
The Radiation Planning Assistant (RPA) for Radiation Therapy Planning in Low- and Middle-

Income Countries

Laurence Court PhD University of Texas MD Anderson Cancer Center

- Automated treatment planning (Radiation Planning Assistant) Introduction
- Workflow example / demo cervical cancer
- Automated treatment planning for head/neck cancer patients
- Deployment

Conflicts of Interest

- Funded by NCI UH2 CA202665
- Equipment and technical support provided by:
 - Varian Medical Systems
 - Mobius Medical Systems
- Other, not related projects funded by NCI, CPRIT, Varian, Elekta

MD Anderson Cancer Center, Houston

- Laurence Court, PhD Pl
- Beth Beadle, MD/PhD PI
- Joy Zhang, PhD algorithms and integration
- Peter Balter, PhD radiation physics
- Jinzhong Yang, PhD atlas segmentation
- Ryan Williamson, MS software tools
- Rachel McCarroll H&N algorithms
- Kelly Kisling, MS GYN, breast algorithms
- Ann Klopp, MD/PhD GYN planning
- Anuja Jhingram, MD GYN planning
- David Followill, PhD audits/deployment
- James Kanke and dosimetry team

Commercial Partners

- Varian Medical Systems (providing 10 Eclipse boxes for UH2 phase + API technical support)
- Mobius Medical Systems (providing 10 Mobius boxes for UH2 phase)

Primary Global Partners

- Santo Tomas University, Manila
 - Michael Mejia, MD
 - Maureen Bojador, MS (physics)
 - Teresa Sy Ortin, MD
- Stellenbosch University, Cape Town
 - Hannah Simonds, MD
 - Monique Du Toit physics
 - Vikash Sewram, PhD

Global testing sites

- University of Cape Town
 - Hester Berger, PhD
 - Jeannette Parkes, MD
- University of the Free State
 - William Rae, PhD
 - William Shaw, PhD
 - Alicia Sherriff, MD
- 4 additional centers in South Africa
 & The Philippines
 ³

Staff shortages

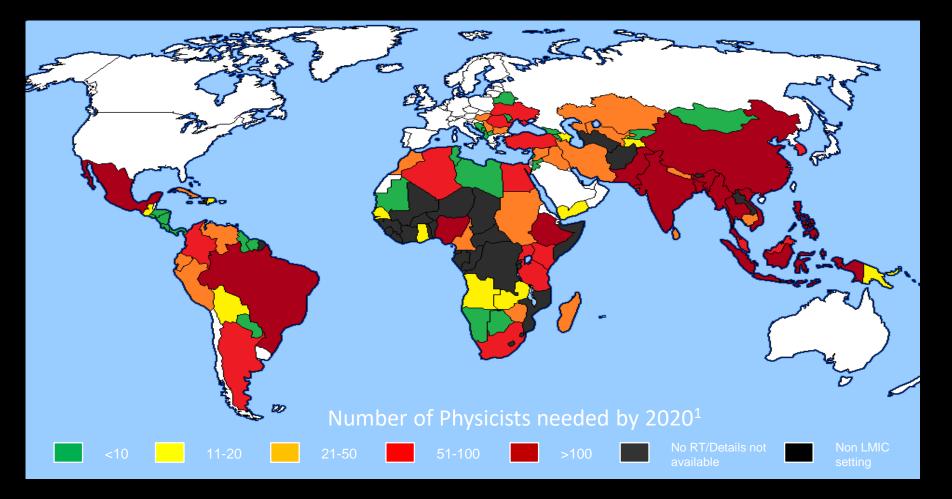
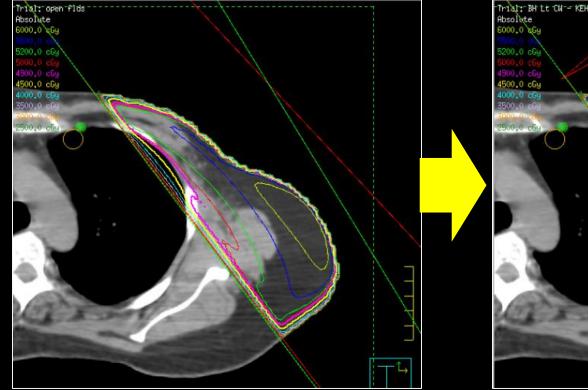


Figure by Rachel McCarroll, based on data in *Datta NR, Samiei M, Bodis S. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020. International Journal of Radiation Oncology*Biology*Physics.* 2014;89(3):448-57.

Motivation for automated planning 1: Staff shortages


Country	Additional number of radiotherapy infrastructure and staffing required by 2020				
	Treatment	Radiation	Medical	Radiation	
	units	oncologists	physicists	therapy	
				technologists	
Philippines	140	141	133	382	
South Africa	56	93	82	82	
All LMI	9169	12,147	9,915	29,140	
regions					

Datta NR, Samiei M, Bodis S. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020. International Journal of Radiation Oncology*Biology*Physics. 2014;89(3):448-57.

- Large deficit in resources including medical physicists and technologists
- Staff retention is also a problem (anecdotal)
- Many international guidelines suggest that medical physicists need 2+ years residency, typically following graduate school – so 4+ years per person.
- Approximately 50% of physicist time is spent doing treatment planning
- If planning was automated, then the deficit of medical physicists could be reduced to ~5000.

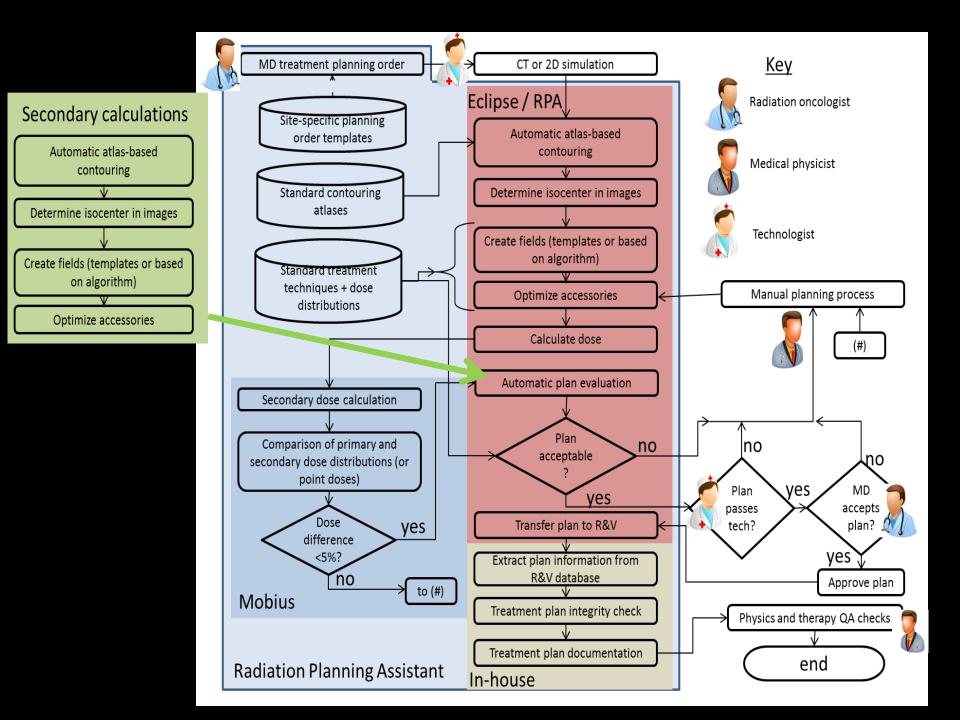
Motivation 2: 3D planning

- All our partner institutions are treating chest walls using standard opposed oblique open fields (i.e. not optimized for the individual patient's geometry)
- Automated planning could change this

Comparison of the dose distribution for a chest wall treatment with optimized wedges (right) and with open fields (left). The non-optimized plan has a large region of soft tissue receiving 60Gy (6000cGy), compared with 52Gy (5200cGy) in the optimized plan.

Specific goals of the Radiotherapy Planning Assistant (RPA)

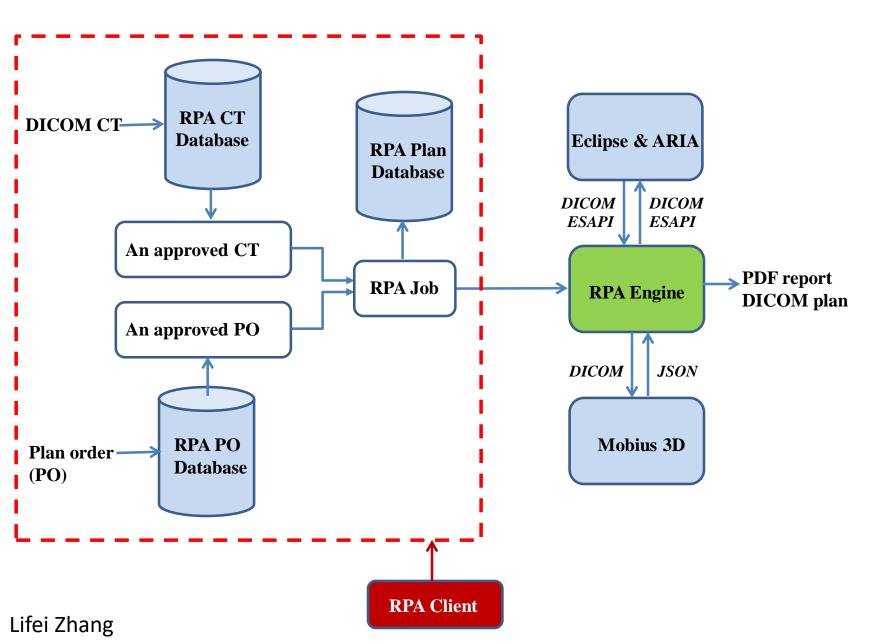
- Automatically create high quality radiation plans for cancers of the:
 - Uterine Cervix
 - Breast (intact and chest wall)
 - Head and neck (nasopharynx, oropharynx, oral cavity, larynx, etc.)
- Generate treatment plans that are:
 - Generated from scratch (including transfer to the local machine) in less than 30 minutes.
 - Compatible with all treatment units and record-and-verify systems.
 - Internally QA'd in an automated fashion within the system.
- Limit need for the radiation oncology physician to:
 - Delineate the target (location).
 - Provide the radiation prescription.
 - Approve the final plan.
- Create a system that can be used by an individual with:
 - A high school education.
 - $\frac{1}{2}$ day of training (online and video) on the RPA itself.


RPA project schedule – from NCI UH2/UH3 mechanism

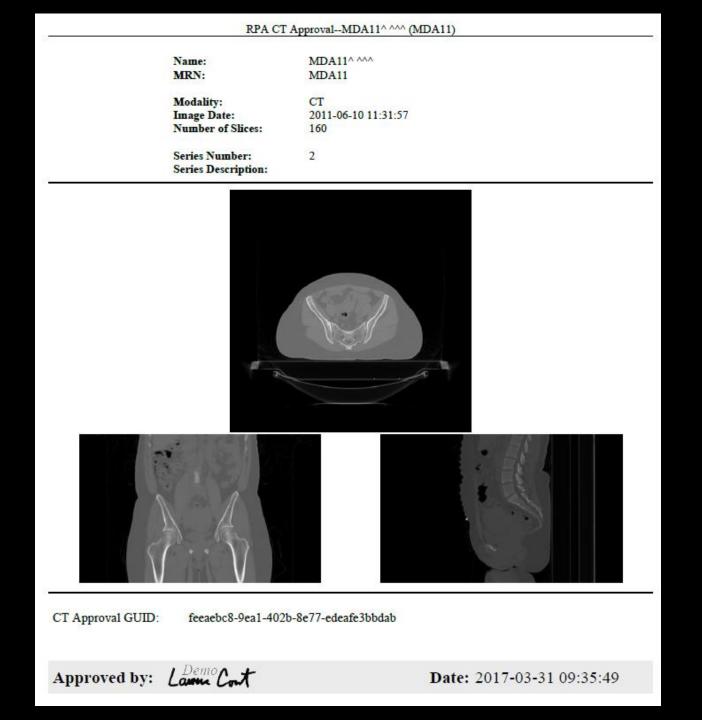
Phase 1 (UH2): Development Phase – 2 years – to April 2018


- System development at MDACC
- Local testing at Santo Tomas (Manila) and Stellenbosch (Cape Town) [MDACC sister institutions]
- Additional testing at other centers in The Philippines, South Africa

Phase 2 (UH3): Validation Phase – 3 years


- Full patient testing (same centers, 12 months)
- Then other centers across Southeast Asia and Sub-Saharan Africa

Workflow overview (user's perspective)

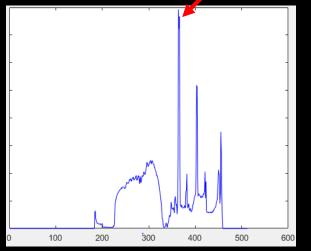


Big Picture of RPA 2.0 Workflow

WORKFLOW EXAMPLE: CERVICAL CANCER

RPA Plan Ordertest (MDA11)				
	Name: MRN: Site: Date: Comment:	test MDA11 Cervix 12/8/2016 12:55:13 PM		
General Questions				
Sex/Pregnancy status:	I	Female: Not pregnant (verified or not of child-bearing potential).		
Prior radiation:	1	The patient has not received prior radiation treatment to the same area.		
Pacemaker/implanted electronic medie presents?	cal device	☑ No		
Other implants (e.g. hip replacement):	:	Patient has no known implants in the treatment area		
Autoplan start:		✓ Automatically		
Treatment Specific Questions (C	ervix)			
Primary disease extent:	I	Limited to cervix, no vaginal or lymph node involvement.		
Patient positioning:	1	☑ Supine		
Treatment technique:	1	☑ 4 field box		
Treatment machine:	I	🗹 LINAC A		
Field blocks:	-	☑ Use MLCs		
Dose PrescriptionPrescribed Total Dose:4500 cGy (1)Number of Fraction:25	80 cGy/fractio	on)		
Plan Order GUID: 692c011	7-6b28-4a74	4-8447-dbaea0d1f2ab		
Approved by: Launa C	nt	Date: 1/5/2017 4:37:35 PM		

CT Table Removal


Method 1: Peak Detection

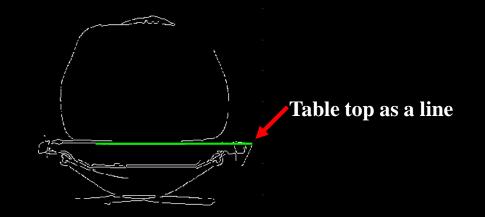
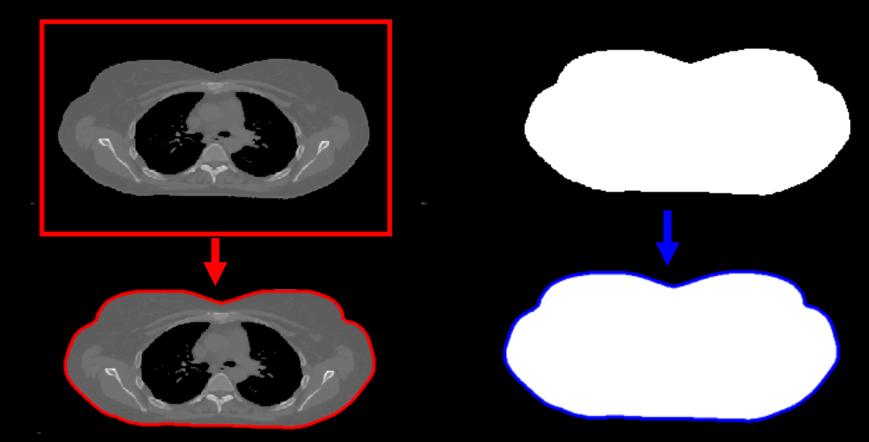

By finding peaks slice by slice at sum projection signal along lateral direction.

Table top as a peak

Method 2: Line Detection

By detecting Hough lines at maximum intensity projection image.

• Average difference between two approaches: 2.6 ± 1.6mm (max: 4.9mm)

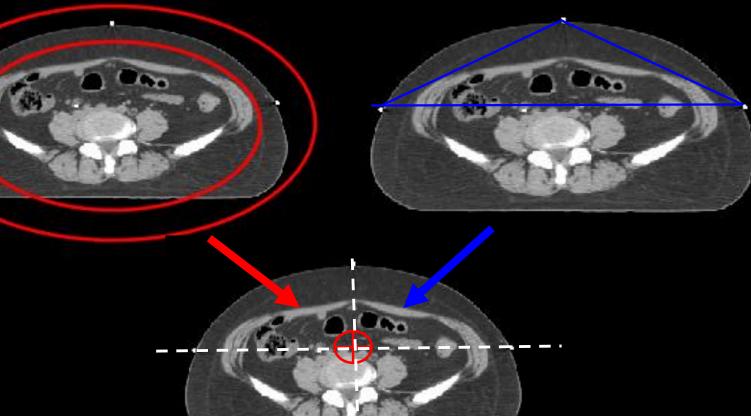

Work by Lifei Zhang

Body Contour

Method 1: Active Contour

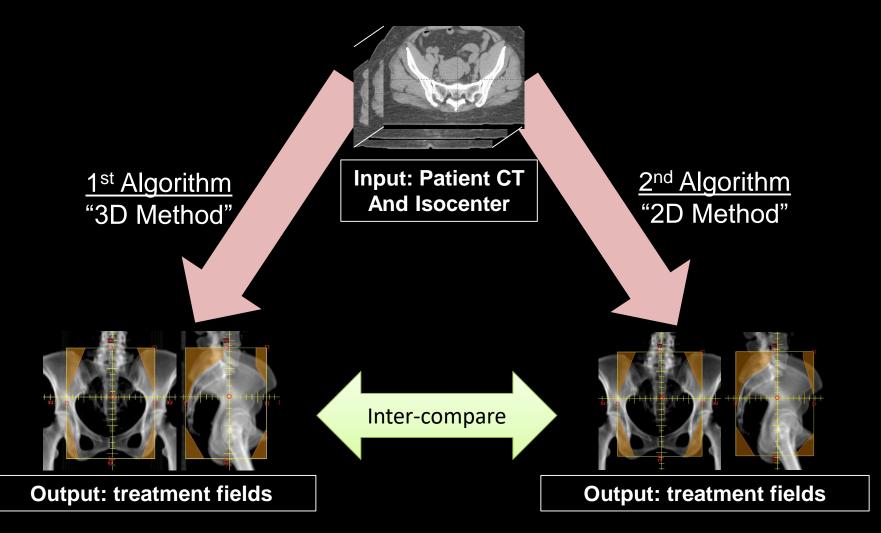
By contracting initial active contour to the body edge.

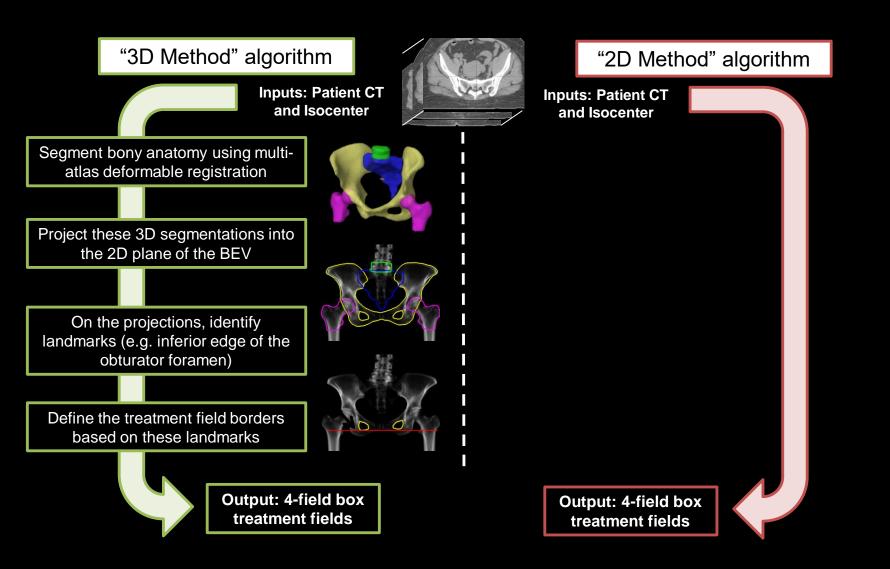
Method 2: *Intensity Thresholding* By thresholding CT image into binary mask.

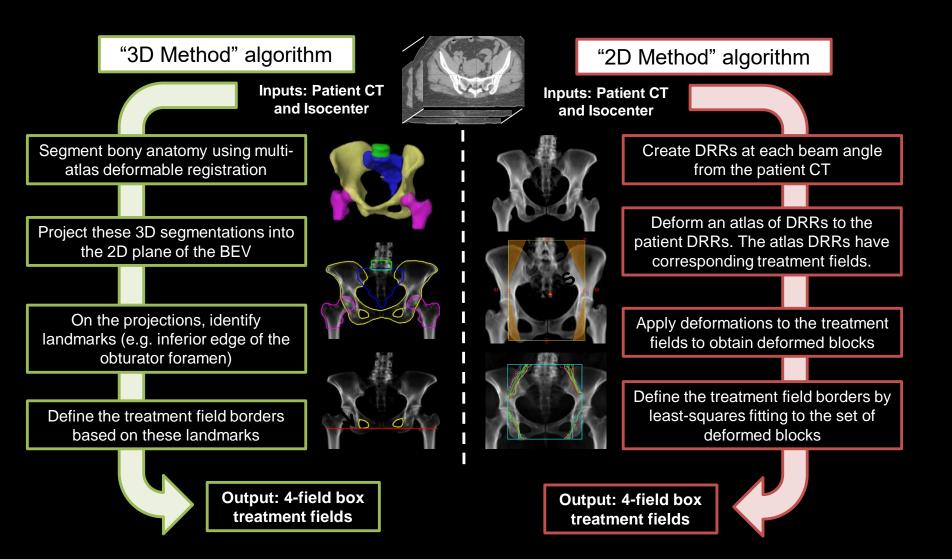


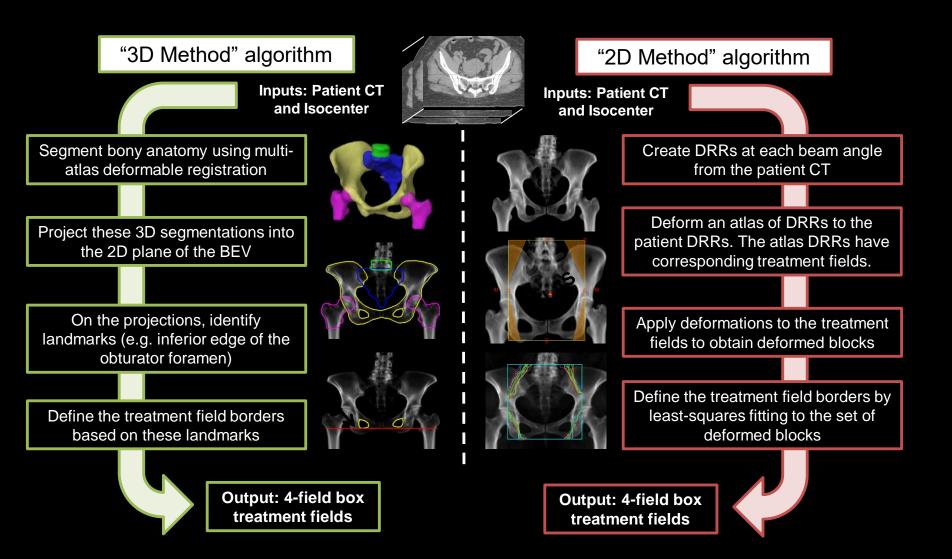
• Average agreement = 0.6mm, Average max: 7.6mm Work by Lifei Zhang

Marked Isocenter Detection

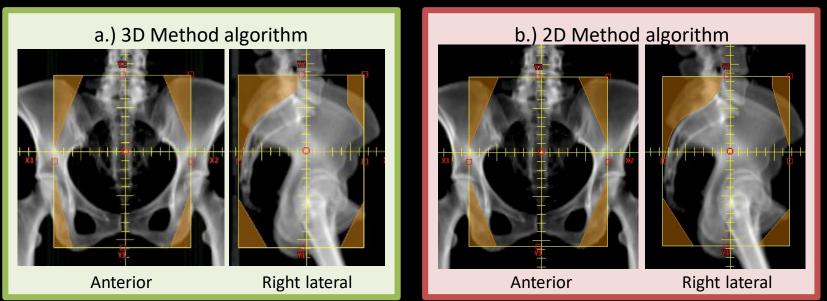

Method 1: *Body Ring Method* By searching BB candidates in the body ring domain.

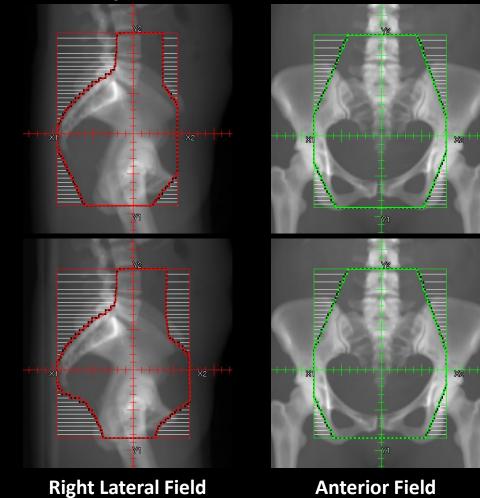

Method 2: *BB Topology Method* By searching BBs that constitute the triangle topology.




• Average difference between two approaches: 0.4 ± 0.8mm (max: 3.0mm)

Determine the jaws and blocks



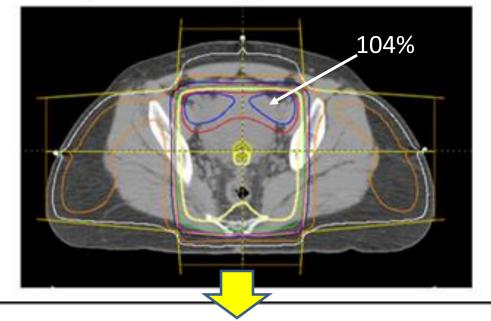


Results of 39 test patient CTs (now tested on ~200)

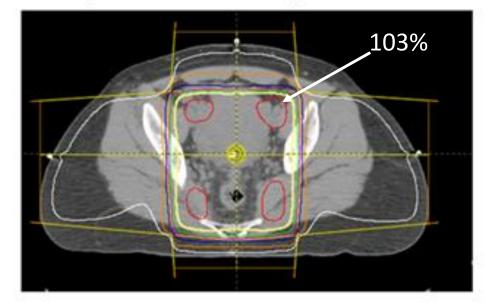
Physician Rating	3D Method	2D Method
Per Protocol	62%	17%
Acceptable Variation	34%	62%
Unacceptable Deviation	4%	21%

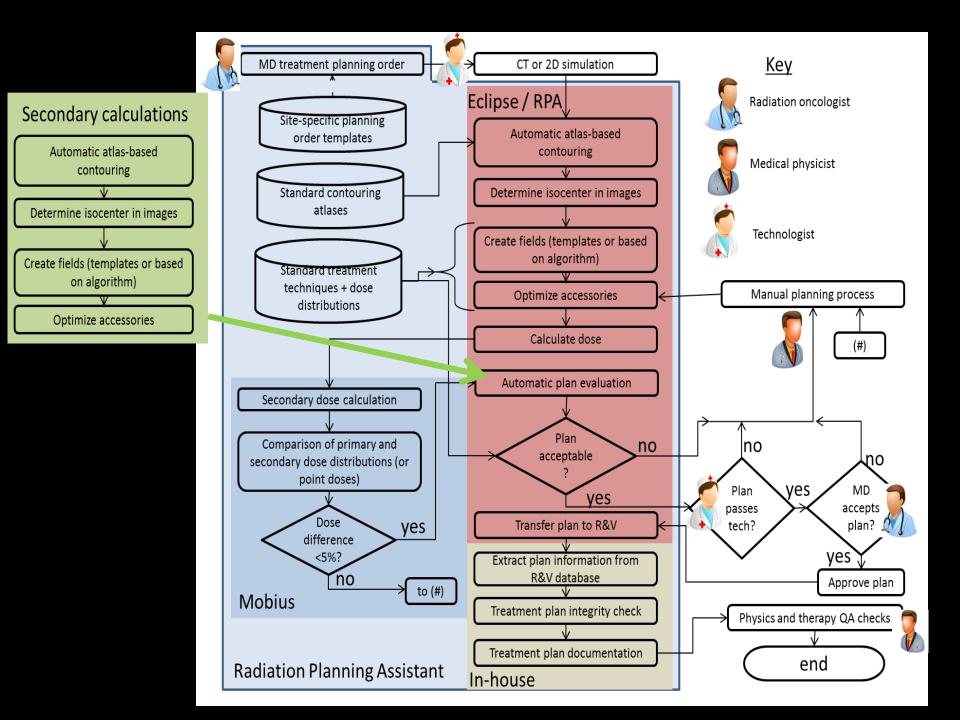
MDA clinical version deployed 15 patients so far

Fields from the Auto-planner

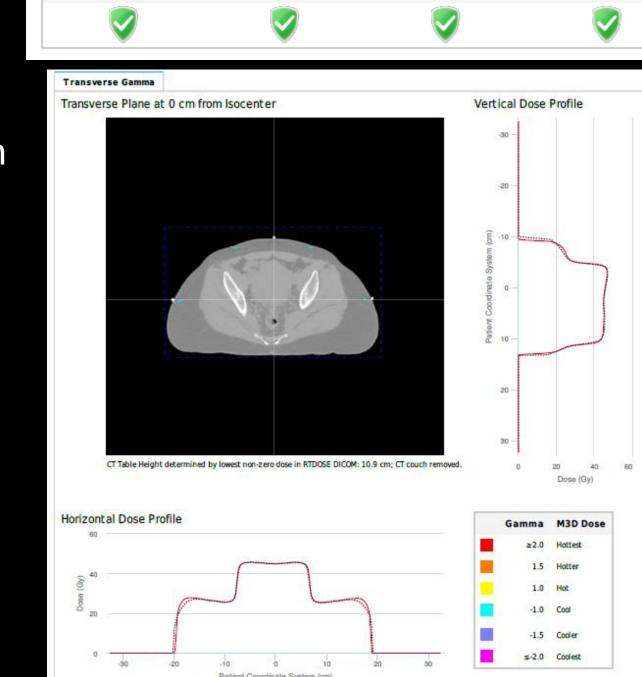

Fields with Physician edits

Beam weight optimization


- Least-squares


 optimization to give a
 uniform dose distribution
 within the 95% isodose
 volume
- Tested on 21 patients
- Average hotspot reduction 106.4% to 104.9%
- No loss in coverage

A. Equal beam weights

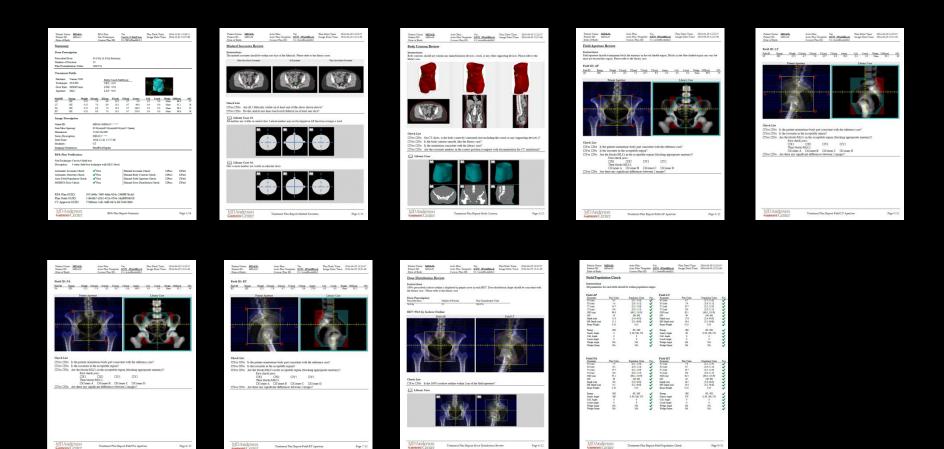

B. Optimized beam weights

Mobius dose verification

Target Coverage

DVH Limits

3D Gamma


Deliverable

29

Initial technical review

- Double check of vital plan check functions
- Only get to this point if passes all internal QA checks
- Technical items checked:
 - Marked isocenter
 - Patient orientation, laterality and site
 - Body contour
 - CT processing (couch removal)
 - Field apertures
 - Any significant artifacts or differences
 - Dose calculation complete
- Purpose designed document to lead the user through the checks

Technical review paperwork

Teatment Fias Report Door Donailenton Review

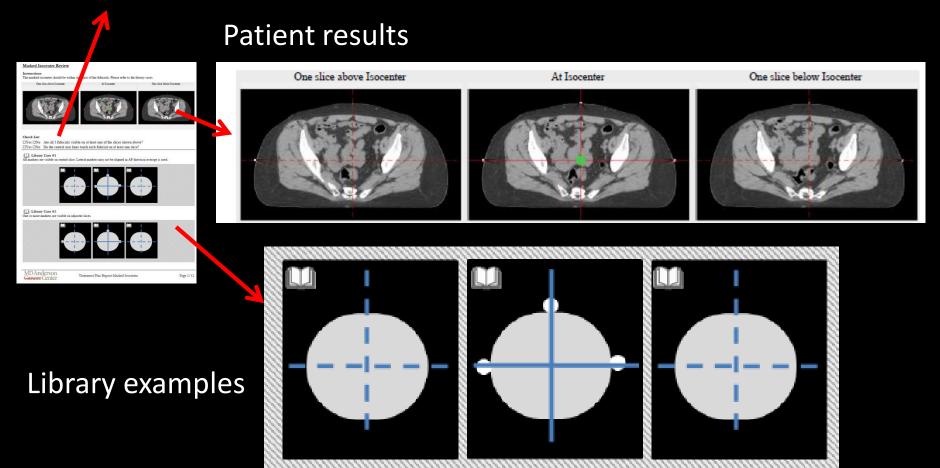
Page 8/12

Toutment Plan Report-Field Population Check

Tage 9/12

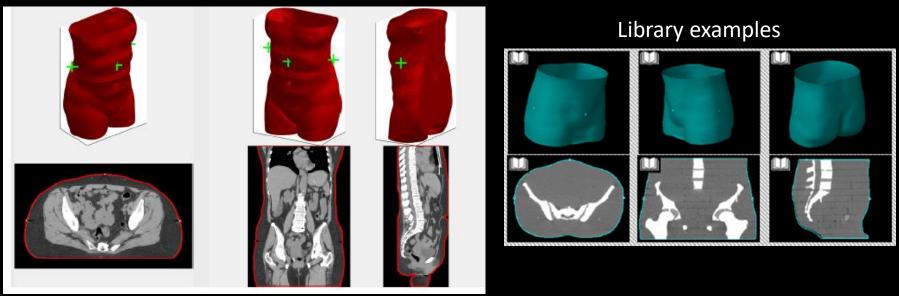
Tage 6/12

Torstment Plan Report-Field KT Apartum


Page 7/12

Tourset Phy Report Field PA Aperture

Marked isocenter


Checklist

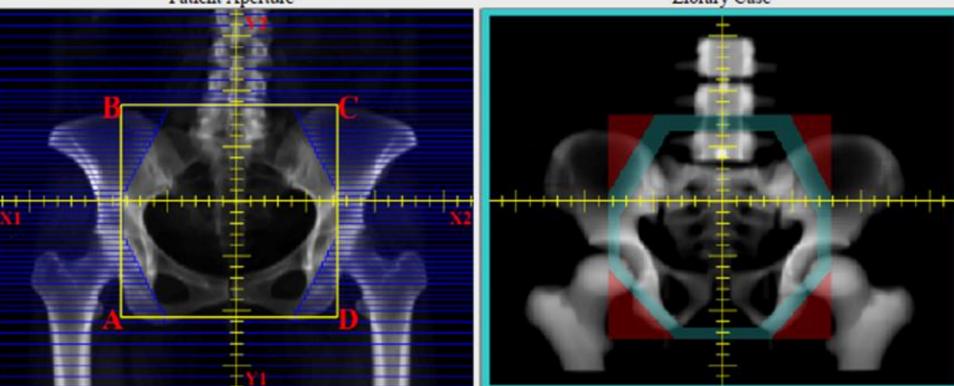
❑Yes ❑No : Are all 3 fiducials visible on at least one of the slices shown?
❑Yes ❑No : Do the central axis lines touch each fiducial on at least one slice?

Body contour

Patient results

Checklist

□Yes □No : On the CT slices, is the body correctly contoured (e.g. not including the couch)?

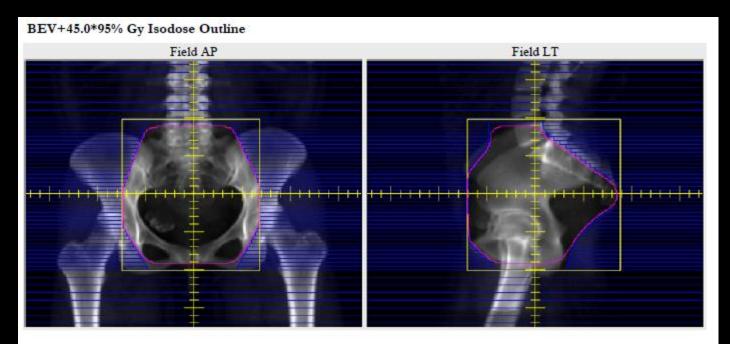

□Yes □No : Is the body contour smooth, like the library case?

□Yes □No : Is the orientation consistent with the library case?

Field apertures

Patient Aperture

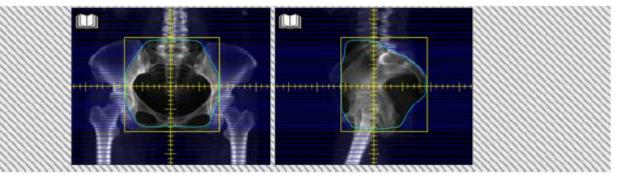
Library Case



Checklist

■Yes ■No : Is the patient orientation and body part consistent with the reference case ■Yes ■No : Are the blocks/MLCs in the acceptable region?

□Yes □No : Are there any significant differences between the patient and library images?

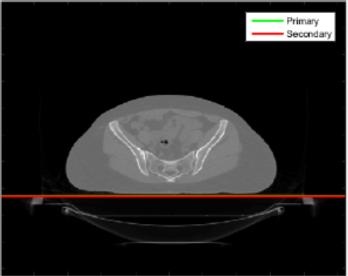

Completeness of dose calculation

Check List

□Yes □No Is the 95% isodose outline within 2cm of the field aperture?

🛄 Library Case

Patient Name:	MDA11,	RPA Plan:	Yes	Plan Date/Time:	2016-12-01 15:30:11
Patient ID:	MDA11	Site/Technique:	Cervix/4 field box	Image Date/Time:	2016-12-01 15:27:08
Date of Birth:		Course/Plan ID:	C1/RPAPlanMLC1		


Auto Table Removal Check

Instructions

Two independent methods were used to detect table position. The difference between them are compared to decide the result of primary method is passed or failed.

Result Primary Method Pass Primary Method Secondary Method Pass By SliceAccumPeak By SliceHough ✓ Metrics Value Criteria Pass Distance Difference 0.13cm Pass: <= 0.5cm. Fail: > 0.5cm. ✓

Comparison of table poisions between primary and secondary methods

Lifei Zhang

Auto Body Contour Check

Instructions

Two independent methods were used to detect body contour. The difference between them are compared to decide the result of primary method is passed or failed.

Result

Primary Method		Secondary Method	Pass
By Threshold		By ActiveContour	~
Metrics			
Metric	Value	Criteria	Pass
Max Distance Difference	0.28cm	Pass: <= 0.5cm. Fail: > 0.5cm.	~
Average Distance Difference	0.046cm	Pass: <= 0.5cm. Fail: > 0.5cm.	1
Dice Index	1	Pass: >= 0.97, Fail: < 0.97.	

Images

Primary Body Contour

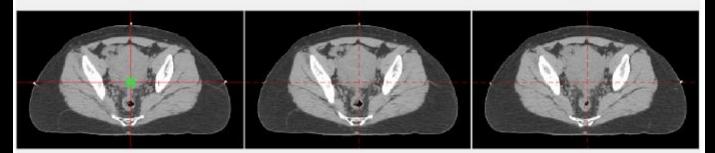
Secondary Body Contour

Lifei Zhang

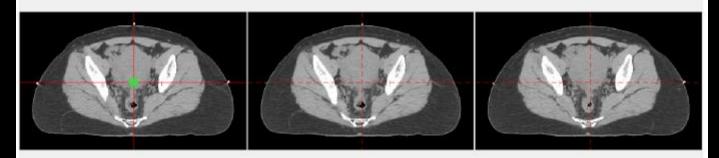
Patient Name:	MDA11,	RPA Plan:	Yes	2016-12-01 15:30:11
Patient ID:	MDA11	Site/Technique:	Cervix/4 field box	2016-12-01 15:27:08
Date of Birth:		Course/Plan ID:	C1/RPAPlanMLC1	

Auto Isocenter Check

Instructions


Two independent methods were used to detect marked isocenter. The distance between 2 isocenter are computed to decide the result of primary method is passed or failed.

Result


Primary Method		Secondary Method	Pass
By Body Ring		By Topology	~
Metrics			
Metric	Value	Criteria	Pass
Distance	0.0065cm	Pass: <= 0.5cm. Fail: > 0.5cm.	

Images

Primary Isocenter

Secondary Isocenter

Date of Ditti.		course, r min 115.	01/1011111111001		
Auto Block Che	eck				
Instructions					
	ater is abaalead as	ainst a set of QA block	The confidence le	mal is commuted	
100000	eny is checked ag	amst a set of QA block	ks. The confidence le	ever is computed.	
Result					
Primary Method		Secondary Method		Pass	
By 3D ROI Projection		By Multiple QA Block	3	~	
Metrics					
Metric	Value	Criteria		Pass	
Confidence Level	0.95	Pass: >= 0.9. Fail: < 0.	9.	~	
Images					
-	Field RT		Field LT	1000	
	1.1	Primary Block	20	Primary Block	
		- QA Blocka		QA Blocka	
	8-1-1				
1.00				and the second se	
				100	
	250				
				10	
CISA (
				7	
	Charles and				
	Field AP		Field PA		
	LICU AL		Tield FA		
	429-	Primary Block	2017	Primary Block	
J.	21.0	- QA Blocka		QA Blocks	
	And a state of the				
			Contraction of the second		
	8				
		and and and			
and the second second					

Plan QA: Comparison with population ranges

- Some ranges are quite tight, so provide reasonable (backup) QA
 - E.g. Total range of MU is 10%
- Some ranges are much looser
 - Range of jaw positions is ~2.5cm in lateral and AP directions, 6cm in SI direction

	gantry: 0deg		
	x	у	
average	16.8	21.3	
St. dev.	0.9	1.9	
min	15.7	18.5	
max	18.2	23.1	

Jaw positions – population statistics

Total MU – population statistics

208
9
200
220

Field Population Check

Instructions

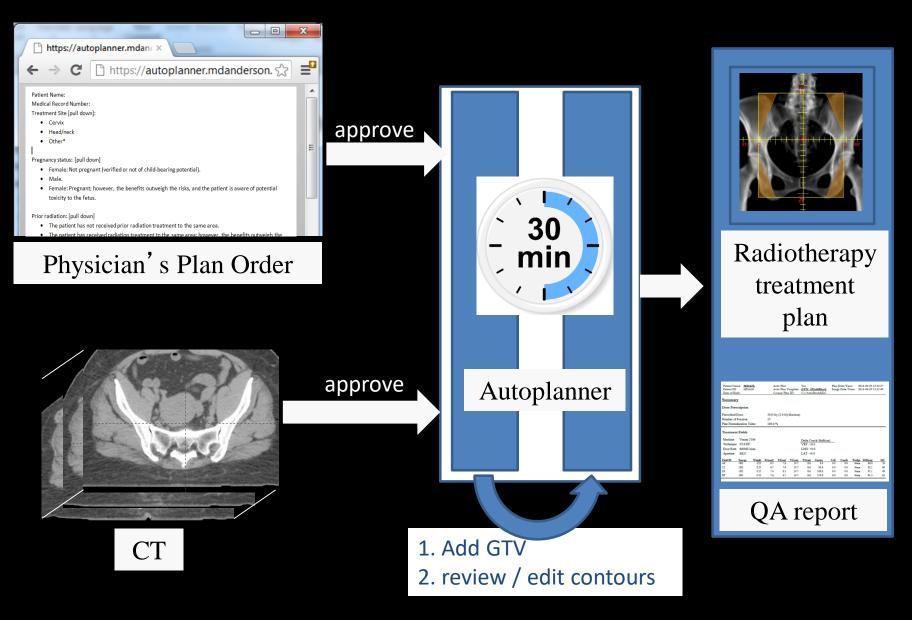
All parameters for each field should be within population ranges.

Field AP				Field LT			
Parameter	Plan Value	Population Value	Pass	Parameter	Plan Value	Population Value	Pass
Xl (cm)	7.4	[2.2, 12.4]	~	Xl (cm)	7.0	[2.2, 12.4]	<
X2 (cm)	6.9	[2.0, 11.2]	V	X2 (cm)	8.9	[2.0, 11.2]	V
Yl (cm)	10.2	[2.2, 12.4]	V	Yl (cm)	10.2	[2.2, 12.4]	A
Y2 (cm)	9.7	[2.0, 11.2]		Y2 (cm)	9.7	[2.0, 11.2]	1
SSD (cm)	88.4	[60.2, 110.9]	V	SSD (cm)	81.1	[60.2, 110.9]	V
MU	47	[40, 80]	V	MU	56	[40, 80]	V
Depth (cm)	11.6	[5.0, 40.0]		Depth (cm)	18.9	[5.0, 40.0]	V
Eff. Depth (cm)	11.7	[5.2, 40.8]		Eff. Depth (cm)	19.5	[5.2, 40.8]	1
Beam Weight	0.25	0.25		Beam Weight	0.25	0.25	
Energy	18X	6X, 18X		Energy	18X	6X, 18X	
Gantry Angle	0	0, 90, 180, 270		Gantry Angle	90	0, 90, 180, 270	V
Coll. Angle	0	0		Coll. Angle	0	0	V
Couch Angle	0	0	v	Couch Angle	0	0	~
Wedge Angle	NA	NA	V	Wedge Angle	NA	NA	V
Wedge Orient.	NA	NA		Wedge Orient.	NA	NA	

Field PA

Field PA				Field RT			
Parameter	Plan Value	Population Value	Pass	Parameter	Plan Value	Population Value	Pass
Xl (cm)	6.9	[2.2, 12.4]	~	Xl (cm)	8.9	[2.2, 12.4]	~
X2 (cm)	7.4	[2.0, 11.2]	V	X2 (cm)	7.0	[2.0, 11.2]	V
Yl (cm)	10.2	[2.2, 12.4]		Yl (cm)	10.2	[2.2, 12.4]	V
Y2 (cm)	9.7	[2.0, 11.2]	1	Y2 (cm)	9.7	[2.0, 11.2]	1
SSD (cm)	89.4	[60.2, 110.9]	1	SSD (cm)	80.6	[60.2, 110.9]	- V
MU	45	[40, 80]	V	MU	56	[40, 80]	- V
Depth (cm)	10.6	[5.0, 40.0]	1	Depth (cm)	19.4	[5.0, 40.0]	1
Eff. Depth (cm)	10.0	[5.2, 40.8]	1	Eff. Depth (cm)	19.7	[5.2, 40.8]	1
Beam Weight	0.25	0.25	V	Beam Weight	0.25	0.25	
Energy	18X	6X, 18X		Energy	18X	6X, 18X	
Gantry Angle	180	0, 90, 180, 270	1	Gantry Angle	270	0, 90, 180, 270	1
Coll. Angle	0	0	<u> </u>	Coll. Angle	0	0	<u> </u>
Couch Angle	0	0	<u> </u>	Couch Angle	0	0	<u> </u>
Wedge Angle	NA	NA		Wedge Angle	NA	NA	V
Wedge Orient.	NA	NA	V	Wedge Orient.	NA	NA	V

Status of cervical cancer autoplanning


- 3D algorithm deployed to MDACC clinical use
- Workflow designed and integrated
- Secondary (verification) algorithms developed
- Starting testing on 600+ patients
 - ~95% pass rate (first 200 patients)
 - QA criteria
- Then testing using local data at Stellenbosch, Santo Tomas, and others

NEW: We now have a 2D algorithm for use with digital simulator images – looking for collaborators to help check these.... (we don't have many images.....)

Head and neck treatments

- Range of complexities in treatments
 - VMAT or IMRT
 - Opposed laterals / off-cord cone-downs
 - Complex conformal plans
- Starting with VMAT (IMRT)
 - Auto-contouring normal tissue
 - Auto-contouring low-risk CTV
 - Manual contouring of GTV
 - RapidPlan (Eclipse)

Workflow overview (user's perspective)

Treatment Specific Questions (HN)	
Head/Neck primary site:	✓ Oropharynx
Positive lymph node involvement:	☑ Right cervical neck
Elective left cervical neck coverage required:	☑ Levels II-IV ☑CTV3
Elective right cervical neck coverage required	: \square Levels IB-V \square CTV2
Elective left retropharyngeal lymph node coverage required :	✓ Yes ✓CTV3
Elective right retropharyngeal lymh node coverage required :	\checkmark Yes \checkmark CTV2
Treatment machine:	☑ LINAC A
Treatment technique:	VMAT
Dose Prescription	
Number of Fraction: 33	Prescribed Total Dose: GTV: 7000 cGy (212 cGy/fraction) CTV1: 7000 cGy (212 cGy/fraction) CTV2: 6300 cGy (191 cGy/fraction) CTV3: 5700 cGy (173 cGy/fraction)

Normal Tissue Dose Constraints

 \blacksquare The DVH objectives and constraints listed below are appropriate for this plan.

Spinal Cord: Dmax < 45Gy;	Brainstem: Dmax < 54Gy;	Rt Parotid: Dmean < 26Gy
Lt Parotid: Dmean < 26Gy;	Rt Eye: Dmax < 54Gy;	Lt Eye: Dmax < 54Gy

Normal tissue auto-contouring

Multi-atlas segmentation – deformable registration (accelerated "Demon") followed by STAPLE algorithm to fuse contours

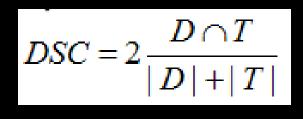
Brain				
Brainstem				
Cochlea				
Esophagus				
Eye				
Lung				
Mandible				
Parotid				4
SpinalCord				
	T	-	-	

Normal tissue auto-contouring

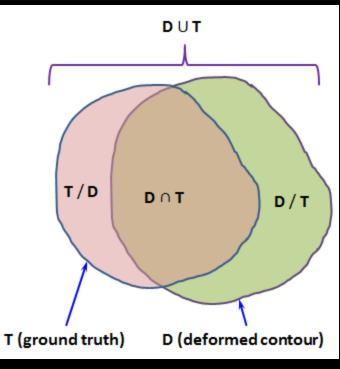
Multi-atlas segmentation – deformable registration (accelerated "Demon") followed by STAPLE algorithm to fuse contours

Structure	Number	Average	Stdev
Brain	128	4.1	0.5
Brainstem	128	4.2	0.4
Cochleas	256	i 4.0	0.8
Esophagus	116	3.4	1.0
Eyes	236	i 4.2	0.6
Lung	113	3.9	0.5
Mandible	128	4.3	0.5
Parotids	254	4.4	0.7
SpinalCord	128	5.0	0.2

- Tested on 128 patients
- Scored by Radiation oncologist.
- 4+ is acceptable without edit
- Fails for non-standard head positions
- Otherwise all pass, except esophagus (and lung)
- Now deployed this to clinical practice


Deployed to clinical use at MDA

- 150+ patients since May 2016


Compare auto-contour pre- and post-edits								
	n	DSC	MDA (cm)					
Brain	10	0.98	0.07					
Brainstem	10	0.88	0.14					
Cochlea	18	0.65	0.09					
Esophagus	10	0.62	0.30					
Eye	20	0.87	0.11					
Lung	10	0.92	0.25					
Mandible	10	0.90	0.08					
Parotid	19	0.84	0.18					
SpinalCord	10	0.81	0.14					

DSC: Dice similarity coefficient

Data from Rachel McCarroll

>0.7 is considered acceptable

Addition of Varian Deeds algorithm (a new algorithm, not in Eclipse) Comparison with physician contours (in clinical plan)

- First scored Varian atlas applied to our patients
- (note difference in patient setup)

	Ratings				
	Deed	ls	MAC:	s	
	Average StDev Average		Stdev		
Mandible	3.32	0.88	4.26	0.71	
Optic Nerves	3.03	0.75	Not Atlas Structures		
Optic Chiasm	2.26	0.62	Not an Atlas Structure		
Brainstem	3.74	0.62	4.71	0.46	
Parotid	2.71	0.76	4.43	0.74	
Submandibular Gland	2.81	0.67	Not Atlas Structures		

Addition of Varian Deeds algorithm (Tomas Morgas) Comparison with physician contours (in clinical plan)

• Second, used our atlas with Varian Deeds, applied to our patients

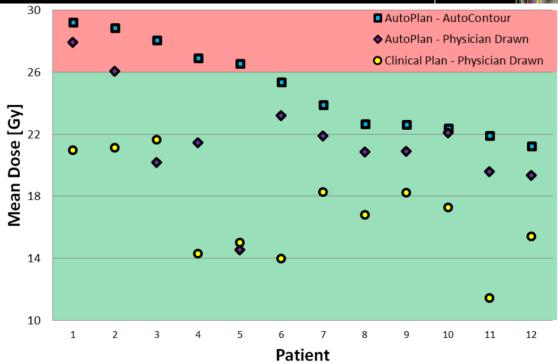
		Dice		MSD	(mm)
Structure	Ν	In House MACS	Varian Deeds with MDACC Atlas	In House MACS	Varian Deeds with MDACC Atlas
Brain	26	0.98	0.97	1.06	1.36
Brainstem	75	0.80	0.81	2.38	2.24
Cochlea	104	0.50	0.59	1.61	1.46
Esophagus	34	0.64	0.51	3.13	5.90
Eye	68	0.84	0.79	1.42	1.75
Lungs	12	0.76	0.88	8.98	4.33
Mandible	39	0.85	0.80	1.71	2.36
Parotid	140	0.79	0.72	2.37	3.03
SpinalCord	74	0.73	0.71	3.76	5.83

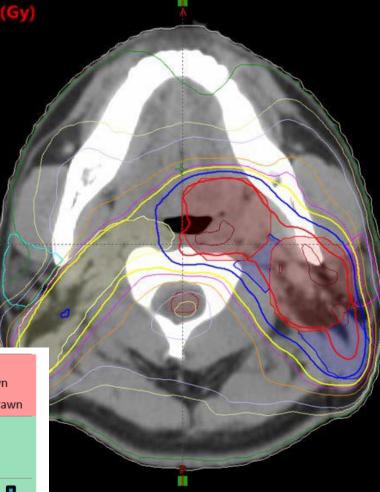
• Next step is to evaluate the use of Deeds for secondary verification of contours

VMAT planning

72.60 69.30

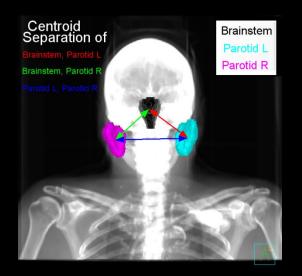
60.00 54.00 51.00

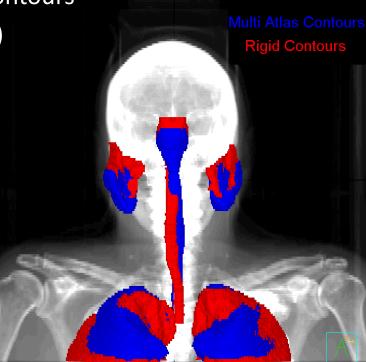

45.00


35.00

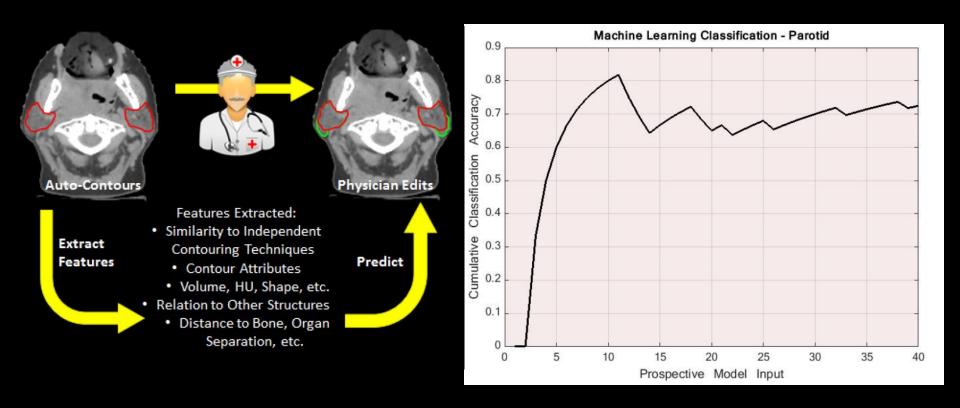
30.00

10.00


- Average time: 48min (n=30)
- Physician pass rate: >90% (14/15)
 - Contour review
 - Dose distribution review
 - DVH review

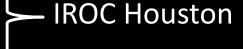


Structure specific population models for automated QA – works-in-progress


- Example metrics
 - Volume, HU
 - Separation
 - Agreement with Rigidly Registered Contours
 - Slice to Slice Characteristics ("shape")
- Bagged classification tree model

Rachel McCarroll

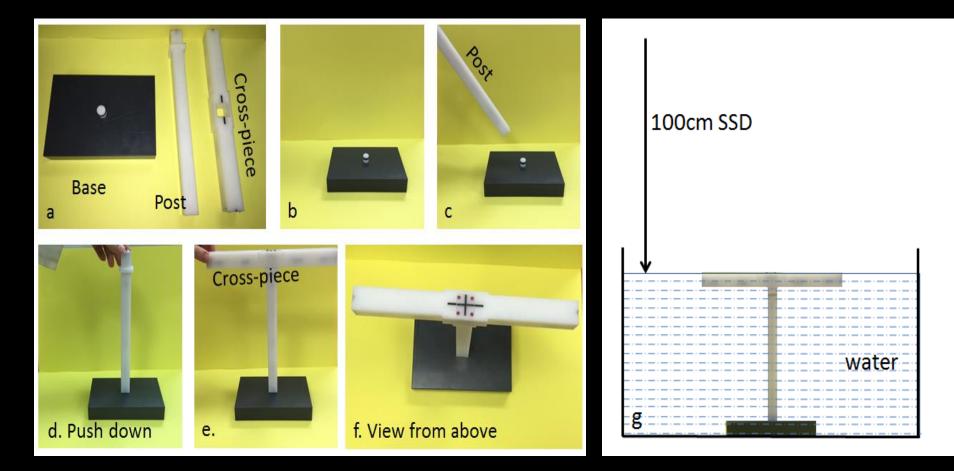
Predicting the need for edits.....



Summary for head and neck cancer treatments

- VMAT/IMRT
 - Normal tissue segmentation
 - complete, tested, and deployed
 - CTV2,CTV3 segmentation
 - Complete and tested
 - Automated planning using RapidPlan
 - mostly complete, but additional assessment needed
 - Automated QA needs more work
- Opposed laterals
 - Longer timeframe (use similar tools as 4fld cervix)₆

RPA Deployment process


- Demographics questionnaire
- Facility questionnaire
- OSLD output check
 - all photon beams, low-energy electron beams
- Virtual visit
- Send historic commissioning data to MDACC (no wedges)
- Send patient data to MDACC
 - Initial testing of RPA (10 patients per cancer site)
- Shipping (unless web-based setup)
- Site visit
 - Measurements for DLG and MLC transmission
 - End-to-end tests
 - Workflow verification
 - Training

Radiotherapy Beam Audit Device

• Use together with TLD output checks on as-needed basis

Phantom built at IROC-Houston, with David Followill

End-to-end tests

- Will create tests based on IAEA-TECDOC-1583
- On-site testing

Vision: For end of UH3 Phase (2021)

- At the end of the UH3 phase, we will have deployed to up to 14 treatment centers where the RPA will be used clinically (possibly more if we team with the IAEA).
- Productivity gains
 - At institutions where the physics staff is responsible for the treatment planning, this will translate to a gain in productivity of ~50%.
 - Additional gains from auto-contouring
- Safety gains
 - All head and neck, breast/chest wall, and cervical cancer patients treated at institutions where we deploy the RPA will have thorough secondary QA checks.
- Quality gains
 - All chest wall patients will be treated with optimized plans, reducing acute skin reactions which are correlated with pain and quality of life.
- Further deployment/gains through partnership with Varian

Automation of treatment planning: Summary

- Automatic treatment planning may help reduce the planning burden, reducing staff shortages
- Fully automated cervical cancer 4-field box treatments almost ready (aiming for January)
 - Field aperture task already deployed at MDA
- Fully automated H/N IMRT/VMAT treatment planning almost ready (aiming for January)
 - Normal tissue contouring task already deployed at MDA
- Breast / chest wall next
- (and also work on 2D plans, not mentioned today.....)
- Still identifying additional test sites (mostly for phase 2)

Contact: lecourt@mdanderson.org

One big challenge

- Every institution is different
 - Equipment
 - Treatment approach
 - Staffing (backgrounds etc)
 - Etc.....
- To ensure wide applicability, we need:
 - Collaborators who use digital simulators for GYN
 - People interested in testing our training program (online) and workflow
 - Anyone interested in giving general feedback at certain time points throughout the project