret the results correctly.
- Some methods use input from the TPS in certain steps of the dose reconstruction to compute the dose. As a result, some errors in the TPS will therefore not be detected using this verification procedure

2D-arrays

Characteristics

	Sun Nuclear	PT	IBA	
	MapCheck2	1500	1000SRS	MatrixX
Detector type	Diode	Vented IC	PP-liquid filled	Vented IC
Resolution(mm)	7.07	10	2.5/5	7.62
# of Detectors	1527	1475	977	1020
Max field size	26x32	27x27	11x11	24.4x24.4
Weight kg (detector/phantom)	7.1 (21)	5.4 (24/29)	5.4 (24/29)	10 (19.8)

3D-arrays

Delta⁴ Phantom+

THE WIRELESS PHANTOM

Use Real Tumor Motion

The Scandidos HexaMotion 6D motion platform accurately replicates the actual tumor motion. The QA is based on how the real tumor is moving. The motion patterns both for the tumor and the patient can be imported from your motion management system and the same movement cycle is then exactly executed with the Delta⁴ phantc⁻⁻ The phantom is positioned fast and wit sub-millimeter accuracy.

DELTA^{4DVH} ANATOMY

Analyze the dose delivered in the patient anatomy

With the Delta^{4DVH} Anatomy software option you can verify and analyze the dose that has been delivered to the patient anatomy. Based on the measurements in the isocentric target region and dose calculation of the dose in the patient anatomy you now have a truly independent verification of the delivered dose.

- · Delivered dose directly in the patient anatomy
- Independent from the TPS and the delivery system
- Use initial CT or fraction Cone-beam CT data

Technical specification

Cylinder phantom

PMMA; optional Plastic Water DT [®]		
22 cm		
40 cm		
Inserts for common cylindrical ion chambers available		

Detectors

Туре	p-Si			
Total number	1069			
Layout	Distributed on coronal and sagittal plane			
Max field size	20 x 38 cm ² (with merger of two consecutive measurements, otherwise 20 x 20 cm ²)			
Distance between detectors				
Central area (6 x 6cm²)	5 mm (or 2.5mm in longitudinal direction with merger of two consecutive measurements)			
Outer area	10 mm			
Size (radial x axial)	1 x 0.05 mm ³ = 0,00004 cm ³			
Detector stability (6MV beam)	Better than 0.1% per kGy, typically 0.04%/kGy			

71 cm

27kg

Size and weight

Total length	
Total weight	

Compatibility

Modalities Treatment Plan import Photon beams, with and without flattening filter Any Treatment Planning system that can export DICOM RT Plan and RT Dose, Structure

ss Communication Wireless data communication protocol operational capacity

Wi-Fi 802.11 n >4 hours

Rechargeable Li-ion battery – Power supply for charging included

<u>ဲ</u> ScandiDos

Delta⁴
- 1386 SunPoint® Diode Detectors (0.019 mm3)
- Consistent Beams Eye View (BEV) for all gantry angles
 measuring entrance and exit dose
- Real-time electrometer measures every pulse, as well as composite and sub-arcs
- Interior cavity allows wide range of detector and inhomogeneity inserts ______

SUN NUCLEAR

$Archeck^{TM}$

Respiratory MotionSim[™]

Simulate the dosimetric impact of target motion with proven accuracy.

- Evaluate motion impacts on 3D Dose and DVH
- Determine if motion management is necessary, and add to QA motion management plans
- Use existing QA measurements and avoid bulky mechanical motion phantoms

Dose and DVH QA

Full 3D Dose reconstruction for target and OAR DVH QA with 3DVH® software

- Hounsfield Unit (HU) conversion testing
- Tissue equivalent inserts:
- Muscle, Bone, Lung, Adipose, Titanium
- Dose in up to 25 locations
- Film cassette insert
- Bezel angle indicator for rotation within cavity
- Precision milled detector holder included
- Solid insert included to achieve solid cavity

- Precision fitted to ArcCHECK cavity
- · Measure dose in cavity center
- Precision milled detector holder included
 Solid insert included to achieve solid cavity

Definitions used in patient-specific QA

- A low gradient region is a region in which the dose varies less than 20% per cm, compared to the local dose value
- A spatial resolution of 2 mm or better is considered 'highresolution"
- The **reference dose** is the dose prescribed to the relevant target volume (PTV)
- If elective target volumes are present with substantially different dose levels, the prescribed dose to these regions should be used as reference dose for those volumes. It might be necessary to run the gamma analysis multiple times with different reference doses

Gamma-analysis (Low et al., Med. Phys, 1998)

A technique for the quantitative evaluation of dose distributions

Daniel A. Low,^{a)} William B. Harms, Sasa Mutic, and James A. Purdy Mallinckrodt Institute of Radiology, Division of Radiation Oncology, 510 South Kingshighway Blvd., St. Louis, Missouri 63110

(Received 9 June 1997; accepted for publication 2 March 1998)

The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the γ index. Regions where $\gamma > 1$ correspond to locations where the calculation does not meet the acception tance criteria. The determination of γ throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the y index. © 1998 American Association of Physicists in Medicine. [\$0094-2405(98)01905-1]

657 Low et al.: Dose distribution comparisons

Calculation Point

657

Fio. 2. Geometric representation of dose distribution evaluation criteria using the combined ellipsoidal dose-difference and distance-to-agreement tests. (a) Two-dimensional representation. (b) One-dimensional representation

Fig. 1. Geometric representation of dose distribution evaluation criteria for the dose-difference and distance-to-agreement tests. (a) Two-dimensional representation. (b) One-dimensional representation.

Gamma-formalism (1)

The γ is calculated based on finding the minimum Euclidean distance for each reference point, see Fig. 1 in conjunction with the following description. For each reference point in the dose distribution, calculate against each point in the evaluated distribution:

- 1. the distance between reference to evaluated point: $\Delta r(\mathbf{r}_R, \mathbf{r}_E)$
- 2. the dose difference between the reference and evaluated point: $\Delta r(\mathbf{r}_{R}, \mathbf{r}_{E})$

Where \mathbf{r}_R is the reference point, \mathbf{r}_E is the evaluated point. The dose difference is calculated using Eq. (1):

$$\Delta D(r_R, r_E) = D_E(r_E) - D_R(r_R) \tag{1}$$

where $D_E(r_E)$ is the dose at a point in the evaluated dose distribution, r_E , and $D_R(r_R)$ is reference point dose.

Then for each point in the evaluated distribution, calculate the γ using Eq. (2):

$$\Gamma(\mathbf{r}_{R},\mathbf{r}_{E}) = \sqrt{\frac{\Delta r^{2}(\mathbf{r}_{R},\mathbf{r}_{E})}{\delta r^{2}}} + \frac{\Delta D^{2}(\mathbf{r}_{R},\mathbf{r}_{E})}{\delta D^{2}}$$
(2)

where δr is the distance difference criterion and δD is the dose difference criterion.

The γ is then taken as the minimum value calculated over all evaluated points as shown in Eq. (3):

$$\gamma(\mathbf{r}_{R}) = \min\{\Gamma(\mathbf{r}_{R}, \mathbf{r}_{E})\} \forall \{\mathbf{r}_{E}\}$$
(3)

The δr and δD criteria form an ellipsoid around the reference point as shown in Fig. 1. If an evaluated point is located within this then the reference point will pass since γ will be <1.

3

Fig. 1. Schematic representation of the gamma index method in 1D. Adapted from Low et al. (1998). The y-axis is Dose, D, and the x-axis is distance, r. The cross is the reference point and the blue line represents the evaluated dose distribution with the solid circles being discrete points along the line. The δr and δD criteria create an acceptance ellipse around the reference point. In this schematic and using Eq. (2), point $D_{E}(r_{R})$, r_{E} would have $\Gamma > 1$, $D_{E}(r_{E})$ would be $\Gamma < 1$, and $D_{E}(r_{E1})$ would be $\Gamma = 1$, $D_{E}(r_{E1})$ would be $\Gamma = 1$.

 γ -ndex is a tool that combines dose and distance criteria in a single, quantitative test. The doses and spatial coordinates are first renormalized by user-selected dose & distance agreement criteria.

 Inction is the minimum distance between two dose distributions, but in an unusual space.
 The distance includes not only space, but dose as well.

Gamma-formalism (2)

- It is standard to report the passing criteria in the format δD(%)/δr(mm).
- The most common passing criteria used is 3%/3 mm which was originally recommended in the work by Low et al.
- The tool was originally developed to compare measured water tank beam data against a treatment planning system algorithm.
- The criteria of 3%/3 mm were used due to the limitations of TPS algorithms at the time, where particularly penumbra modelling was a source of uncertainty.
- Because the gamma takes into account dose-diff and distance diff it was well-suited to the modulated fields in IMRT, however the criteria of 3%/3 mm has persisted.

Gamma-index: practical considerations

- For a 2D and 3D evaluation all measured points with a dose below 10%-20% of the reference dose should be discarded to avoid false positives due to low signal-to-noise in the low dose area.
- The choice of the actual cut-off value is at the discretion of the user, in part based on the treatment site, the equipment used and the choice between a 2D and 3D gamma evaluation.

Gamma-index: practical considerations

Global vs local

Typically the γ calculations are categorised into two different types; local and global. The contrast between the two types is the way the dose difference is calculated. For a local γ , Eq. (1) gives the definition for a local dose difference. For global gamma, Eq. (1) has to be modified to become Eq. (4):

$$\Delta D(r_R, r_E) = \frac{D_E(r_E) - D_R(r_R)}{D_{norm}}$$
(4)

where D_{norm} is a normalisation dose value which can be defined as any value; for example, as the maximum dose within the reference dose distribution or a point selected in a high dose low gradient region. The two types of γ have advantages and disadvantages.

The two types of γ have advantages and disadvantages

- The local γ will tend to highlight failures in high dose gradient regions and in low dose regions, whereas the global γ will tend to mask these errors but show the errors within the higher dose regions.
- The choice of the γ calculation will depend on the needs of the test.
- Many data in literature based on global calculation (AAPM array data included)

Gamma-index: practical considerations

- To achieve a DTA of 3 mm or better, it is recommended to perform the dose computation with a resolution of 3 mm or better.
 - The slice thickness of the imaging dataset used for dose computation should be considered to meet this criterion.
- For the γ-evaluation, it may be necessary to normalise the measured dose distribution to the computed one and register them.
- All equipment used should be calibrated properly and their limitations in terms of dosimetric and spatial accuracy/precision should be known and taken into consideration.
- The γ-evaluation tool should be considered with care and should not be used as the only evaluation criterion

Gamma-evaluation: review

IC3DDose: The 6th International Conference on 3D Radiation Dosimetry Journal of Physics: Conference Series 250 (2010) 012071

IOP Publishing doi:10.1088/1742-6596/250/1/012071

Gamma Dose Distribution Evaluation Tool

Daniel A. Low, Ph.D.

Washington University, Department of Radiation Oncology, 4921 Parkview Place, St. Louis, MO 63110;

low@wustl.edu

Abstract. Quantitative comparisons of dose distributions are an integral component of a medical physicist's responsibility of assuring high quality radiation therapy dose delivery. While overlays and other displays of multiple dose distributions are useful for such evaluations, quantitative evaluations require a mathematical comparison. The dose-difference is the most straightforward method for comparing two dose distributions, but it can show large differences in steep dose gradient regions, even for relatively small misalignments. A tool, termed γ , was developed to take both dose and spatial difference into account. It does this automatically, evaluating distributions for dose difference and spatial discrepancies in regions of shallow and steep dose gradients, respectively. The tool has been used extensively in commercial dose measurement and evaluation software. This chapter describes the tool, some alternative techniques, and limitations of the tool.

Gamma-index: computational aspects

Physica Medica 36 (2017) 1-11

Review paper

Challenges in calculation of the gamma index in radiotherapy – Towards good practice

M. Hussein^{a,b,*}, C.H. Clark^{a,b,c}, A. Nisbet^{a,b}

^a Department of Medical Physics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK ^b Centre for Nuclear and Radiation Physics, University of Surrey, Guildford, UK ^c National Physical Laboratory, Teddington, UK

ARTICLE INFO

Article history: Received 29 September 2016 Received in Revised form 7 February 2017 Accepted 5 March 2017

Keywords: Gamma index IMRT VMAT Quality assurance Detector arrays MATLAB

ABSTRACT

The gamma index (γ) is one of the most commonly used metrics for the verification of complex modulated radiotherapy. The mathematical definition of the γ is computationally expensive and various techniques have been reported to speed up the calculation either by mathematically refining the γ or employing various computational techniques. These techniques can cause variation in output with different software implementations. The γ has traditionally been used to compare a 2D measured plane against a 2D or 3D dose distribution. Recently, software algorithm and hardware improvements have led to the possibility of using measured 2D data from commercial detector arrays to reconstruct a 3D-dose distribution and perform a volumetric comparison against the treatment planning system (TPS). A limitation in this approach is that commercial detector arrays have so far been limited by their spatial resolution which may affect the accuracy of the reconstructed 3D volume and subsequently the γ calculation. Additionally, 3D versus 3D γ comparison adds a layer of complication in the calculation of the γ given the increase in the number of calculation points and the result cannot be as easily interpreted in the same way as 2D comparison. This review summarises and highlights the computational challenges of the Y calculation and sheds light on some of these issues by means of a bespoke MATLAB software to demonstrate the impact of interpolation, γ search distance, resolution and 2D and 3D calculations. Finally, a recommendation is made on the minimum information that should be reported when publishing γ results.

The central question: when the plan is "ok"?

♦ Agreement Index: which GPR%?

Gamma passing rate (points with γ≤1 where γ is calculated usually with 3 mm-3%)

85% 90% 95% ????

- ♦ The choice depends on
 - IMRT equipment and delivery modality
 - Modulation Complexity Score → Plan quality
 - Verification type (field by field or composite plan)
 - Normalization procedure for dose diff%
 - Size of the measurements samples
 - Cutoff
 - QA policy of RO department

Guidelines

AAPM TG119 (Med Phys 36(11) - 2009)

IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119

Gary A. Ezzell

Department of Radiation Oncology, Mayo Clinic Scottsdale, 5777 East Mayo Boulevard, MCSB Concourse, Phoenix, Arizona 89054

Jay W. Burmeister Wayne State University School of Medicine, Karmanos Cancer Center, 4100 John R Street, Detroit, Michigan 48201

Nesrin Dogan Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street B-129, Richmond, Virginia 23298

Thomas J. LoSasso and James G. Mechalakos Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065

Dimitris Mihailidis Department of Radiation Oncology and Medical Physics, Charleston Radiation Therapy Cons, 3100 MacCorkle Avenue Southeast, Charleston, West Virginia 25304

Andrea Molineu RPC, UT MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030

Jatinder R. Palta Department of Radiation Oncology, University of Florida Health Science Center, 2000 Archer Road Gainesville, Florida 32610–0385

Chester R. Ramsey Thompson Cancer Survival Center, 1915 White Avenue, Knoxville, Tennessee 37916

Bill J. Salter Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Drive, Salt Lake City, Utah 84112

Jie Shi Sun Nuclear Corp., 425-A Pineda Court, Melbourne, Florida 32940

Ping Xia Department of Radiation Oncology, University of California, San Francisco, California 94143–1708

Ning J. Yue Department of Radiation Oncology, The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901

Ying Xiao^{a)}

Department of Radiation Oncology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, Pennsylvania 19107

(Received 15 May 2009; revised 4 September 2009; accepted for publication 5 September 2009; published 27 October 2009)

Main focus is to evaluate the overall performance of an MRT system and to determine reasonable confidence limits (CLs) for assessing the adequacy of the dosimetric commissioning.

The TG119 developed a specific set of tests for IMRT commissioning considered representative of the most common clinic sites.

The tests present a range of optimization problems requiring simple to complex modulation patterns, so they providing system checks of different types and different levels of complexity

TG119 adopts the concept of CL

- ♦ TG119 has quantified the "degree of agreement that should be expected" using the concept of "CONFIDENCE LIMIT" as proposed by some authors (Venselaar et al, Palta et al.).
- If the difference between the measured then the predicted is within a reasonable confidence limit, the the result can be considered acceptable
- The TG119 has established <u>CONFIDENCE LIMITS</u> for different types of measurements, by combining data from the participating centers
- ♦ Each of the centers that have participated to the study has passed the previous RPC IMRT intercomparison test using the RPC' H&N dosimetry phantom (resulting "Ok center")

TG119 - Confidence limits CLs

♦ The CL is based on

 the average difference between measured and expected values for a number of measurements of similar situations (SYSTEMATIC DIFFERENCE)

summed with

- the standard deviation of the differences multiplied by some factor (RANDOM DIFFERENCE)
- In the formula proposed by Palta (2003), CL is the sum of the absolute value of the average difference and the standard deviation of the differences multiplied by a factor of 1.96

CL = |mean deviation|+1.96 SD

- Note that CL is dominated by the SD term with its faction of about 2
- This is based on the statistics of a normal distribution: it is expected that 95% of the measured points will fall within the confidence limit.
- ♦ TG119 adopted the Palta formalism

Netherlands Guidelines

see all files

Code of Practice for the Quality Assurance and Control for Volumetric Modulated Arc Therapy

In December 2010, the NCS installed a new subcommittee to develop guidelines for quality assurance and control for VMAT treatments. This report has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. Still, the writers of this report expect that it is also valuable to other institutes preparing to introduce VMAT or willing to set up a comprehensive QA program for it. The authors chose to use NCS reports on general linac QA (NCS 9) and IMRT QA (NCS 22) as a starting point for this report and focussed on the additional QA and commissioning demands required for the application of VMAT. This report only deals with VMAT delivered by conventional linear accelerators.

FILES

NCSreport_24_VMAT_QA - Download

NCS REPORTS

Human Exposure to Ionising Radiation for Clinical and Research Purposes NCS 26, May 2016 + More about and download

Code of Practice for the Quality Assurance and Control for Volumetric Modulated Arc Therapy NCS 24, February 2015 + More about and download Process Management and Quality Assurance for Intracranial Stereotactic Treatment

NCS 25, October 2015

- + More about and download
- Audit of High-Energy Photon Beams in Belgian and Dutch Radiotherapy Departments NCS 23, December 2013 + More about and download

Netherlands Commission on Radiation Dosimetry

Netherlands Guidelines

Code of Practice for the Quality Assurance and Control for Intensity Modulated Radiotherapy

NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE

Report 22 of the Netherlands Commission on Radiation Dosimetry June 2013

Code of Practice for the Quality Assurance and Control for Volumetric Modulated Arc Therapy

NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE

Report 24 of the Netherlands Commission on Radiation Dosimetry February 2015

April 2013

 Netherlands Commission on Radiation Dosimetry

 Subcommittee "IMRT QA",

 June 2013

February 2015

Netherlands Commission on Radiation Dosimetry Subcommittee VMAT QA February 2015

Canada guidelines

Technical Quality Control Guidelines

Making sure the technology works

Technical quality control (TQC) guidelines are intended to provide direction for assuring optim performance of radiation treatment equipment programs across the country, an essential requirement of high quality and safe patient ca While technical drivers from international organizations like the American Association of Physicists in Medicine (AAPM) exist, they may applicable across the spectrum of practice environments like Canada, are not regularly up

and have not been properly validated. In 2010 CPQR, together with the Quality Assurance Radiation Safety Advisory Committee (QARSAC) of COMP undertook an extensive review

Equipment Specific TQC Guidelines

(Dosimetric, geometric and mechanical properties of the equipment)

- Accelerator integrated cone beam systems for verification imaging (Expert reviewer: Jean-Pierre Bissonnette)
- Brachytherapy remote afterloaders (Expert reviewer: Normand Freniere)
- Conventional radiotherapy simulators (Expert reviewer: Marie-Joelle Bertrand)
- Computed tomography simulators (Expert reviewer: Philippe Despres)
- <u>CyberKnife</u> (Expert reviewers: Eric VanderVoort, Horacio Patrocinio, Tom Chow, Emilie Soisson, Dominic Nadeau)
- Data management systems (Expert reviewer: Natalie Pomerleau-Dalcourt)
- GammaKnife (Expert reviewers: Anita Berndt, Mathieu Guillot, Monique vanProoijen)
- Kilovoltage radiotherapy machine (Expert reviewer: Christophe Furstoss)
- Low dose rate permanent seed brachytherapy (Expert reviewer: Luc Beaulieu)
- Major dosimetry equipment (Expert reviewer: Gerard Lagmago Kamta)
- <u>Medical linear accelerators and multi-leaf collimators</u> (Expert reviewers: Charles Kirkby, Esmaeel Ghasroddashti, Crystal Plume Angers, Erin Barnett, Grace Zeng)
- Patient-specific dosimetric measurements for modulated therapies (Expert reviewer: Andrea McNiven)

gamma index varies with criteria settings

More stringent criteria: 2%-2mm

Real-world examples of sensitivity failures of the 3%/3mm pass rate metric and published action levels when used in IMRT/VMAT system commissioning

B Nelms¹, G Jarry², M Chan³, C Hampton⁴, Y Watanabe⁵ and V Feygelman⁶ ¹Canis Lupus LLC, Merrimac, Wisconsin 53561, USA

²L'Hopital Maissoneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada ³Memorial Sloan-Kettering Cancer Center, Basking Ridge, New Jersey 07920, USA ⁴Wake Forest Baptist Medical Center, Winston-Salem, North Carolina 27157, USA ⁵University of Minnesota, Minneapolis, Minnesota 55455, USA ⁶Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA

E-mail: alpha@canislupusllc.com

Abstract. In IMRT/VMAT system commissioning (as with any system), quality is improved by striving for tight tolerances of stringent metrics of accuracy. For 5 cases, passing rates for

3%/3mm gamma analysis v more stringent/sensitive cri applied, and in each case sig 3%/3mm passing rates. In examples of observed "false the 3%/3mm gamma passing the IMRT/VMAT delivery cl

- Different errors in the MLC leaf position for VMAT were correlated to DVH values
- ♦ Planar (2D-Array) and bi-planar (Delta4) arrays were used
- \diamond A stricter γ (2%/2mm) criterion is necessary in order to detect MLC positional errors
- Even a γ index rate > 90% does not guarantee the absence of significant clinical dose deviations

Heilemann G, Med. Phys. 2013

Re-Thinking about QA

POINT/COUNTERPOINT

Suggestions for topics suitable for these Point/Counterpoint debates should be addressed to Colin G. Orton, Professor Emeritus, Wayne State University, Detroit: ortonc@comcast.net. Persons participating in Point/Counterpoint discussions are selected for their knowledge and communicative skill. Their positions for or against a proposition may or may not reflect their personal opinions or the positions of their employers.

QA procedures in radiation therapy are outdated and negatively impact the reduction of errors

Howard Ira Amols, Ph.D. Medical Physics Department, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021 (Tel: 212-639-6807; E-mail: amolsh@mskcc.org)

Eric E. Klein, Ph.D. Radiation Oncology Department, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (Tel: 314-747-3721; E-mail: eklein@radonc.wustl.edu)

Colin G. Orton, Ph.D., Moderator

POINT/COUNTERPOINT

QA procedures in radiation therapy are outdated and npact the reduction of errors

ric E Klein Ph D Colin G. Orton, Ph.D. Moderator rived 25 May 2011; accepted for p (DOI: 10.1118/J.3605472)

Med. Phys. 38 (2011)

Re-Thinking about QA

POINT/COUNTERPOINT

Suggestions for topics suitable for these Point/Counterpoint debates should be addressed to Colin G. Orton, Professor meritus, Wayne State University, Detroit: ortonccomcast.net. Persons participating in Point/Counterpoint discussions are selected for their nowledge and communicative sill. Their positions for or against a proposition may or may not reect their personal opinions or the positions of their employers.

It is STILL necessary to validate each individual IMRT treatment plan with dosimetric measurements before delivery

J. Charles Smith, M.S. St. Joseh Merc, Port ron, Port ron, Michian el mail smithchtrinithealth.or

Sonja Dieterich, Ph.D. Deartment o adiation Oncolo, Stanord niersit osital, Stanord, Caliornia el mail sonia.dieterichstanord.ed

Colin G. Orton, Ph.D., Moderator

(Received 22 September 2010; accepted for publication 23 September 2010; published 7 January 2011)

[DOI: 10.1118/1.3512801]

OVERVIEW

Almost a decade ago, we published a Point/Counterpoint debate on the need for validation measurements for each individual IMRT patient [Med. Phys. 30, 2271-2273 (2003)]. Now, after many more years of experience with this modality, the necessity for such patient-specific measurements has been questioned, and this is the topic discussed in the month's Point/Counterpoint debate.

Arguing for the Proposition is J. Charles Smith, M.S. Mr. Smith graduated from St. Joseph's University in Philadelphia in 1987 with a B.S. in Physics and a minor in Mathematics, and received his M.S. in Physics from the University of Maryland, College Park, in 1990. He entered the field of Medical Physics in 1991 with a consulting group in the

Washington DC region, and took his current position at St. Joseph Mercy in Port Huron, MI, in 1993. There, he is the Radiation Therapy Physicist

and RSO, and helps in Nuclear Medicine and Diagnostic Radiology as needed. He is certified in Radiation Therapy Physics by the American Board of Medical Physics.

Med. Phys. 38 (2), February 2011

0094-2405/2011/38/21/553/3/\$30.00

Opening Statement

© 2011 Am. Assoc. Phys. Med.

Arguing against the Proposi-

tion is Sonja Dieterich, Ph.D.

After completing her Ph.D. in

Nuclear Physics at Ruteers

University in 2002, Dr. Dieter-

ich received training in Medi-

cal Physics at Georgetown

University Hospital, Washing-

ton DC, from 2002 to 2003. In

2003, she accepted a faculty

position at Georgetown, where

she became Chief of the Cy-

berknife program in 2006. In

2007, she moved to Stanford University Hospital, Stanford,

CA, as Clinical Associate Professor and Chief of Radiosur-

gery Physics. Dr. Dieterich is certified in Therapeutic Radio-

logic Physics by the ABR and is Chair of the AAPM Task

Group 135 (OA for Robotic Radiosurgery). Her current in-

terests are the development of OA/OM programs for new

Ultimately, all the Quality Control/Quality Assurance

(QC/QA) we do is supposed to assure that we are delivering

dose to the patient in the manner and amount planned.1 With

regard to IMRT, there has been debate over whether or not

Hopefully, systems-analysis tools will be developed to ad-

dress this, and we will train ourselves to think in terms of

we have the proper tools to test this in a meanineful way.

technologies, motion management, and SRS dosimetry.

FOR THE PROPOSITION: J. Charles Smith, M.S.

CrossMark

POINT/COUNTERPOINT

Supportions for tonics suitable for these Point/Counternaint debates should be addressed to Colin G. Orton, Professor Emeritus, Wayne State University, Detroit: orione@comcast.net. Persons participating in Point/Counterpoint discussions a selected for their knowledge and communicative skill. Their positions for or against a proposition may or may not reflect their personal opinions or the positions of their employers

Patient-specific QA for IMRT should be performed using software rather than hardware methods

Ramon Alfredo C. Siochi, Ph.D. Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (Tel: 319-353-8979; E-mail: raifredo-slocki@uiowa.edu)

Andrea Molineu, M.S. Radiological Physics Center, UT MD Anderson Cancer Center, Houston, Texas 77030 (Tel: 713 745 8989; E-mail: AMolineu@mdanderson.org)

Colin G. Orton, Ph.D., Moderator

(Received 23 February 2013; accepted for publication 25 February 2013; published 31 May 2013)

[http://dx.doi.org/10.1118/1.4794929]

OVERVIEW

Measurement-based patient-specific quality assurance (QA) for IMRT is both time-consuming and potentially inaccurate, since the measurements are made in phantoms rather than actual patients. It has been suggested that it would be more accurate and considerably less time consuming to perform such OA with software rather than hardware, and this is the tonic debated in this month's Point/Counterpoint.

Arguing for the Proposition is Alfredo Siochi, Ph.D. Dr. Siochi received his Ph.D. in Physics from Virginia Tech in 1990 and his M.S. in Radiological Physics from the University of Cincinnati in 1995. He holds over 20 natents and has more than 40 publications. in radiotherapy. He developed over 17 in-house software applications, including an IMRT QA plan check suite and an

IMRT sequencing algorithm in use in several treatment planning systems. He is Director of Medical Physics Education and IT Operations in the Radiation Oncology Department at the University of Iowa, and a member of many AAPM Committees and Task Groups including Chair of the AAPM Work Group on Information Technology and TG201 (Quality Assurance of External Beam Treatment Data Transfer), and Couchair of the Radiation Safety Stakeholders Initiative. Dr. Siochi is certified by the American Board of Radiology in Therapeutic Radiological Physics.

070601-1 Med. Phys. 40 (7), July 2013

0094-2405/2013/40/7/070601/3/\$30.00 0 2013 Am Assoc. Phys. Med. 070501-1

2013

Arguing against the Proposition is Andrea Molineu, M.S. Ms. Molineu obtained her M.S. in Medical Physics from the University of Kentucky, Lexington in 1999 and then moved to the Department of Radiation Oncology, St. Elizabeth's Medical Center, Boston, where she held a Medical Physicist appointment until 2001. She then moved to the Radiological Physics Center, Denartment

of Radiation Physics, Division of Radiation Oncology, UT M. D. Anderson Cancer Center, Houston, TX, where she is currently a Senior Medical Physicist and Associate Director of the MD Anderson Phantom Laboratory. She is certified by the American Board of Radiology in Therapeutic Radiological Physics and her major research interests include anthropomorphic phantoms and radiotherapy QA, especially IMRT. She is a member of many AAPM committees and Task Groups and is the current Chair of the Working Group on Clinical Trials.

FOR THE PROPOSITION: Barron Alfredo C. Siochi, Ph.D. Opening statement

"Patient-specific QA" is a misnomer. What we really need

is "Quality Control (QC)".1 Every service for each patient is tested to ensure that it meets our safety and quality specifications. There is general agreement that, in IMRT, the specification is that the actual delivered dose (or location) should be within 3% (or 3 mm) of that planned. But what is the

2011

To cut pre-TX patient-QC? Yes

- What are we find?
 - TP errors

If we are validating a lung cancer IMRT, how far is the phantom from the real patient?

TD errors

System delivery performance of the verification session does not reproduce exactly for every therapy fractions

- Uncertainties of measurement procedure
- Comparison tools, agreement criteria and tolerance levels
- Effective sensitivity to errors
- How is it can predict the clinical impact?
- Open question: if there are any discrepancies, what are we choose? <u>The crucial question</u>: <u>have we to re-plan</u>?

GPR vs DVH-based metric

GPR has generally weak correlation to critical patient DVH errors. Algorithms were developed to accurately predict the DVH impact using conventional planar patient-QA results. Patient QA based on metrics seems to be both sensitive and specific

Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors^{a)}

Benjamin E. Nelms^{b)}

Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561

Heming Zhen Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705

Wolfgang A. Tomé Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison. Wisconsin 53792

(Received 29 September 2010; revised 28 December 2010; accepted for publication 30 December 2010; published 31 January 2011)

Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram

M. Stasi, S. Bresciani,^{a)} A. Miranti, A. Maggio, and V. Sapino

Department of Medical Physics, IRCC: Institute for Cancer Research and Treatment at Candiolo (TO) 10060, Italy

P. Gabriele Department of Radiotherapy, IRCC: Institute for Cancer Research and Treatment at Candiolo (TO) 10060, Italy

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 1, WINTER 2009

On the sensitivity of patient-specific IMRT QA to MLC positioning errors

Guanghua Yan,^{1,2,a} Chihray Liu,¹ Thomas A Simon,^{1,2} Lee-Cheng Peng,^{1,2} Christopher Fox,¹ Jonathan G Li¹ Department of Radiation Oncology,¹ University of Florida, Gainesville, FL, U.S.A.; Department of Nuclear and Radiological Engineering,² University of Florida, Gainesville, FL, U.S.A. van@ull.edu

Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

Heming Zhen Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705

Benjamin E. Nelms Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 and Canis Lupus LLC, Merrimac, Wisconsin 53561

Wolfgang A. Tomé⁽⁸⁾ Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792

Evaluating IMRT and VMAT dose accuracy: Practical examples of failure to detect systematic errors when applying a commonly used metric and action levels

Benjamin E. Nelms^{a)} Canis Lupus LLC, Merrimac, Wisconsin 53561

Maria F. Chan Memorial Sloan-Kettering Cancer Center, Basking Ridge, New Jersey 07920

Geneviève Jarry and Matthieu Lemire Hôpital Maisonneuve-Rosemont, Montréal, QC HIT 2M4, Canada

John Lowden Indiana University Health - Goshen Hospital, Goshen, Indiana 46526

Carnell Hampton Levine Cancer Institute/Carolinas Medical Center, Concord, North Carolina 28025

Vladimir Feygelman Moffitt Cancer Center, Tampa, Florida 33612

On the use of biomathematical models in patient-specific IMRT dose QA

Heming Zhen UT Southwestern Medical Center, Dallas, Texas 75390

Benjamin E. Nelms Canis Lupus LLC, Merrimac, Wisconsin 53561

Wolfgang A. Tomé^{a)}

Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461

DVH-based metric: an application

Hosang Jin, 2012

DVH-based metric: advantages and limits

- It should be noted that high passing rates in conventional QA do not alone imply accurate dose calculation and/or delivery
- The PDP algorithm was shown to accurately predict the DVH impact and clinically relevant dose using conventional planar QA results.
- However, it could introduce more complex and inefficient QA in the busy clinic.
- Most importantly, acceptable tolerances, action levels, and potential changes in QA procedures should be explored extensively.
- Limitations of the PDP should be further investigated.

Hosang Jin, 2012

Error-catcher? I am not sure

Clinical Investigation: Quality Assurance

Quality Control Quantification (QCQ): A Tool to Measure the Value of Quality Control Checks in Radiation Oncology

Eric C. Ford, PhD,* Stephanie Terezakis, MD,* Annette Souranis,* Kendra Harris, MD,* Hiram Gay, MD,[†] and Sasa Mutic, PhD[†]

To cut pre-TX patient-QC? NO

- Complementary to the machine-QA program
- End-to-end test/physics time out: they give a chance for a plan review
- Valid to detect gross errors
- Chiefs of Radiation Oncology Facilities understand patient-QC better than general QC
- ...Better than nothing

www.redjournal.org

Physics Contribution

Institutional Patient-specific IMRT QA Does Not Predict Unacceptable Plan Delivery

CrossMark

Stephen F. Kry, PhD, * Andrea Molineu, MS,* James R. Kerns, MS,*^{,†} Austin M. Faught, PhD,*^{,†} Jessie Y. Huang, BS,*^{,†} Kiley B. Pulliam, MS,*^{,†} Jackie Tonigan, MS,*^{,†} Paola Alvarez, MS,* Francesco Stingo, PhD,^{†,‡} and David S. Followill, PhD*^{,†}

*Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; ¹The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, Texas; and ¹Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas

Fig. 3. Percent differences between dose measurements and treatment planning system calculations for institutional IMRT QA compared with the TLD in the IROC Houston phantom. The linear trend line should ideally have a slope of 1 but instead is nearly flat. IMRT QA = intensity modulated radiation therapy quality assurance; IROC = Imaging and Radiation Oncology Core; TLD = thermoluminescent dosimeters.

Dosimetric audits performed by the Imaging and Radiation Oncology Core in Houston (IROC Houston)

(..) In-house patient-specific IMRT QA failed to detect unacceptable plan delivery as measured by the IROC Houston head and neck phantom.

Fig. 4. Percent of pixels passing gamma for institutional IMRT QA compared with the IROC Houston phantom films. The linear trend line should ideally have a slope of 1, but instead is nearly flat. IMRT QA = intensity modulated radiation therapy quality assurance; IROC = Imaging and Radiation Oncology Core.

IJROBP, 88(2014)

towards (real time) automation

In vivo automatic EPID-Dosimetry

Prove Med. Biol. 58 (2013) 8233-8224 doi:10.1088/0031-9155/58/22/823 doi:10.1088/0742-6596 doi:10.1088/0742-6	IOP PUBLISHING	PHYSICS IN MEDICINE AND BIOLOGY	8th International Conference on 3D Radiation Dosimetry (IC3DDose)	IOP Publishin
<section-header></section-header>	Phys. Med. Biol. 58 (2013) 8253-8264	doi:10.1088/0031-9155/58/22/8253	Journal of Physics: Conference Series 573 (2015) 012004	doi:10.1088/1742-6596/573/1/01200
Diadregui-Ruiz, R Rozendaal, B Mijnheer, M van Herk and A Mans Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmaniaan 121, 1066-CX Amsterdam, The Netherlands	Automatic <i>in vivo</i> portal dos	imetry of all treatments		
Department of Radiation Oncology, The Netherlands Cancer Institute–Antoni van Leeuwenhork Bopital, Plesmaniaan 121, 1066-CX Amsterdam, The Netherlands Surf frections Surf frections Not frections Not frections Program and for the Netherlands Cancer Institute–Antoni van Leeuwenhork Book Status Surf frections Not fr	I Olaciregui-Ruiz, R Rozendaa	, B Mijnheer, M van Herk and A Mans		
Start Verify ust	Department of Radiation Oncology, The 1 Hospital, Plesmanlaan 121, 1066-CX Am	Vetherlands Cancer Institute-Antoni van Leeuwenhoek sterdam, The Netherlands	Patient-specific QA using 4D Monte Car predictions and EPID dosimetry	rlo phase space
image acquisition Image acquisi	Start Verify next fraction? YES Prepare panel for	Automatically approve treatment Take clinical action	I A Popescu^{1, 2}, P Atwal¹, J Lobo², J Lucido³ an ¹ British Columbia Cancer Agency, Vancouver, B ² University of British Columbia, Vancouver, BC, ³ University of Colorado School of Medicine, Den ⁴ CancerCare Manitoba and University of Manitob	Id B M C McCurdy ⁴ C, Canada , Canada Iver, CO, USA ba, Winnipeg, MB, Canada
NO Portal images recorded? YES EPID dosimetry EPID dosimetry	image acquisition	OK Error	Object recognition and process (DICOM-to-egsinp) (Monte Carlo	dynalog/trajectory -log input
EPID dosimetry	Portal images recorded? YES	nges OK	DICOM Monte Carlo dose and 4D exit phase FPID 'cine-mode'	CBCT registration (work in proaress)
software in batch mode YES	EPID dosimetry software in batch mode	criteria ? VES	prediction	
ALERT Automation failed Manual verification verification Verification	ALERT Automation failed Manual verification	(1) Automatic too (2) Automatic pro (3) Automatic pro (4) Automatically	Is that decide which fractions need to be analyzed for quisition of portal image data for these fractions. oduction of dosimetry reports. raising alerts and scheduling actions when deviation	r which treatments.

Linac Delivery Log-files

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 5, 2012

Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file analysis against conventional measurement based IMRT QA

Baozhou Sun,¹ Dharanipathy Rangaraj,^{1,2a} Sunita Boddu,³ Murty Goddu,¹ Deshan Yang,¹ Geethpriya Palaniswaamy,² Sridhar Yaddanapudi,¹ Omar Wooten,¹ Sasa Mutic¹ Department of Radiation Oncology,¹ Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology,² Scott & White Healthcare System, Temple, TX; Department of Radiation Oncology,³ University of California Davis, Sacramento, CA, USA drangaraj@svmail.sw.org

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014

Correlation of phantom-based and log file patient-specific QA with complexity scores for VMAT

Christina E. Agnew,¹ Denise M. Irvine,¹ Conor K. McGarry^{1,2a} Radiotherapy Physics,¹ Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK; Centre for Cancer Research,² Queens University Belfast, Northern Ireland, UK conor.mcgarry@belfasttrust.hscni.net

IOP PUBLISHING

Phys. Med. Biol. 55 (2010) 3597-3610

Physics in Medicine and Biology doi:10.1088/0031-9155/55/13/002

Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files*

Jianguo Qian, Louis Lee, Wu Liu, Karen Chu, Edward Mok, Gary Luxton, Quynh-Thu Le and Lei Xing¹

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA

Radiotherapy and Oncology 117 (2015) 407-41

Contents lists available at ScienceDirect
Radiotherapy and Oncology

Quality assurance

Linking log files with dosimetric accuracy – A multi-institutional study on quality assurance of volumetric modulated arc therapy

Marlies Pasler^{a,*}, Jochem Kaas^b, Thijs Perik^b, Job Geuze^b, Ralf Dreindl^c, Thomas Künzler^d, Frits Wittkamper^b, Dietmar Georg^{e,t}

*Lake Constance Radiation Oncolegy Center Singen-Priedrichshofen, Cormany: "Department of Radiation Oncolegy, The Netherlands Cancer Institute, Amsterdam, The Netherlands, *EBC Meditations Ombi, Wiener Netwards and Department of Radiationarys, Netical University of Umas," Institute of Medical Physics, Landesbranchnauer Helderkir, "Die Medical Radiation Physics, Department of Radiation Oncolegy, Medical University Vienna/AKH Vienna; and "Christian Doppler Laboratory for Medical Radiation Research for Radiation Roncology, Medical University Vienna, Astria

> IOP PUBLISHING Phys. Med. Biol. 57 (2012) 6761–6777

PHYSICS IN MEDICINE AND BIOLOGY

doi:10.1088/0031-9155/57/21/6761

Implementation of phantom-less IMRT delivery verification using Varian DynaLog files and R/V output

C E Agnew¹, R B King¹, A R Hounsell^{1,2} and C K McGarry^{1,2}

 Radiotherapy Physics Department, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK, BT9 7AB
 Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK

Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

V. Hernandez^a) and R. Abella Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona 43204, Spain

J. F. Calvo Department of Radiation Oncology, Hospital Quirón, Barcelona 08023, Spain

D. Jurado-Bruggemann Department of Medical Physics, Institut Català d'Oncologia, Girona 17007, Spain

I. Sancho Department of Medical Physics, Institut Català d'Oncologia, L'Hospitalet de Llobregat 08908, Spain

P. Carrasco Department of Medical Physics, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain

Real-time treatment monitor

An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

Mohammad K. Islam^{a)}

Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada; and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 229, Canada

Bernhard D. Norrlinger and Jason R. Smale

Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada

Robert K. Heaton

Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 249, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 249, Canada

Duncan Galbraith

Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada

Cary Fan

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2Z9, Canada

David A. Jaffray

Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada; and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada

Patient-specific online dose verification based on transmission detector measurements

Johannes Thoelking ^{a,*}, Jens Fleckenstein ^a, Yuvaraj Sekar ^a, Ramesh Boggula ^b, Frank Lohr ^a, Frederik Wenz ^a, Hansjoerg Wertz ^a

*Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; and ^bSt George's Cancer Care Center, Christchurch, New Zealand

ARTICLE INFO

ABSTRACT

Article history: Received 11 September 2015 Received in revised form 23 March 2016 Accepted 2 April 2016 Available online xxxx

Keywords: Quality assurance Transmission detector Online dose verification Background and purpose: Since IMRT-techniques lead to an increasingly complicated environment, a patient specific IMRT-plan verification is recommended. Furthermore, verifications during patient irradiation and 3D dose reconstruction have the potential to improve treatment delivery, accuracy and safety. This study provides a detailed investigation of the new transmission detector (DTD) Dolphin (IBA Dosimetry, Germany) for online dosimetry.

Materials and methods: The clinical performance of the DTD was tested by dosimetric plan verification in 2D and 3D for 18 MRT-sequences. In 2D, DTD measurements were compared to a pre-treatment verification method and a treatment planning system by gamma index and dose difference evaluations. In 3D, dose-volume-histogram (DVH) indices and gamma analysis were evaluated, Furthermore, the error detection ability was tested with leaf position uncertainties and deviations in the linear accelerator (LIMAC) output. Results: The DTD measurements were in excellent agreement to reference measurements in both 2D ($\gamma_{\rm Stamm} = 0.92 \times 10.5\% \times 10.2\% \times 10.5\% \times 10.5\%$

Conclusions: The DTD measures the delivered dose with sufficient accuracy and is therefore suitable for

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014

A simple model for predicting the signal for a head-mounted transmission chamber system, allowing IMRT in-vivo dosimetry without pretreatment linac time

Daniel Johnson,^{1a} Steven J. Weston,¹ Vivian P. Cosgrove,¹ David I. Thwaites²

Department of Medical Physics and Engineering,¹ St James' Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Institute of Medical Physics,² School of Physics, University of Sydney, Sydney, Australia dan.johnson@leedsth.nhs.uk

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 5, 2016

Diode-based transmission detector for IMRT delivery monitoring: a validation study

Taoran Li,¹ Q. Jackie Wu,¹ Thomas Matzen,² Fang-Fang Yin,¹ and Jennifer C. O'Daniel^{1a} Department of Radiation Oncology,¹ Duke University Medical Center, Durham, NC, USA; ScandiDos AB,² Uppsala, Sweden jennifer.odaniel@duke.edu

Received 19 November, 2015; accepted 2 May, 2016

The purpose of this work was to evaluate the potential of a new transmission detector for real-time quality assurance of dynamic-MLC-based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (~1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes ($\geq 30 \times 30$ cm²). Overall the accuracy and speed of the device show good potential for real-time quality assurance.

PACS number(s): 87.55.Qr

Key words: transmission detector, real-time quality assurance, IMRT quality assurance, in vivo dosimetry

Real-time treatment monitor

Physics Contribution

First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions

Henry C. Woodruff, PhD,* Todsaporn Fuangrod, MS,[†] Eric Van Uytven, PhD, 181 Boyd M.C. McCurdy, PhD, 181 Timothy van Beek,^{‡,§,||} Shashank Bhatia, PhD, and Peter B. Greer, PhD*/

IJROBP,

*Faculty of Science and Information Technology, School of Mathematical and Physical Sciences, and Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer

Science, University of Newcastle, New South Wales, Australia; [‡]Division of Medical Physics,

201 CancerCare Manitoba; Departments of [§]Physics and Astronomy and ^{II}Radiology, University of

Manitoba, Winnipeg, Manitoba, Canada; and ¹Department of Radiation Oncology, Calvary Mater

ίJ Newcastle Hospital, Newcastle, New South Wales, Australia

Applications of in-treatment imaging

✓Tx verification

- ✓ Adaptive/dynamic gating
- ✓ Delivered dose calculation
- ✓ Adaptive radiation therapy
- Beam tracking

Time-resolved dose distributions to moving targets during volumetric modulated arc therapy with and without dynamic MLC tracking

Thomas Ravkilde*

Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N. Denmark

Paul J. Keall

Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia

Cai Grau, Morten Høyer, and Per R. Poulsen

Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark

The new deal: TG100 (july 2016)

The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management

M. Saiful Huq⁴⁰ Department of Radiation Oncology, University of Plusburgh Cancer Institute and UPMC Cancer Center, Plusburgh, Pennsylvania 15232

Benedick A. Fraass Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048

Peter B. Dunscombe Department of Oncology, University of Calgary, Calgary T2N 1N4, Canada

John P. Gibbons, Jr. Ochsner Health System, New Orleans, Louisiana 70121

Geoffrey S. Ibbott Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas 77030

Arno J. Mundt Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California 2008-0043

Sasa Mutic Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110

Jatinder R. Palta Department of Radiation Oncology, Virginia Commonwealth University, P.O. Box 980058, Richmond, Virginia 23298

Frank Rath Department of Engineering Professional Development, University of Wisconsin, Madison, Wisconsin 53706

Bruce R. Thomadsen Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705-2275

Jeffrey F. Williamson Department of Radiation Oncology, Virginia Commonweakh University, Richmond, Virginia 23298-0058

Ellen D. Yorke Depariment of Medical Physics, Memorial Sloan-Keuering Center, New York, New York 10065

(Received 13 May 2015; revised 13 March 2016; accepted for publication 14 March 2016; published 15 June 2016)

The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and OM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation

A new way of thinking about the needs of safety and quality of RT process to propose a <u>prospective and</u> <u>process-based</u> analysis of QM needs
AAPM #218 – Tolerance levels and Methodologies for IMRT Verification QA

Vanuarda

nome | Directory | Career services | Continuing Education | BBS | Contact

Advancing the Science, Education & Professional Practice of Medical Physics

AAPM COMMITTEE TREE

Fractice of Medical Physics	Task Group No. 218 - Toler	ance Levels a	and Methodologies	Chair			
My AAPM	 Verification QA bookmark this page (bookmarks show under "My AAPM" in the menu to left) Committee Website Committee Wiki Directory: Committee Membership Email You may send email to this group now using gmail or outlook.						
AAPM							
 Staff Contacts Mission Policies & Procedures Association Governance 					Moyed Miften Task Group Chair		
Committees Classifieds® Individual Appointments History & Heritage Chapters Public & Media							
International	of various parameters (normalization method, choice of dose thresholding,						
Medical Physicist	points shift) use	a to perform th	e analysis.				
Members	Dulaway Mat Deferre						
Students	Bylaws: Not Referenced	. Rules:	Most recent	Final revised draft	t report has been com	pleted. Draft accounted for the	e WG
Meetings	Approved Start: 5/10/201 Date(s) End: 12/31/201	5	status update:	and SC review cor reviewer. Next ste	mments and is current ep is the review by TPC	tly being reviewed by the lead S [7/20/2015 by Moved Mifter	SC n1 Click
Education	Committee TG218			to update.			.,

Government Affairs

Why TG218

- There is little systematic guidance on patient-specific IMRT verification QA
- There are no discussion on the pros and cons of the different delivery methods for QA measurements
- How to assess the clinical relevance of failed IMRT plans
- What are the course of actions a clinical physicist can undertake to deal with failed patient-specific IMRT QA plans
- Radiation oncology clinics have developed their own patient-specific IMRT QA procedures
- QA procedures differ in scope and depth, acceptable tolerance levels, delivery methods, verification tools, analysis methodologies, and the type of verified calculation vs. measured data

AAPM #218 – Charge (1)

- To review literature and reports containing data on the achieved agreement between measurements and calculations for IMRT, VMAT, and tomotherapy techniques.
- To review commonly used measurement methods: composite of all beams using the actual treatment parameters, perpendicular composite, and perpendicular field-by-field. Discuss pros and cons of each method.
- To review methodologies for absolute dose verification with ion-chamber and 2D detector arrays
- To investigate the dose-difference/DTA and γ verification metrics, their use and vendor-implementation variability, including the choice of various parameters used to perform the IMRT QA analysis.

AAPM #218 – Charge (2)

- To review literature and reports containing data on the achieved agreement between measurements and calculations for IMRT, VMAT, and tomotherapy techniques.
- To review commonly used measurement methods: composite of all beams using the actual treatment parameters, perpendicular composite, and perpendicular field-by-field. Discuss pros and cons of each method.
- To review methodologies for absolute dose verification with ion-chamber and 2D detector arrays
- To investigate the dose-difference/DTA and γ verification metrics, their use and vendor-implementation variability, including the choice of various parameters used to perform the IMRT QA analysis.

Methodologies

Perpendicular Field-by-Field (PFF)

- The radiation beam is perpendicular to the plane of the measurement device
- The device can be placed on the couch or attached to the gantry head.
- The dose from each of the IMRT beams is delivered and analyzed.

Perpendicular Composite (PC)

- The radiation beam is always perpendicular to the measurement device detector plane.
- The device can be placed on the couch or attached to the gantry head.
- The doses from all IMRT radiation beams are delivered and subsequently summed.

True Composite (TC)

- All of the radiation beams are delivered to a stationary measurement device in a phantom placed on the couch using the actual treatment beam geometry for the patient.
- This method most closely simulates the treatment delivery to the patient.

Delivery Methods

Delivery Methods: Pros

- -PFF and PC: Every part of every field is sampled, fast acquisition.
- PC: only one dose image to analyze. More uniform dose for analysis than PFF.
- TC: provide an actual dose summation in a 2D slice of the 3D dose. Only one dose image to analyze.

Delivery Methods: Cons

- PFF, PC: no 3D summation. Can't know significance of regional errors in each beam.
- PFF, PC: can get any γ result you want for relative dose mode by normalizing to a different place.
- PC: errors from each field may cancel on summation.
- TC: Does not sample every part of each beam.

Mitfen, AAPM Meeting 2016

Action limits

- Quality measures (QMs) → set a requirement for the performance of IMRT QA
- Action Limits
 - \rightarrow degree to which the QMs are allowed to vary
 - thresholds for when an action is required
 - based on clinical judgment
 - acceptability of a certain level of deviation from a QM

TG218 Recommendations True Composite approach

- IMRT QA measurements should be performed using TC
 - QA device has negligible angular dependence or the angular dependence is accurately accounted for in the vendor software.
- IMRT QA measurements should be performed using PFF if the QA device is not suitable for TC measurements, or for TC verification error analysis.
- IMRT QA measurements should not be performed using PC which is prone to masking delivery errors.

TG218 Recommendations γ for routine QC: *global* normalization

- Analysis of IMRT QA measurement and plan should be performed in absolute dose mode, not relative dose.
- A dose calibration measurement compared against a standard dose should be performed before each measurement session
 - factor the variation of the detector response and accelerator output into the IMRT QA measurement.
- Global normalization should be used. Global normalization is deemed more clinically relevant than local normalization.
 - global normalization point should be selected whenever possible in a low gradient region with a value that is ≥ 90% of the maximum dose in the plane of measurement.

TG218 Recommendations γ for commissioning: *local* normalization

- Local normalization is more stringent than global normalization for routine IMRT QA.
 - It can be used during the IMRT commissioning process and for troubleshooting IMRT QA.
- Dose threshold should be set to exclude low dose areas that have no or little clinical relevance but can bias the analysis.
 - setting the threshold to 10% in a case where the OAR dose tolerance exceeds 10% of the prescription dose.
 - allows the γ passing rate analysis to ignore the large area of dose points that lie in very low dose regions which, if included, would increase the passing rate

TG218 Recommendations GPR=90% (based on γ: 3%-2mm; 10%Th)

- Tolerance limits: the γ passing rate should be ≥ 95%, with 3%/2mm and a 10% dose threshold.
- Action limits: the γ passing rate should be ≥ 90%, with 3%/2mm and a 10% dose threshold.
 - If the plan fails this AL, evaluate the γ failure distribution and determine if the failed points lie in regions where the dose differences are clinically irrelevant
 - If the γ failure points are distributed throughout the target or critical structures and are at dose levels that are clinically relevant, the plan should not be used
 - It may be necessary to review results with a different detector or different measurement geometry

TG218 Recommendations not only statistical evaluation

For any case with γ passing rate < 100%,

- the γ distribution should be carefully reviewed rather than relying only on distilled statistical evaluations
- review of γ results should not be limited to only the %points that fail, but should include other relevant γ values
- an analysis of the maximum γ value and the %points that exceed a γ value of 1.5 should be performed.
- For a 3%/2 mm, a γ value of 1.5 could indicate a dose diff of 4.5% in a shallow dose gradient region or a DTA of ~3.0 mm in a steep dose gradient region.

TG218 Recommendations DVH-based metric is better

- Reviewing dose differences directly without γ or using local dose normalization and tighter dose difference/DTA criteria.
- γ should be reviewed on a structure by structure basis
- Track γ passing rates across patients and for the same tumor sites to look for systematic errors in the system.
- Software tools that compare measured and calculated DVHs of structures are preferred over analysis in phantoms.
- DVH analysis can be used to evaluate the clinical relevance of QA results, especially when the γ passing rate fails the tolerance limits or is inconsistent.

TG218 Recommendations

Steps to Check Marginal/Failed IMRT QA

- Phantom/device setup
- Beam characteristics
- MLC
- TPS

Mitfen, AAPM Meeting 2016

