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Mathematical Models of Infectious Diseases

Population-based models
I Can be deterministic or stochastic
I Continuous time

• Ordinary differential equations
• Partial differential equations
• Delay differential equations
• Integro-differential equations

I Discrete time
• Difference equations

Agent-based/individual-based models
I Usually stochastic
I Usually discrete time
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SI Model

Susceptible-Infectious Model: applicable to HIV.

S I

rβI/N

dS

dt
= −rβS I

N
dI

dt
= rβS

I

N

S: Susceptible humans
I: Infectious humans
r: Number of contacts per unit time
β: Probability of disease transmission per contact
N : Total population size: N = S + I.
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Analyzing the SI Model

The system can be reduced to one dimension,

dI

dt
= rβ(N − I)

I

N
,

with solution,

I(t) =
I0N

(N − I0)e−rβt + I0
,

for I(0) = I0.
Equilibrium Points:

Idfe = 0

Iee = N
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Numerical Solution of SI Model

0 5 10 15 20
0

200

400

600

800

1000

Time (Years)

In
fe

ct
io

us
 H

um
an

s

With r = 365/3 years−1, β = 0.005, N = 1000, and I(0) = 1.
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Definition of Transmission Parameters

Note that in some models, usually of diseases where contacts
are not well defined, rβ (the number of contacts per unit time
multiplied by the probability of disease transmission per
contact) are combined into one parameter (often also called β
— the number of adequate contacts per unit time).

For diseases where a contact is well defined (such as sexually
transmitted diseases like HIV or vector-borne diseases like
malaria), it is usually more appropriate to separate the contact
rate, r, and the probability of transmission per contact, β.

For diseases where contacts are not well defined (such as
air-borne diseases like influenza) it is usually more appropriate
to combine the two into one parameter.
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SIS Model

Susceptible-Infectious-Susceptible Model: applicable to the
common cold.

S I

rβI/N

γ

dS

dt
= −rβS I

N
+ γI

dI

dt
= rβS

I

N
− γI

γ: Per-capita recovery rate
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Analyzing the SIS Model

The system can be reduced to one dimension,

dI

dt
= rβ(N − I)

I

N
− γI,

with solution,

I(t) =

N
rβ · (rβ − γ)

1 +
(
N
rβ

(rβ−γ)
I0

− 1
)
e−(rβ−γ)t

,

for I(0) = I0.
Equilibrium Points:

Idfe = 0

Iee =
(rβ − γ)N

rβ
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Numerical Solution of SIS Model
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With rβ = 0.5 days−1, γ = 0.1 days−1, N = 1000, and I(0) = 1.
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The Basic Reproductive Number (R0)

Anew swine-origin influenza A (H1N1) virus, ini-
tially identified in Mexico, has now caused out-
breaks of disease in at least 74 countries, with decla-

ration of a global influenza pandemic by the World Health
Organization on June 11, 2009.1 Optimizing public health
responses to this new pathogen requires difficult decisions
over short timelines. Complicating matters is the unpre-
dictability of influenza pandemics: planners cannot base
their decisions solely on pre-pandemic factors or on experi-
ence from earlier pandemics. We suggest that mathematical
modelling can inform and optimize health policy decisions
in this situation.

Uses of models

Mathematical models of infectious diseases are useful tools
for synthesizing the best available data on a new pathogen,
comparing control strategies and identifying important areas
of uncertainty that may be prioritized for urgent research.

As an example of synthesizing data, consider the process
of developing a mathematical model of the effectiveness of
influenza vaccines: modellers must draw together information
on influenza epidemiology (including patterns of spread in
different age groups), the natural history of influenza, the
effectiveness of vaccines in randomized trials and the dura-
tion of immunity following vaccination or natural infection,2,3

which cannot all be derived from a single study. Once the
model is developed, rapid and inexpensive “experiments” can
be performed by simulating alternative vaccination strategies
(e.g., vaccinating children most likely to transmit influenza,
or vaccinating older adults most likely to have severe compli-
cations of influenza).2

The uncertainty involved in this process can be assessed
through sensitivity analysis (in this case, by varying estimates
of vaccine effectiveness across plausible ranges) to examine
whether such variation results in markedly different out-
comes. Uncertain model inputs that are extremely influential
in determining the best course of action should be prioritized
for future research.

Elements of models

Elements of epidemic models often include “compart-
ments” or “states” that describe the susceptibility, infec-
tiousness or immunity of individuals in a population, and
“parameters” (numbers) that describe how individuals
move between these states.

A key model parameter is the basic reproductive num-
ber, referred to as R0.4 This is the number of new, secondary
infections created by a single primary infectious case intro-
duced into a totally susceptible population (Figure 1). The
importance of R0 relates to the information it provides to
planners: R0 determines the potential of a new pathogen toD
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Pandemic Influenza Outbreak Research Modelling Team (Pan-InfORM)

Modelling an influenza pandemic: A guide for the perplexed

CMAJ • AUGUST 4, 2009 • 181(3-4)
© 2009 Canadian Medical Association or its licensors

171

Key points

• When a new infectious disease emerges, mathematical
models can project plausible scenarios, guide control
strategies and identify important areas for urgent research.

• Models of influenza pandemics suggest roles for antiviral
drugs and vaccines. Models also raise concerns about 
anti viral resistance.

• Knowledge translation is a key part of modelling activities
that aim to optimize policy decisions for containment of
new infectious diseases.

CMAJ Analysis

Disease is endemic (R = 1)Initial phase of epidemic (R0 = 3)

Generation

0 1 2

Figure 1: The number of new infections generated when the
basic reproductive number (the number of new cases created
by a single primary case in a susceptible population) is 3. Cases
of disease are represented as dark circles, and immune individ-
uals are represented as open circles. When there is no immu-
nity in the population (left) and the basic reproductive number
(R0) is 3, the initial infectious case generates on average 3 sec-
ondary cases, each of which in turn generates 3 additional
cases of disease. Once the disease becomes endemic owing to
acquired immunity (right), each case generates on average
1 additional case (effective reproductive number [R] = 1).

@@ See other H1N1 articles: Editorial, page 123; Research, page 159

Pan-InfORM (2009)
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Definition of R0

The basic reproductive number, R0, is the number of
secondary infections that one infected person would produce
in a fully susceptible population through the entire duration of
the infectious period.

R0 provides a threshold condition for the stability of the
disease-free equilibrium point (for most models):

I The disease-free equilibrium point is locally asymptotically
stable when R0 < 1: the disease dies out.

I The disease-free equilibrium point is unstable when R0 > 1:
the disease establishes itself in the population or an epidemic
occurs.

I For a given model, R0 is fixed over all time.

This definition is only valid for simple homogeneous
autonomous models.

Can define similar threshold conditions for more complicated
models that include heterogeneity and/or seasonality but the
basic definition no longer holds.
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Evaluating R0

R0 can be expressed as a product of three quantities:

R0 =

 Number of
contacts

per unit time

 Probability of
transmission
per contact

( Duration of
infection

)

For SIS model:

R0 = r × β × 1

γ
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Reproductive Numbers

The (effective) reproductive number, Re, is the number of
secondary infections that one infected person would produce
through the entire duration of the infectious period.

Typically, but not always, Re is the product of R0 and the
proportion of the population that is susceptible.

Re describes whether the infectious population increases or
not. It increases when Re > 1; decreases when Re < 1 and is
constant when Re = 1. When Re = 1, the disease is at
equilibrium.

Re can change over time.

The control reproductive number, Rc, is the number of
secondary infections that one infected person would produce
through the entire duration of the infectious period, in the
presence of control interventions.
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Evaluating Re

Re(t) =

 Number of
contacts

per unit time

 Probability of
transmission
per contact

( Duration of
infection

)

×

 Proportion of
susceptible
population


For SIS model:

Re(t) = R0 ×
S(t)

N(t)

=
rβS(t)

γN(t)
.
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The Basic Reproductive Number (R0)

http://www.cameroonweb.com/CameroonHomePage/NewsArchive/Ebola-How-does-it-compare-316932
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SIR Model

Susceptible-Infectious-Recovered Model: applicable to measles,
mumps, rubella.

S I R
rβI/N γ

dS

dt
= −rβS I

N
dI

dt
= rβS

I

N
− γI

dR

dt
= γI

R: Recovered humans
with N = S + I +R.
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Analyzing the SIR Model

Can reduce to two dimensions by ignoring the equation for R
and using R = N − S − I.

Can no longer analytically solve these equations.

Infinite number of equilibrium points with I∗ = 0.

Perform phase portrait analysis.

Estimate final epidemic size.
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R0 for the SIR Model

R0 =

 Number of
contacts

per unit time

 Probability of
transmission
per contact

( Duration of
infection

)

R0 = r × β × 1

γ

=
rβ

γ

If R0 < 1, introduced cases do not lead to an epidemic (the
number of infectious individuals decreases towards 0).

If R0 > 1, introduced cases can lead to an epidemic
(temporary increase in the number of infectious individuals).

Re(t) =
rβ

γ

S(t)

N
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Phase Portrait of SIR ModelTHE MATHEMATICS OF INFECTIOUS DISEASES 605
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Fig. 2 Phase plane portrait for the classic SIR epidemic model with contact number σ = 3.

passively immune class M and the exposed class E are omitted. This model uses
the standard incidence and has recovery at rate γI, corresponding to an exponential
waiting time e−γt. Since the time period is short, this model has no vital dynamics
(births and deaths). Dividing the equations in (2.1) by the constant total population
size N yields

ds/dt = −βis, s(0) = so ≥ 0,

di/dt = βis − γi, i(0) = io ≥ 0,
(2.2)

with r(t) = 1 − s(t) − i(t), where s(t), i(t), and r(t) are the fractions in the classes.
The triangle T in the si phase plane given by

T = {(s, i) |s ≥ 0, i ≥ 0, s + i ≤ 1}(2.3)

is positively invariant and unique solutions exist in T for all positive time, so that the
model is mathematically and epidemiologically well posed [96]. Here the contact num-
ber σ = β/γ is the contact rate β per unit time multiplied by the average infectious
period 1/γ, so it has the proper interpretation as the average number of adequate

Hethcote (2000)
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Numerical Solution of SIR Model
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With rβ = 0.3 days−1, γ = 0.1 days−1, N = 1000, and
S(0) = 999, I(0) = 1 and R(0) = 0.
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Numerical Solution of SIR Model
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With rβ = 0.3 days−1, γ = 0.1 days−1, N = 1000, and
S(0) = 580, I(0) = 20 and R(0) = 400.
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Human Demography

Need to include human demographics for diseases where the
time frame of the disease dynamics is comparable to that of
human demographics.

There are many different ways of modeling human
demographics

I Constant immigration rate
I Constant per-capita birth and death rates
I Density-dependent death rate
I Disease-induced death rate.
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Endemic SIR Model

S I R
rβI/N γ

Birth

Death Death Death

Λ

µ µ µ

dS

dt
= Λ − rβS

I

N
− µS

dI

dt
= rβS

I

N
− γI − µI

dR

dt
= γI − µR

N = S + I +R

Λ: Constant recruitment rate
µ: Per-capita removal rate
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Analyzing the Endemic SIR Model

Can no longer reduce the dimension or solve analytically.

There are two equilibrium points: disease-free and endemic

Sdfe =
Λ

µ
See =

Λ(γ + µ)

rβµ

Idfe = 0 Iee =
Λ(rβ − (γ + µ))

rβ(γ + µ)

Rdfe = 0 Ree =
γΛ(rβ − (γ + µ))

rβµ(γ + µ)

Can perform stability analysis of these equilibrium points and
draw phase portraits.
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R0 for the Endemic SIR Model

R0 =

 Number of
contacts

per unit time

 Probability of
transmission
per contact

( Duration of
infection

)

R0 = r × β × 1

γ + µ

=
rβ

γ + µ

If R0 < 1, the disease-free equilibrium point is globally
asymptotically stable and there is no endemic equilibrium
point (the disease dies out).

If R0 > 1, the disease-free equilibrium point is unstable and a
globally asymptotically stable endemic equilibrium point exists.

2017-05-08 30



Numerical Solution of Endemic SIR Model
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With rβ = 0.3 days−1, γ = 0.1 days−1, µ = 1/60 years−1,
Λ = 1000/60 years−1, and S(0) = 999, I(0) = 1 and R(0) = 0.
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Numerical Solution of Endemic SIR Model

0 20 40 60 80 100 120
0

200

400

600

800

1000

Time (Years)

H
um

an
s

 

 
Susceptible
Infectious
Recovered

With rβ = 0.3 days−1, γ = 0.1 days−1, µ = 1/60 years−1,
Λ = 1000/60 years−1, and S(0) = 999, I(0) = 1 and R(0) = 0.
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SEIR Model

Susceptible-Exposed-Infectious-Recovered Model: applicable to
measles, mumps, rubella.

S E I R
rβI/N ε γ

Birth

Death Death Death Death

Λ

µ µ µ µ

E: Exposed (latent) humans
ε: Per-capita rate of progression to infectious state
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SEIR Model

dS

dt
= Λ − rβS

I

N
− µS

dE

dt
= rβS

I

N
− εE

dI

dt
= εE − γI − µI

dR

dt
= γI − µR

with
N = S + E + I +R.
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R0 for the Endemic SEIR Model

R0 =

 Number of
contacts

per unit time

 Probability of
transmission
per contact

( Duration of
infection

)

×

 Probabililty of
surviving

exposed stage


R0 = r × β × 1

γ + µ
× ε

ε+ µ

=
rβε

(γ + µ)(ε+ µ)

If R0 < 1, the disease-free equilibrium point is globally
asymptotically stable and there is no endemic equilibrium
point (the disease dies out).

If R0 > 1, the disease-free equilibrium point is unstable and a
globally asymptotically stable endemic equilibrium point exists.

2017-05-08 36



Extensions to Compartmental Models

Basic compartmental models assume a homogeneous
population.

Divide the population into different groups based on infection
status:
M : Humans with maternal immunity
S: Susceptible humans
E: Exposed (infected but not yet infectious) humans
I: Infectious humans
R: Recovered humans.

Can include time-dependent parameters to include the effects
of seasonality.

Can include additional compartments to model vaccinated and
asymptomatic individuals, and different stages of disease
progression.

Can include multiple groups to model heterogeneity, age,
spatial structure or host species.
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