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Large-time behavior in non-symmetric Fokker-Planck equations

Abstract. We consider three classes of linear non-symmetric Fokker-
Planck equations having a unique steady state and establish exponen-
tial convergence of solutions towards the steady state with explicit (esti-
mates of) decay rates. First, “hypocoercive” Fokker-Planck equations
are degenerate parabolic equations such that the entropy method to
study large-time behavior of solutions has to be modified. We review
a recent modified entropy method (for non-symmetric Fokker-Planck
equations with drift terms that are linear in the position variable).
Second, kinetic Fokker-Planck equations with non-quadratic potentials
are another example of non-symmetric Fokker-Planck equations. Their
drift term is nonlinear in the position variable. In case of potentials
with bounded second-order derivatives, the modified entropy method
allows to prove exponential convergence of solutions to the steady state.
In this application of the modified entropy method symmetric positive
definite matrices solving a matrix inequality are needed. We deter-
mine all such matrices achieving the optimal decay rate in the modi-
fied entropy method. In this way we prove the optimality of previous
results. Third, we discuss the spectral properties of Fokker-Planck op-
erators perturbed with convolution operators. For the corresponding
Fokker-Planck equation we show existence and uniqueness of a station-
ary solution. Then, exponential convergence of all solutions towards
the stationary solution is proven with a uniform rate.
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1 - Introduction

Fokker-Planck equations (FPEs) describe the deterministic evolution of the
probability density associated to many stochastic processes [35]. Hence, they
constitute an important class of models in applied mathematics and an inter-
esting object of study in the analysis of PDEs. This paper is concerned with
the large time analysis of FPEs. In particular we shall analyze non-symmetric
equations (corresponding to irreversible stochastic processes). We shall analyze
the existence of unique (normalized) steady states and, in particular, the con-
vergence of the time dependent solutions towards it. Here, the main emphasis
will be put on the derivation of explicit exponential decay rates (or, at least,
estimates of it). Apart from an intrinsic mathematical interest in such decay
rates, they are even relevant for the modeling of industrial processes, like the
fiber lay-down processes in technical textile production (cf. [27]).

For linear, symmetric FPEs the sharp exponential decay rate equals the
spectral gap of the generator of the evolution. But, apart from simple examples,
exact values or good estimates of this spectral gap are rarely available. Based on
the work of Bakry and Émery on diffusion processes [9, 10], the entropy method
for PDEs has become an important tool to study the large time behavior of wide
classes of parabolic equations [7, 2, 3]. The success of this approach is mainly
due to its robustness to nonlinear perturbations and extensions [16, 14]. More
recently it was even generalized to degenerate parabolic equations [41, 17, 5].

In this paper we shall focus on the large-time behavior of three classes of
linear, non-symmetric FPEs: In §2 we shall consider non-symmetric FPEs with
drift terms that are linear in the position variable. The recent interest in these
equations originated actually in developing entropy methods for the subclass
of degenerate diffusions equations, or more precisely “hypocoercive” equations.
But it turned out that this method can be viewed more naturally for non-
symmetric FPEs. The material of this chapter will be based on the recently
developed entropy method from [5]. We shall present a review from an updated
point of view and include several typical examples to illustrate this new method.

In §3 we shall analyze kinetic FPEs with non-quadratic potentials. Again,
they are non-symmetric FPEs, but with a drift term that is nonlinear in the
position variable. This will illustrate that the entropy method from §2 can be
applied also beyond equations with linear drift, at least in perturbative settings.
The material of this chapter is an improvement of §7 in [5].

§4 will be concerned with FPEs with non-local perturbations. These pertur-
bations will again render the evolution generator non-symmetric in an appro-
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priately weighted L2–space. But, surprisingly, a wide class of non-local pertur-
bations does not modify the spectrum of the underlying (standard symmetric)
FPE. Hence, we shall use spectral methods for the large-time analysis of such
models. The material of this chapter is an extension of [37] to FPEs with diffu-
sion and drift matrices that are not the identity.

2 - Hypocoercive and non-symmetric Fokker-Planck equations

In this chapter we shall study the evolution of a function f(t, x); t ≥ 0, x ∈
R
d, under the linear FPE of the form

∂tf = Lf := div(D∇f +Cx f) ,(2.1)

and subject to the initial condition f(t = 0) = f0. Without restriction of
generality we assume that

f0 ≥ 0 ,

∫

Rd

f0 dx = 1 .

We stipulate that solutions satisfy f(t, ·) ∈ L1(Rd). Hence, the divergence form
of (2.1) implies

∫
Rd f(t, x) dx = 1 for all t > 0. In (2.1), the diffusion matrix

D ∈ R
d×d is symmetric and positive semi-definite, and C ∈ R

d×d is the drift
matrix. Both are constant in space and time.

An important model of this class is the kinetic FPE from plasma physics
[35, 40]. The time evolution of the phase space probability density f(t, x, v) is
governed by:

∂tf + v · ∇xf −∇xV · ∇vf = ν divv(vf) + σ∆vf ; x, v ∈ R
n; t > 0 .(2.2)

Here, the position-velocity vector (x, v) plays the role of x ∈ R
d, d = 2n, in (2.1).

ν, σ denote (positive) friction and diffusion parameters, respectively. V = V (x)
is a given confinement potential for the system. Next we rewrite (2.2) as

ft = divx,v

[(
0 0
0 σ I

)
∇x,vf +

(
−v

∇xV + ν v

)]
.(2.3)

Here, the first matrix is a singular diffusion matrix, with the identity matrix
I ∈ R

n×n; the second term is the drift. For a quadratic potential V , the kinetic
FPE (2.2) takes exactly the form of (2.1) and its analysis will be covered in §2.
The case of non-quadratic potentials is the subject of §3.

The goal of this chapter is first to identify (under appropriate assumptions
on D and C) the unique normalized steady state f∞(x) of (2.1). Most of all,
we shall then study the convergence of f(t) to f∞ as t → ∞ with (possibly
sharp) exponential rates. In view of space limitations we shall mostly present
only formal computations, which hold rigorously for regular enough solutions.
But, anyhow, parabolic and hypocoercive FPEs regularize instantaneously to
C∞ (cf. Proposition 2.1 below). So, regularity is actually not an issue, with the
possible exemption at the initial time.

3



2.1 - Non-symmetric Fokker-Planck equations

In this section we introduce the notion of (non)symmetric FPEs and the
relative entropy, which will be our main tool to analyze the large-time behavior
below. For these definitions we first consider FPEs with x–dependent coeffi-
cients. A symmetric Fokker-Planck equation is defined to be of the form

(2.4) ∂tf = L1f := div
(
D(x)[∇f + f∇A(x)]

)
,

with a diffusion matrix D that is locally uniformly positive definite on R
d and

symmetric. We assume that the sufficiently regular confinement potential A
satisfies e−A ∈ L1(Rd). Then f∞ := e−A is the unique normalized steady state
of (2.4). The normalization

∫
Rd f∞(x) dx = 1 is imposed here by changing the

additive constant of A, which is not prescribed by (2.4). The non-degeneracy
of the ground state of L1 can easily be seen from the following computation:

(2.5) 〈L1f, g〉H = −
∫

Rd

∇T
( f
f∞

)
D(x)∇

( g
f∞

)
f∞ dx ,

with 〈·, ·〉H denoting the inner product in the weighted L2–space H :=
L2(Rd, f−1

∞ ). And the right hand side of (2.5), with f = g, vanishes iff f/f∞ =
const. The quadratic form (2.5) also shows that the operator L1 is symmetric
in H (cf. §2 of [7] for more details).

The key feature of a symmetric FPE is the gradient form of its drift vector
field. For d ≥ 2 we shall now consider more general drift fields, which will make
the evolution generator non-symmetric in H. For regular diffusion matrices
D(x), the following equation is called a non-symmetric Fokker-Planck equation:

(2.6) ∂tf = L2f := div
(
D(x)[∇f + f{∇A(x) + F (x)}]

)
.

Here we assume that the additional vector field F satisfies

(2.7) div(D(x)F (x) f∞(x)) = 0 , ∀x ∈ R
d ,

such that f∞ = e−A is still the unique steady state of (2.6).
In typical applications, however, the FPE is given with just one drift vector

field that is not yet split into two summands (in contrast to (2.6)). In order to
retrieve the steady state, this field then needs to be decomposed into a gradient
part and a divergence free part (in the above sense). This task is a generalization
of the Helmholtz-Hodge decomposition (see §2 in [4] for a typical example). Such
a decomposition of the vector field readily yields the following decomposition
of the operator L2 into its symmetric part Ls in H and its anti-symmetric part
Las: L2 = Ls + Las with

Lsf = div
(
D(x)[∇f + f∇A(x)]

)
,

Lasf = div
(
D(x)F (x) f

)
.

Due to (2.7) we have Lsf∞ = Lasf∞ = 0.
Next we give a more compact form of Ls and Las, which of course also holds

for L1 with F ≡ 0.
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L emma 2.1. Let D(x) > 0, assume condition (2.7), and let f∞ = e−A

denote the steady state of (2.6). The symmetric/anti-symmetric decomposition
of L2 then satisfies:

Lsf = div
(
f∞ D(x)∇ f

f∞

)
,(2.8)

Lasf = div
(
f∞ R(x)∇ f

f∞

)
,(2.9)

where the matrices R(x) ∈ R
d×d are skew-symmetric and satisfy on R

d:

(2.10) ∇T (Rf∞) = GT := (DF f∞)T .

P r o o f. (2.8) is trivial, so we only discuss (2.9). The divergence-free-
condition (2.7) on the vector field G implies that there exists a matrix function
B(x) ∈ R

d×d, with B(x) skew-symmetric and

(2.11) GT (x) = ∇TB(x) .

Let us briefly illustrate this statement: For d = 2, 3 (2.11) simplifies to the well
known representations of divergence free vector fields:

B(x) =

(
0 −b(x)
b(x) 0

)
, G = ∇⊥b , ∇⊥ :=

(
∂x2

−∂x1

)
,

and, respectively,

B(x) =




0 −b3(x) b2(x)
b3(x) 0 −b1(x)
−b2(x) b1(x) 0


 , G = curl




b1(x)
b2(x)
b3(x)


 .

In higher dimensions, (2.11) can be verified either with differential forms (cf. §6
in [8], [15]) or by Fourier transformation.

Next we compute

Lasf := div
(
G

f

f∞

)
= div

(
(∇TB)T

f

f∞

)
= (∇TB)∇ f

f∞
= div

(
B∇ f

f∞

)
,

where we have used the skewness of B in the last two steps. Setting R := Bf−1
∞

yields (2.9). �

Note that Las in (2.9) is only a first order operator – due to the skew-
symmetry of R(x).

As mentioned above, the main goal of this chapter is to study the convergence
to the equilibrium for solutions to non-symmetric FPEs. To this end, our main
tool will be the relative entropy. We define (see §2.2 of [7] for more details):

D e f i n i t i o n 2.1. (a) Let J be either R
+ or R. A scalar function ψ ∈

C(J̄) ∩ C4(J) satisfying the conditions

(2.12) ψ(1) = 0 , ψ ≥ 0 , ψ′′ > 0 , (ψ′′′)2 ≤ 1

2
ψ′′ψIV on J

is called entropy generator.
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(b) Let f1 ∈ L1(Rd), f2 ∈ L1
+(R

d) with
∫
Rd f1 dx =

∫
Rd f2 dx = 1 and f1

f2
(x) ∈

J̄ a.e. (w.r.t. the measure f2( dx)). Then

(2.13) eψ(f1|f2) :=
∫

Rd

ψ
(f1
f2

)
f2 dx ≥ 0

is called an admissible relative entropy of f1 with respect to f2 with gen-
erating function ψ.

In this definition, the term “admissible” refers to the applicability of the
entropy method under the assumptions (2.12). The most important examples
are the logarithmic entropy e1(f1|f2), generated by

ψ1(σ) = σ lnσ − σ + 1 ,

and the power law entropies ep(f1|f2) with 1 < p ≤ 2, generated by

ψp(σ) = σp − 1− p(σ − 1) .

Except for quadratic entropies eψ2
we shall always use J = R

+.
The above definition clearly shows that eψ(f1|f2) = 0 iff f1 = f2. In the

subsequent sections we shall hence try to prove that solutions f(t) to FPEs
satisfy eψ(f(t)|f∞) → 0 as t→ ∞. Such a convergence in relative entropy then
also implies L1–convergence, due to the Csiszár-Kullback inequality :

‖f1 − f2‖2L1(Rd) ≤
2

ψ′′(1)
eψ(f1|f2) .

This relative entropy (w.r.t. the steady state) is a Lyapunov functional for
the evolution. As proved in §2.4 of [7] we have:

L emma 2.2. Let f(t) be a solution to the non-symmetric FPE (2.6) with
the divergence-free-condition (2.7). Then,

d

dt
eψ(f(t)|f∞) = −

∫

Rd

ψ′′
(f(t)
f∞

) (
∇f(t)

f∞

)T
D(x)

(
∇f(t)

f∞

)
f∞ dx

=: −Iψ(f(t)|f∞) ≤ 0 ,(2.14)

where Iψ(f(t)|f∞) denotes the Fisher information (of f(t) w.r.t. f∞).

We remark that the right hand side of (2.14) is independent of the vector
field F , i.e. independent of Las. So, for a fixed time t, the relative entropy and
its entropy dissipation coincide for a non-symmetric FPE and its corresponding
symmetric FPE.

2.2 - Hypocoercive Fokker-Planck equations

In this section we shall define hypocoercivity and give some typical examples.
We start with the standard FPE on R

d:

(2.15) ∂tf = div(∇f + xf) =: L3f
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with the unique normalized steady state

(2.16) f∞(x) = (2π)−
d
2 e−

|x|2

2 .

As seen from (2.5), the operator L3 is symmetric on H := L2(f−1
∞ ) and dis-

sipative, i.e. 〈L3f, f〉H ≤ 0 ∀ f ∈ D(L3). Also, −L3 is coercive in the sense
that

〈−L3f, f〉H ≥ ‖f‖2H , ∀ f ∈ {f∞}⊥ .
In other words, −L3 has a spectral gap of size 1 (since 0 and 1 are the lowest
eigenvalues of −L3) and this spectral gap determines the sharp exponential
decay of solutions towards f∞:
(2.17)

‖eL3tf0 − f∞‖H ≤ e−t‖f0 − f∞‖H , ∀ f0 ∈ H with

∫

Rd

f0 dx = 1; t ≥ 0 .

Equilibration occurs here as a balance between diffusion and drift in (2.15).
Next we consider the FPEs from (2.1):

∂tf = div(D∇f +Cx f) = Lf .

For a singular diffusion matrix D this equation is degenerate parabolic, and
the operator L is not coercive in L2(f−1

∞ ), where the steady state f∞ will be
specified in §2.3 below. This non-coercivity can be seen easily from (2.8), when
choosing f(x) = c · x f∞(x) with a vector c ∈ kerD.

In spite of this lack of coercivity, such degenerate FPEs will frequently still
exhibit an exponential convergence to equilibrium. This motivated C. Villani
to coin the term hypocoercivity in [41]. The following definition is very general,
but afterwards we shall only be concerned with FPEs of type (2.1).

D e f i n i t i o n 2.2. LetH be a Hilbert space. Consider a linear operator L on
H generating a C0-semigroup (eLt)t≥0. Also, consider a (smaller) Hilbert space

H̃ that is continuously and densely embedded in the orthogonal complement of
K := ker L ⊂ H (i.e. H̃ →֒ K⊥). Then, −L is called hypocoercive on H̃ if there
exist constants c ≥ 1 and λ > 0 such that

(2.18) ‖eLtf‖H̃ ≤ c e−λt‖f‖H̃ , ∀ f ∈ H̃; t ≥ 0 .

In many applications to FPEs, H is a weighted L2–space, and H̃ a weighted
H1–space. In (2.18) we shall typically have a leading multiplicative constant
c > 1, while this constant is 1 in the symmetric, non-degenerate case of (2.17).

Next we shall give some typical examples of such hypocoercive equations in
order to explain the convergence mechanism.

E x amp l e 2.1. The kinetic FPE (2.2) is non-symmetric. With a sufficiently
growing confinement potential V (x) it is hypocoercive, and its steady state is

f∞(x, v) = c e−
ν
σ

[
|v|2

2
+V (x)

]
,

with some normalization constant c > 0. �
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Ex amp l e 2.2. Next we consider the following degenerate 2D equation of
form (2.1):

∂tf = div
[( 1 0

0 0

)
∇f +

(
1 −ω
ω 0

)
x f
]
=: L4f .(2.19)

For any parameter ω ∈ R, one easily verifies that the standard Gaussian (2.16)
is still a steady state of (2.19), and for ω 6= 0 it is the unique normalized steady
state f∞. For ω = 0 we have drift and diffusion in the x1–direction (as in the
standard FPE). But in the x2–direction there is no equilibration.

The term with ω in (2.19) constitutes the rotational part of the drift matrix
C and the anti-symmetric part of the operator L4. Heuristically speaking, it
mixes the diffusive x1–direction with the non-diffusive x2–direction. Hence, for
fast enough rotations, the sharp decay rate of solutions to (2.19) is the average
of the decay rates in the x1– and x2–directions. More precisely, the drift matrix
C has the following lower bound on the real parts of its eigenvalues:

(2.20) µ := min{Re(λ) |λ ∈ σ(C)} =
1

2
for |ω| > 1

2
.

As we shall show in Section 2.4 below, this lower bound determines the sharp de-
cay rate 1

2 towards f∞. For slower rotations, however, the decay rate approaches

zero since min{Re(λ) |λ ∈ σ(C)} = 1
2 −

√
1
4 − ω2.

As we shall see in the decay analysis below, the decay behavior can be
understood quite well by considering the drift characteristics corresponding to
(2.19). They satisfy the ODE–system xt = −Cx. Along a characteristic, |x(t)|2
is monotonically non-increasing, and at points with x1 6= 0 it is even strictly
monotonically decreasing. However, when crossing the x2–axis, the characteris-
tic is tangent to the level curves of |x|2 (cf. Figure 2.1). As we shall see below,
this implies that the relative entropy (e.g. e2(f(t)|f∞) ) may have a vanishing
time derivative at certain points in time.

We now indicate a possibility to obtain a strictly (and uniformly in time)
decaying Lyapunov functional for the evolution of (2.19). At the level of drift
characteristics it is advantageous to consider (instead of |x(t)|) the “distorted”
vector norm

√
〈x(t),Px(t)〉 with some appropriate symmetric, positive definite

matrix P. This P-norm will allow to realize the optimal decay of x(t) with the
rate µ defined in (2.20) – uniformly in time (for details, see (2.51) below). This
idea is the essence of the strategy followed in [17] for hypocoercive equations.

To sum up, the essence of this example is a degenerate diffusion and a rota-
tion that mixes the directions. �

Ex amp l e 2.3. Here we consider (2.1) again on R
2, with the diffusion ma-

trix D = diag(1, 0) and the drift matrix C = [1 0 ; 1 1]. Note that C is a
(transposed) Jordan block. Hence, the drift characteristics (solving xt = −Cx)
are here degenerate spirals (cf. Figure 2.2a). The crucial aspect of this example
is that the asymptotic direction of these characteristics (close to x = 0) is not
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Drift characteristic Level curve of P−norm

Figure 2.1: Drift characteristic for the 2D Fokker-Planck equation (2.19) with
D = diag(1, 0), C = [1 −1 ; 1 0]: The blue spiral is tangent to the level curves
of |x| (black circles) when crossing the x2–axis. The red ellipse is a level curve
for the “distorted” vector norm

√
〈x(t),Px(t)〉. For this example the optimal

metric is given by P = [2 − 1 ; −1 2], cf. Lemma 2.6 for the algorithm how to
compute P. (colors only online)
In the labeling of the two axes x means x1 and y means x2.

aligned with the diffusive x1–direction. This again allows for equilibration as
t→ ∞.

One easily verifies that the steady state is given by the non-isotropic Gaus-
sian

f∞(x) = c e−(x2
1+2x1x2+2x2

2) ,

with a normalization constant c. The contour lines of the steady state potential
are graphed in Figure 2.2b. Here, the “sharp” decay rate is given by 1−ε (where
min{Re(λ) |λ ∈ σ(C)} = 1). �
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Figure 2.2: (a) Left: Drift characteristics and flow vector field for the 2D FPE
(2.1) with D = diag(1, 0), C = [1 0 ; 1 1]. (b) Right: Level curves of the
quadratic potential appearing in the steady state, i.e. A(x) = − ln f∞(x).

2.3 - Steady states and normalized Fokker-Planck equations

In the above examples we saw that, to enable convergence to an equilibrium,
the drift matrix C has to mix the diffusive and non-diffusive directions of the
linear FPE (2.1) (provided D is singular). Now we give conditions on D and C
such that (2.1) has a unique steady state:

D e f i n i t i o n 2.3. The operator L from (2.1) is said to fulfill condition (A)
if:

(A1) No (nontrivial) subspace of kerD is invariant under CT .

(A2) The matrixC is positively stable (i.e. all eigenvalues have real part greater
than zero).

Condition (A1) is equivalent to the hypoellipticity of ∂t − L (cf. §1 of [24]).
Moreover, it implies regularization and strict positivity of the solution to (2.1):

P r o p o s i t i o n 2.1. Let condition (A1) from Definition 2.3 hold, and let
f0 ∈ L1(Rd).

a) Then the unique solution of (2.1) satisfies f ∈ C∞(R+ × R
d).

b) If f0 ≥ 0, we have f(t, x) > 0 ∀t > 0, x ∈ R
d.

P r o o f. For part (a) see page 148 of [24]. Part (b) follows from the strict
positivity of the Green’s function pertaining to (2.1) (see Lemma 2.5 and The-
orem 2.7 in [5]). �

Condition (A2) means that there is a confinement potential that prevents
the solution to run off to ∞. Without it, there would be no steady state. In-
deed, Theorems 2.1 and 2.3 will show that condition (A) is both sufficient and
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necessary for the existence of a unique normalized steady state and exponential
convergence of solutions towards the steady state. So, for equations of type
(2.1), hypoellipticity and confinement are equivalent to hypocoercivity.

In the following lemma we give three equivalent characterizations of the hy-
poellipticity of L that will be used for the regularization of the propagators eLt,
t > 0 (see Theorem 2.8 below, and §2 of [31]).

L emma 2.3. The following three statements are equivalent, where we use
k := rankD ∈ {1, . . . , d}:
(i) No non-trivial subspace of kerD is invariant under CT .

(ii) There exist constants τ ∈ {0, . . . , d− k} and κ > 0 such that

τ∑

j=0

CjD(CT )j ≥ κI .(2.21)

(iii) There exists a constant τ ∈ {0, . . . , d− k} such that

rank[D
1
2 , CD

1
2 , ..., CτD

1
2 ] = d .(2.22)

P r o o f. For the equivalence of (i) and (ii) we refer to Lemma 2.3 of [5].
For (iii)⇒(ii) let

E := [D
1
2 , CD

1
2 , ..., CτD

1
2 ] ∈ R

d×(τ+1)d .

Then,

R
d×d ∋ E ET =

τ∑

j=0

CjD(CT )j ≥ 0

has rank d and (2.21) follows.
For (ii)⇒(iii) assume we had rankET < d. Then, ∃ 0 6= v ∈ R

d with ET v = 0.
Hence, E ET v = 0 would contradict (2.21). �

If τ is the minimal constant for which (2.21) (or, equivalently, (2.22)) holds,
then L fulfills Hörmander’s finite rank bracket condition of order τ (see [24],
Theorem 1.1). For the explicit decomposition of the generator from (2.1) in the
Hörmander form −L = A∗A+B we refer to Proposition 5 in [41].

As an illustration we consider the following two hypocoercive examples of
(2.1), where d = 4, k = 2:

E x amp l e 2.4. Let

D1 :=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ; C1 :=




1 0 1 0
0 1 0 1
−1 0 0 0
0 −1 0 0


 .

Here, rank[D
1
2

1 , C1D
1
2

1 ] = 4 and hence τ = 1. �
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Ex amp l e 2.5. Let

D2 :=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ; C2 :=




1 0 0 0
0 1 1 0
0 −1 0 1
0 0 −1 0


 .

Here, rank[D
1
2

2 , C2D
1
2

2 ] = 3, but rank[D
1
2

2 , C2D
1
2

2 , C
2
2D

1
2

2 ] = 4. Hence τ = 2. �

In many works on hypocoercive equations [17, 12], a more restrictive as-
sumption (than condition (A)) is made, namely: “No subspace of kerD should
be mapped into kerD by CT ”, which corresponds to the requirement τ = 1.
Let as reconsider the two previous examples under this aspect. In Example
2.4, CT

1 maps the non-diffusive directions from kerD1 into the diffusive direc-
tions from (kerD1)

⊥. But in Example 2.5, CT
2 maps the non-diffusive direction

(0, 0, 0, 1)T ∈ kerD2 still onto the non-diffusive direction (0, 0, 1, 0)T ∈ kerD2.
But in a second step, we haveCT

2 (0, 0, 1, 0)
T = (0, 1, 0, −1)T , which has a non-

trivial component in the diffusive subspace (kerD2)
⊥.

Next we discuss the existence of a steady state to (2.1) (for the proof cf. §1
of [31] or Th. 3.1 in [5]):

T h e o r em 2.1. There exists a unique steady state f∞ ∈ L1(Rd) of (2.1)
fulfilling

∫
Rd f∞ dx = 1 iff condition (A) holds.

Moreover, this steady state is of the (non-isotropic) Gaussian form

f∞(x) = cK exp
(
− xTK−1x

2

)
,(2.23)

where K is the unique, symmetric, and positive definite solution to the contin-
uous Lyapunov equation (cf. [25])

2D = CK+KCT ,(2.24)

and cK = (2π)−
d
2 (detK)−

1
2 is the normalization constant.

With the steady state at hand, we now give the decomposition of the operator
L from (2.1):

L emma 2.4. Let L satisfy condition (A). Then, its symmetric/anti-
symmetric decomposition satisfies:

Lsf = div
(
f∞D∇ f

f∞

)
,(2.25)

Lasf = div
(
f∞R∇ f

f∞

)
,(2.26)

with R := 1
2 (CK−KCT ) 6= 0.

12



P r o o f. To reduce this result to Lemma 2.1, we first compare (2.1) to (2.6):
The drift vector field Cx of (2.1) corresponds to D{∇A+ F}. Hence, we have
with (2.24) and ∇A = K−1x:

DF (x) = Cx−D∇A(x) =
[
C− 1

2
(CK+KCT )K−1

]
x

=
1

2
(CK−KCT )K−1x .(2.27)

To verify the divergence-free-condition (2.7) we compute

div(DF (x) f∞(x))

=
1

2
Tr([CK−KCT ]K−1) f∞ − 1

2
(K−1x)T [CK−KCT ]K−1x f∞ = 0 ,

due to the skew-symmetry of CK−KCT .
Next we verify the condition (2.10):

(∇T (Rf∞))T = −R∇f∞ =
1

2
(CK−KCT )K−1x f∞ = DF (x)f∞(x) ,

where we used (2.27) in the last step. The claims (2.25), (2.26) then follow from
Lemma 2.1.

Finally we prove that R 6= 0. Otherwise (2.24) would imply D = KCT , and
hence kerD = kerCT , which would contradict condition (A). �

The result R 6= 0 shows that hypocoercive FPEs of form (2.1) are always
non-symmetric.

Next we shall bring the hypocoercive FPEs (2.1) to a normalized form, which
will simplify our computations below. With its steady state given in (2.23) we

introduce, as a first step, the coordinate transformation y :=
√
K

−1
x ∈ R

d.
With g(y) := f(

√
Ky), this transforms (2.1) to

∂tg = divy(D̃∇yg + C̃y g) ,

with D̃ =
√
K

−1
D
√
K

−1
and C̃ =

√
K

−1
C
√
K. A simple computation, using

(2.24) shows that

D̃ = C̃s ,

where C̃s :=
1
2 (C̃ + C̃T ) denotes the symmetric part of C̃. Clearly, the trans-

formed steady state reads g∞(y) = c e−|y|2/2, with some normalization con-
stant c > 0. As a second step we rotate the coordinate system to diago-
nalize the diffusion matrix: For an orthogonal matrix U ∈ R

d×d, let D̂ :=
UT D̃U = diag(d1, ..., dk, 0 , ..., 0), where k = rankD. We set z := UT y and
h(z) := g(Uz), which satisfies

(2.28) ∂th = divz(D̂∇zh+ Ĉz h) .
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The symmetric part of the new drift matrix, Ĉ = UT C̃U, again satisfies D̂ =
Ĉs. Since the matrices C and Ĉ are similar, we have σ(C) = σ(Ĉ), which will
be the quantity that determines the decay rate of a hypocoercive FPE. We also
note that h∞(z) = c e−|z|2/2 with some normalization constant c.

We remark that the above Examples 2.2, 2.4, and 2.5 are already of this nor-
malized form, but Example 2.3 is not. The above normalization brings Example
2.3 to the form

∂th = divz

[( 2 0
0 0

)
∇zh+

(
2 1
−1 0

)
z h
]
.

Scaling time by a factor 1
2 shows that this equals the FPE in Example 2.2 with

the rotation parameter ω = − 1
2 , which is a limiting case in (2.20).

For the rest of this chapter we shall always assume that the FPEs are nor-
malized as in (2.28). So, the matrices in (2.1) will satisfy D = Cs with D being
diagonal, which implies K = I.

2.4 - Modified entropy method

To start with, let us very briefly review the standard entropy method for
FPEs (cf. [10, 7] for symmetric FPEs and [2, 13] for non-symmetric FPEs): In a
first step one establishes a differential inequality between the Fisher information
(2.14) of a solution f(t) and its time derivative, which yields exponential decay
of the Fisher information. We give the result for symmetric FPEs:

L emma 2.5. Let f(t) be the solution to (2.4) with a constant diffusion
matrix D. Let the coefficients of this FPE satisfy the following Bakry-Émery
condition for some λ1 > 0:

(2.29)
∂2A

∂x2
(x) ≥ λ1D

−1 , ∀x ∈ R
d .

Also, let the initial condition satisfy Iψ(f0|f∞) < ∞. Then, the Fisher infor-
mation decays exponentially:

(2.30) Iψ(f(t)|f∞) ≤ e−2λ1tIψ(f0|f∞) , t ≥ 0 .

P r o o f. After a lengthy computation the time derivative of the Fisher
information can be written as follows (for scalar diffusions D(x) cf. Lemma 2.13
in [7], and for the generalization to non-symmetric FPEs (2.6) cf. Lemma 2.3 in
[2]). Using the notation u := ∇ f

f∞
we have:

d

dt
Iψ(f(t)) = −2

∫

Rd

ψ′′
( f

f∞

)
uTD

∂2A

∂x2
Du f∞ dx− 2

∫

Rd

Tr (XY) f∞ dx

≤ −2λ1

∫

Rd

ψ′′
( f

f∞

)
uTDu f∞ dx = −2λ1 Iψ(f(t)) .(2.31)
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In the last estimate we used the Bakry-Émery condition (2.29) and Tr (XY) ≥ 0.
Here, the two matrices X, Y ∈ R

2×2 are defined as follows:

X(x) :=

(
ψ′′ ψ′′′

ψ′′′ 1
2ψ

IV

)( f(x)

f∞(x)

)
≥ 0 , ∀x ∈ R

d ,(2.32)

since det X = 1
2ψ

′′ψIV − (ψ′′)2 ≥ 0 for admissible relative entropies (cf. (2.12)).

Y(x) :=

(
Tr
[(
D∂u
∂x

)2]
uTD∂u

∂xDu

uTD∂u
∂xDu (uTDu)2

)
≥ 0 , ∀x ∈ R

d ,(2.33)

due to the Cauchy-Schwarz inequality. The differential inequality (2.31) for
Iψ(f(t)) implies (2.30), and it can be written equivalently as e′′(t) ≥ −2λ1e

′(t)
(with e(t) := eψ(f(t)|f∞)). �

In the second step of the entropy method one proves the exponential decay
of the relative entropy (2.13) of f(t) w.r.t. f∞. To this end one integrates (2.31)
from t to ∞, which yields the entropy inequality

(2.34)
d

dt
eψ(f(t)|f∞) ≤ −2λ1 eψ(f(t)|f∞) , ∀ t ≥ 0 .

Hence, the relative entropy decays exponentially:

(2.35) eψ(f(t)|f∞) ≤ e−2λ1teψ(f0|f∞) , ∀ t ≥ 0 .

Next we illustrate how the situation changes from a symmetric FPE to a
non-symmetric or even hypocoercive FPE. In a symmetric FPE with D > 0,
the relative entropy is a convex function of time, and the entropy dissipation
satisfies e′ψ(f |f∞) < 0 for all probability densities f 6= f∞ (cf. Figure 2.3).
For a hypocoercive FPE with a singular diffusion matrix D, however, e(t) is
not convex. In fact, it decays in a “wavy” fashion, and it may have horizontal
tangents at equally spaced points in time (cf. Figure 2.4). This oscillatory
behavior is also known from space-inhomogeneous kinetic equations (cf. §3.7 of
[40]; and [19] for a numerical study on the Boltzmann equation).

So we observe that the entropy dissipation e′ψ(f |f∞) may vanish for certain
probability densities f 6= f∞. This can also be seen from the form of the
Fisher information in (2.14): choose f(x) = (1 + c · x)f∞(x) with a vector
c ∈ kerD. Hence, an entropy inequality of the form (2.34) cannot hold for
degenerate, hypocoercive FPEs! We also see: While the Fisher information
Iψ(f(t)|f∞) is a Lyapunov functional for symmetric FPEs, its non-monotonicity
in the hypocoercive case makes it “useless” there. As a remedy, we present now
a modified entropy method for FPEs of the form (2.1), normalized as introduced
in §2.3.

Since the above problems stem from the singularity of D, we now define a
modified entropy dissipation functional:

(2.36) Sψ(f) :=

∫

Rd

ψ′′
( f

f∞

) (
∇ f

f∞

)T
P
(
∇ f

f∞

)
f∞ dx ≥ 0 ,
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Figure 2.3: Prototypical behavior of the logarithmic relative entropy
e1(f(t)|f∞) (solid red curve), its first (dotted black), and second time derivative
(dashed blue) for a non-degenerate, symmetric FPE: The inequalities e′ ≤ −2λe,
e′′ ≥ −2λe′ can be obtained. (colors only online)
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Figure 2.4: Prototypical behavior of the logarithmic relative entropy
e1(f(t)|f∞) (solid red curve), its first (dotted black), and second time deriva-
tive (dashed blue) for the degenerate, hypocoercive FPE from Example 2.2 with
D = diag(1, 0), C = [1 − 1 ; 1 0] : The inequalities e′ ≤ −2λe, e′′ ≥ −2λe′ are
wrong, in general. (colors only online)
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where the positive definite matrix P ∈ R
d×d still has to be determined. Note

that the only difference to the Fisher information is the replacement of the
matrix D there by P here. This auxiliary functional will take over the role of
Iψ in the first step of the entropy method. So, our goal is to derive a differential
inequality between Sψ(f(t)) and

d
dtSψ(f(t)) for a “good” choice of P > 0. Then,

once exponential decay of Sψ(f(t)) is obtained, the trivial estimate P ≥ cPD
(with some cP > 0) implies

Sψ(f(t)) ≥ cP Iψ(f(t)|f∞) ,

and also exponential decay of Iψ(f(t)) follows.

The key question for using the modified entropy dissipation functional Sψ(f)
is how to choose the matrix P for a given, normalized FPE. To determine P we
shall need the following algebraic result:

L emma 2.6. For any fixed matrix Q ∈ R
d×d, let µ := min{Re{λ}|λ is

an eigenvalue of Q}. Let {λm|1 ≤ m ≤ m0} be all the eigenvalues of Q with
Re{λm} = µ, only counting their geometric multiplicity.

(i) If all λm, m ∈ {1, . . . ,m0}, are non-defective1, then there exists a sym-
metric, positive definite matrix P ∈ R

d×d with

PQ+QTP ≥ 2µP .(2.37)

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then for any ε > 0
there exists a symmetric, positive definite matrix P = P(ε) ∈ R

d×d with

PQ+QTP ≥ 2(µ− ε)P .(2.38)

P r o o f. Here we only give the proof for the case that Q is not defective
(and hence diagonalizable) and refer to Lemma 4.3 in [5] for the general case.
Let w1, . . . , wd denote the eigenvectors of QT . Then one can choose P as a
weighted sum of the following rank 1 matrices:

P :=

d∑

j=1

bj wj ⊗ wj
T ,(2.39)

with bj ∈ R
+; j = 1, . . . , d. As {wj}j=1,...,d is a basis of C

d, P is positive
definite. If any wj is complex, its complex conjugate wj is also an eigenvector
of QT , since Q is real. By taking the same coefficient bj for both, we obtain a
real matrix P. Apart from this restriction, the choice of bj > 0 is arbitrary. For
P from (2.39), we have

PQ+QTP =

d∑

j=1

bj(λj + λj)wj ⊗ wj
T ≥ 2µ

d∑

j=1

bj wj ⊗ wj
T = 2µP .

1An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic
multiplicity.
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We remark that P is, in general, not unique, not even up to a multiplicative
constant. But this will be irrelevant for the decay rate of FPEs.

Applying this lemma to Q := C now yields exponential decay of the func-
tional Sψ(f(t)), defined with the matrix P from the above lemma:

P r o p o s i t i o n 2.2. Assume condition (A). Let ψ generate an admissible
entropy, let f be the solution to (2.1) with an initial state satisfying Sψ(f0) <∞,
and let µ := min {Re{λ}|λ is an eigenvalue of C} (which is positive by condi-
tion (A)). Let {λm|1 ≤ m ≤ m0} be the eigenvalues of C with Re{λm} = µ,
and let P be defined as in Lemma 2.6.

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then

Sψ(f(t)) ≤ Sψ(f0)e
−2µt, t ≥ 0.

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then

Sψ(f(t), ε) ≤ Sψ(f0, ε)e
−2(µ−ε)t, t ≥ 0,

for any ε ∈ (0, µ). Here, Sψ(f, ε) denotes the modified entropy dissipation
functional (2.36) with the matrix P = P(ε).

P r o o f. In a tedious computation the time derivative of the functional
S(ψ(f(t)) can be written as follows (cf. Proposition 4.5 in [5]). Using the nota-
tion u := ∇ f

f∞
we have:

d

dt
Sψ(f(t)) =− 2

∫

Rd

ψ′′
( f

f∞

)
uT
[
PC+CTP

]
u f∞ dx

− 2

∫

Rd

Tr (XYP ) f∞ dx(2.40)

≤− 2κ

∫

Rd

ψ′′
( f

f∞

)
uTPu f∞ dx = −2κSψ(f(t)) ,

where κ := µ for case (i), and κ := µ − ε for the defective case (ii). In the
last estimate we used the matrix inequality (2.37) in case (i) and (2.38) for
case (ii). This inequality replaces the Bakry-Émery condition (2.29) used in the
standard entropy method (compare to the estimate (2.31)). In (2.40) we also
used Tr (XYP ) ≥ 0, where the matrix X is defined in (2.32), and the matrix
YP ∈ R

2×2 is now defined as follows:

YP (x) :=

(
Tr
(
D∂u
∂xP

∂u
∂x

)
uTD∂u

∂xPu

uTD∂u
∂xPu (uTPu)(uTDu)

)
≥ 0 , ∀x ∈ R

d .

The positivity of YP follows from the Cauchy-Schwarz inequality using
(uTD∂u

∂xPu)
2 = Tr(

√
P(u ⊗ uT )

√
D

√
D∂u
∂x

√
P)2. Note that, for P := D,

the matrix YP would simplify to Y from Lemma 2.5.
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The differential inequality (2.40) for Sψ(f(t)) then yields the claimed expo-
nential decay of Sψ(f(t)). �

This concludes the first step of the modified entropy method. In the second
step we want to prove exponential decay of the relative entropy eψ(f(t)|f∞).
In the standard entropy method this is achieved by integrating the differential
inequality (2.31) for Iψ(f(t)) in time, since e′(t) = −Iψ(f(t)). But here, this
is not possible, since Sψ(f(t)) is not the time derivative of e(t). Instead, we
shall use convex Sobolev inequalities (cf. §3 of [7]; [39]), which give a simple
relation between these two functionals. In fact, the functional Sψ(f) controls
the relative entropy eψ(f |f∞):

L emma 2.7. Let P be some fixed positive definite matrix. Then, the fol-
lowing convex Sobolev inequality holds ∀ g ∈ L1

+(R
d) with

∫
Rd g dx = 1:

eψ(g|f∞) ≤ 1

2λP
Sψ(g) ,(2.41)

where both sides may be infinite. The constant λP > 0 is the smallest eigenvalue
of P, i.e.

(2.42) P ≥ λP I > 0 .

P r o o f. As an auxiliary problem we consider the following symmetric non-
degenerate FPE for g = g(t, x) on L2(f−1

∞ ):

(2.43) ∂tg = div
(
f∞P∇ g

f∞

)
,

with f∞ = (2π)−
d
2 e−

|x|2

2 . This is motivated by the fact that Sψ(g) is the true
Fisher information for the evolution under (2.43). Obviously, we have g∞ = f∞.
We also note that (2.42) is the (standard) Bakry-Émery condition for (2.43),
since its steady state potential is A(x) = |x|2/2 (cf. (2.29)).

Hence, the entropy method implies exponential decay of g(t) to g∞ with rate
2λP (cf. (2.35)). Moreover, the entropy inequality (2.34) is already the claimed
result. �

Combining this lemma with Proposition 2.2 readily yields exponential decay
of the relative entropy, provided that Sψ(f0) <∞:

T h e o r em 2.2. Assume condition (A). Let ψ generate an admissible en-
tropy, let f be the solution to (2.1) with an initial state satisfying Sψ(f0) <∞,
and let µ := min {Re{λ}|λ is an eigenvalue of C}. Let {λm|1 ≤ m ≤ m0} be
the eigenvalues of C with Re{λm} = µ, and let P be defined as in Lemma 2.6.

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then

eψ(f(t)|f∞) ≤ 1

2λP
Sψ(f0)e

−2µt, t ≥ 0.(2.44)
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(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then

eψ(f(t)|f∞) ≤ 1

2λP
Sψ(f0, ε)e

−2(µ−ε)t, t ≥ 0,(2.45)

for any ε ∈ (0, µ). Here, Sψ(f, ε) denotes the modified entropy dissipation
functional (2.36) with the matrix P = P(ε).

We remark that the multiplicative constant in (2.45) is ε–dependent, with
Sψ(f0, ε) → ∞ as εց 0. In (2.44) the exponential decay rate is indeed sharp (cf.
§6 of [5]). Also, it is independent of the normalizing transformation in §2.3, since
the drift matrices C and Ĉ are similar. But compared to the standard entropy
method, the above result is not yet fully satisfactory: In the decay estimate
(2.35) the initial condition is only required to have finite relative entropy. By
contrast, Theorem 2.2 requires the initial state to satisfy Sψ(f0) < ∞, and
this functional is closely related to a weighted H1–norm. This “deficiency” of
Theorem 2.2 can be lifted by exploiting the hypoelliptic regularization of (2.1),
cf. also Proposition 2.1(a). The following result is a generalization of Theorems
A.12, A.15 in [41] (expressed for quadratic and logarithmic entropies) to all
admissible ψ-entropies. For its proof we refer to Theorem 4.8 in [5].

L emma 2.8. Let condition (A) hold, f0 ∈ L1
+(R

d) with
∫
Rd f0 dx = 1 and

eψ(f0|f∞) < ∞. Let f(t) be the solution of (2.1) with initial condition f0, and
let τ be the minimal constant such that (2.21) (or, equivalently, (2.22)) holds.
Then there exists a positive constant cr > 0 such that

Sψ(f(t)) ≤ crt
−(2τ+1)eψ(f0|f∞) , ∀ t ∈ (0, 1] .(2.46)

With this ingredient we are ready to state our final result:

T h e o r em 2.3. Assume condition (A). Let ψ generate an admissible relative
entropy and let f be the solution to (2.1) with initial state f0 ∈ L1

+(R
d) such that

eψ(f0|f∞) < ∞. Let µ := min{Re{λ}|λ is an eigenvalue of C}. Let {λm|1 ≤
m ≤ m0} be the eigenvalues of C with µ = Re{λm}, and let

e(t) := eψ(f(t)|f∞).

Then:

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then there is a constant c ≥ 1
such that

e(t) ≤ c e−2µteψ(f0|f∞) , ∀ t ≥ 0 .(2.47)

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then, for all ε ∈ (0, µ),
there is cε ≥ 1 such that

e(t) ≤ cεe
−2(µ−ε)teψ(f0|f∞) , ∀ t ≥ 0 .(2.48)
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P r o o f. Let P be defined as in Lemma 2.6. Fix some δ > 0, and let κ := µ
in case (i), and κ := µ − ε in case (ii). Using the convex Sobolev inequality
(2.41), Proposition 2.2, and Lemma 2.8, we compute for t ≥ δ:

e(t) ≤ 1

2λP
Sψ(f(t)) ≤

1

2λP
Sψ(f(δ))e

−2κ(t−δ)

≤ e2κδ
cr

2λP δ2τ+1
e(0)e−2κt.(2.49)

For t ≤ δ, the monotonicity of e(t) (cf. (2.14)) implies

e(t) ≤ e(0) .(2.50)

Writing cδ := e2κδmax{1, cr
2λP δ2τ+1 } and combining (2.49), (2.50) yields

e(t) ≤ cδe(0)e
−2κt , ∀ t ≥ 0 .

�

We remark that the exponential decay rate 2κ is sharp here, but the mul-
tiplicative constant c will in general not be sharp.

To close this section we shall now briefly illustrate the mechanism of the
presented modified entropy method. To this end we return to Example 2.2 and
the “distorted” vector norm

|x|P :=
√

〈x,Px〉 ,

with P > 0, that was already used in Figure 2.1. The drift characteristics x(t)
corresponding to (2.19) satisfy xt = −Cx. For the decay of this P–norm along
a characteristic we obtain

d

dt
|x|2P = −2xTPCx = −xT

(
PC+CTP

)
x ≤ −2µ|x|2P ,(2.51)

where we used in the last step the matrix estimate (2.37) for Q := C and the
notation µ := min{Re{λ}|λ is an eigenvalue of C}. So, µ is the spectral gap of
C, i.e. the distance of σ(C) from the imaginary axis, and it determines the best
possible decay of x(t). Due to (2.51), |x|P realizes this optimal decay uniformly
in time.

The matrix P determining this “distorted” vector norm is defined via (2.37),
and hence it is the same matrix as in the definition of the modified entropy
dissipation functional Sψ(f). �

2.5 - Entropy methods for non-degenerate Fokker-Planck equations

We remark that the new entropy method from §2.4 is not restricted to de-
generate FPEs. For non-degenerate FPEs it is in fact a generalization of the
standard entropy method: For a symmetric FPE with constant diffusion and
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drift matrices, the normalization of §2.3 yields D = Cs and D is symmetric
positive definite. Applying Lemma 2.6(i) to Q := C with µ := λmin(C) admits
the choice P := D. Hence, Sψ(f) = Iψ(f |f∞) and the method of §2.4 reduces
to the standard entropy method.

For non-symmetric FPEs, however, the standard and modified entropy meth-
ods differ. For regular diffusion matrices D > 0, both methods are applicable
and yield exponential decay of the solution towards equilibrium. So it is natural
to compare their performances: For applying the standard entropy method to
(2.1) in normalized form (i.e. with A(x) = |x|2/2) we consider the corresponding
Bakry-Émery condition (2.29):

I ≥ λDD
−1 ,

i.e. λD > 0 is the smallest eigenvalue of D. Then, §2.4 in [7] (or the analogue of
the convex Sobolev inequality (2.34)) implies exponential decay of the relative
entropy:

(2.52) eψ(f(t)|f∞) ≤ e−2λDteψ(f0|f∞) , t ≥ 0 .

Note that the multiplicative constant in this estimate is 1.
For the modified entropy method, Theorem 2.2 yields the decay estimate

eψ(f(t)|f∞) ≤ 1

2λP
Sψ(f0)e

−2µt ∀ t ≥ 0(2.53)

in the non-defective case (i), with µ := min{Re{λ}|λ is an eigenvalue of C}. For
the comparison of the two obtained decay rates we have the following result:

P r o p o s i t i o n 2.3. Let the coefficients of a non-degenerate, normalized
FPE satisfy condition (A). With µ defined above, let {λm|1 ≤ m ≤ m0} be the
eigenvalues of C with µ = Re{λm}. Then:

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then

(2.54) 0 < λD ≤ µ .

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then

(2.55) 0 < λD < µ .

P r o o f. For case (ii), let λ with Re{λ} = µ be a defective eigenvalue. Let
p ∈ C

d with |p| = 1 be a corresponding eigenvector, and q ∈ C
d a corresponding

generalized eigenvector. W.l.o.g. we assume that 〈q, p〉 = 0, and q satisfies
(λI−C)q = p.

Next we consider a family of generalized eigenvectors, qδ := q + δp, δ ∈ R,
which also satisfy (λI−C)qδ = p. We compute

q̄Tδ (C+CT )qδ = q̄Tδ (λqδ − p) + (λ̄q̄Tδ − p̄T )qδ = 2Re{λ} |qδ|2 − 2δ .
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Using D = Cs and |qδ|2 = |q|2 + δ2 we obtain for the Rayleigh quotient of D:

λD ≤ qTδ Dqδ
|qδ|2

= µ− δ

|q|2 + δ2
,

and (2.55) follows for any δ > 0.
For case (i) we only need to replace qδ by p in the above computation. �

For the non-defective case (i), the inequality (2.54) will in general not be
strict, as can be verified on the following simple example:

C :=




1/5 0 0
0 1/4 −4
0 4 1


 ,

with the eigenvalues 1
5 ,

5
8 ± i

√
1015/8, and D = Cs = diag( 15 ,

1
4 , 1).

So, the exponential decay rate from the new entropy method is always at
least as good as the rate from the standard entropy method, but often better.
The first rate 2λD from (2.52) gives an estimate for the local decay rate of the
relative entropy. It reflects the (in absolute value) smallest slope of the relative
entropy at any t ≥ 0. More precisely, it is, pointwise in time, a lower bound

for the local decay rate, i.e. − e′(t)
e(t) . For non-symmetric FPEs with linear drift

it is well known (cf. §2.4, §3.5 in [7]) that this rate is optimal (as a pointwise
estimate). In Figure 2.5 the initial condition is chosen such that the function
on the r.h.s. of (2.52) is indeed tangent to e(t) at t = 0.

By contrast, the estimate (2.53) describes the global decay. Hence, its mul-
tiplicative constant has to be larger than 1 for non-symmetric FPEs. In some
examples, the r.h.s. of (2.53) is even the perfect envelope of e(t), see Figure 2.5.

E x amp l e 2.6. We consider the non-degenerate, non-symmetric Fokker-
Planck equation (2.1) with

D = diag(1/4, 1) , C =

(
1/4 −4
4 1

)
,

which is normalized. Here we have λD = 1
4 and µ = 5

8 , and the local and global
decay estimates are shown in Figure 2.5. �

So far, we only discussed the modified entropy method for FPEs with con-
stant diffusion and drift matrices. Its generalization to some cases of non-
symmetric FPEs with non-constant coefficients is the topic of the subsequent
chapter.

3 - Kinetic Fokker-Planck equation with non-quadratic potentials

In this chapter we shall illustrate how the modified entropy method from §2.4
can be extended to kinetic Fokker-Planck equations (2.2) with non-quadratic po-
tentials V = V (x) (i.e. a drift term that is nonlinear in the position variable). A

24



Figure 2.5: Entropy decay for the non-degenerate, non-symmetric Fokker-
Planck equation (2.1) with D = diag(1/4, 1), C = [1/4 − 4 ; 4 1] . Solid
red curve: decay of the logarithmic entropy e1(t); dotted blue: The estimate
of the local decay rate from the standard entropy method is tangent at t = 0;
dashed black: estimate of the global decay rate from the hypocoercive entropy
method. (colors only online)

motivation for the following analysis is its possible application to a future study
of Fokker-Planck-Poisson equations with a quadratic confinement potential and
the self-consistent potential acting as a perturbation. Refer to [7, §4.2], for the
large time analysis of a non-degenerate drift-diffusion Poisson model.

Several proofs of the entropy– and L2–decay of this equation have already
been obtained in the last few years: In [16], algebraic decay was proved for po-
tentials that are asymptotically quadratic (as |x| → ∞) and for initial conditions
that are bounded below and above by Gaussians. The authors used logarith-
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mic Sobolev inequalities and entropy methods. In [22], exponential decay was
obtained also for faster growing potentials and more general initial conditions.
That proof is based on hypoellipticity techniques. In [17] exponential decay
in L2 was proved, allowing for potentials with linear or super-linear growth.
This chapter will now provide an alternative proof of exponential entropy decay
for (2.2) with a certain class of non-quadratic potentials and for all admissible
relative entropies eψ.

The kinetic Fokker-Planck equation (2.2) has a unique normalized steady
state

(3.1) f∞(x, v) = exp

{
−ν
σ

[
V (x) +

|v|2
2

]}
, x, v ∈ R

n ,

for potentials V (x) with lim|x|→∞ V (x) = ∞ sufficiently fast such that f∞ ∈
L1(R2n), see [40]. An additive normalization constant is included in V .

We rewrite (2.2) again in the form (2.3), such that

(3.2) ∂tf = Lf := divξ[D∇ξf +G(ξ)f ],

where ξ := (x, v)T ∈ R
d, d = 2n, D is a block diagonal diffusion matrix and G

a drift vector field given by

D =

(
0 0
0 σ I

)
and G(x, v) =

(
−v

∇xV + νv

)
,

respectively.
The positivity of solutions of (2.2) with non-negative initial datum can be

proved using the sharp maximum principle [23]; see also [5, Proposition 7.1].
We introduce the modified entropy dissipation functional Sψ(f) as in (2.36),

Sψ(f) :=

∫

Rd

ψ′′
( f

f∞

)(
∇ f

f∞

)T
P
(
∇ f

f∞

)
f∞ dξ,

with a positive definite and ξ–independent matrix P ∈ R
d×d to be chosen later.

The time derivative of Sψ(f(t)) is estimated as in the proof of Proposition 2.2—
apart from not normalizing the equation—and it satisfies

(3.3)
d

dt
Sψ(f(t)) ≤ −

∫

Rd

ψ′′( f
f∞

)uT [(D−R)
∂2E

∂ξ2
P+P

∂2E

∂ξ2
(D+R)]uf∞ dξ ,

where u := ∇ξ
f
f∞

, E(ξ) := ν
σ [V (x) + |v|2

2 ] and R = σ
ν

(
0 −I
I 0

)
∈ R

d×d. In

analogy to §2.4 we define the matrix

(3.4) Q(x) := (D−R)
∂2E

∂ξ2
=

(
0 I

−∂2V
∂x2 (x) ν I

)
.

If we can find an x–independent, symmetric, positive definite matrix P > 0 and
a constant κ ≥ 0, such that

(3.5) Q(x)P+PQT (x)− 2κP ≥ 0 ∀x ∈ R
n ,
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then the right-hand-side of (3.3) can be estimated as

(3.6)
d

dt
Sψ(f(t)) ≤ −2κ

∫

Rd

ψ′′( f
f∞

) uTPu f∞ dξ = −2κSψ(f(t)) .

If additionally κ > 0, this would imply exponential decay of Sψ(f(t)).

3.1 - Potential V (x) with bounded second order derivatives

In this section we prove in Theorem 3.2 the exponential convergence of so-
lutions of (2.2) to the steady state via the modified entropy method.

To keep the presentation simple, we shall consider from now on only the
1D case, i.e. x, v ∈ R (d = 2). Furthermore, we shall consider non-quadratic
potentials V (x) with bounded second order derivatives satisfying

(3.7) ∃ γ1 < γ2 such that γ1 ≤ V ′′(x) ≤ γ2 ∀x ∈ R.

To apply the modified entropy method, we need to find a symmetric, positive
definite matrix P and κ ≥ 0 such that (3.5) is satisfied. We define

Qγ :=

(
0 1
−γ ν

)
such that Q(x) = Qγ

∣∣
γ=V ′′(x)

.

Then, for potentials V satisfying (3.7) with γ1 = infx∈R V
′′(x) and γ2 =

supx∈R V
′′(x), condition (3.5) is equivalent to

(3.8) QγP+PQT
γ − 2κP ≥ 0 ∀ γ ∈ [γ1, γ2] .

Next we collect the conditions on κ and on the coefficients of the matrix P:
A symmetric matrix P ∈ R

2×2 is positive definite iff its first diagonal element
and its determinant are positive. Condition (3.5) is linear in P, therefore, we
consider—without loss of generality—matrices

(3.9) P =

(
1 p12
p12 p22

)
∈ R

2×2 with det(P) = p22 − p212 > 0 .

For given 0 < ν and γ1 < γ2, we want to determine κ ≥ 0 and symmetric,
positive definite matrices P such that (3.8) holds. The matrix

QγP+PQT
γ − 2κP =

(
2 (p12 − κ) −γ + (ν − 2κ)p12 + p22

−γ + (ν − 2κ)p12 + p22 2 (−γp12 + (ν − κ)p22)

)

is again real symmetric. Hence it is positive semi-definite iff its diagonal elements
and its determinant are non-negative, i.e. p12 − κ ≥ 0, −γp12 + (ν − κ)p22 ≥ 0,
and

(3.10) 0 ≤ δ(κ, γ) := det(QγP+PQT
γ − 2κP)

= 4 (p12 − κ)(−γp12 + (ν − κ)p22)− (−γ + (ν − 2κ)p12 + p22)
2

for all γ ∈ [γ1, γ2]. We summarize the conditions on the parameters (p12, p22, κ):
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(C1) det(P) = p22 − p212 > 0 ⇔ p22 > p212 ≥ 0,

(C2) κ ≥ 0,

(C3) p12 ≥ κ (≥ 0),

(C4) δ(κ, γ) ≥ 0 for all γ ∈ [γ1, γ2],

(C5) −γp12 + (ν − κ)p22 ≥ 0 for all γ ∈ [γ1, γ2].

R ema r k 3.1. Condition (C3) and a strict inequality in Condition (C4)
imply Condition (C5). Let, for some fixed (p12, p22, κ), the Conditions (C3)–
(C4) hold for a γ-interval with interior Γ. Then (C4) holds on Γ with strict
inequality; hence also (C5) holds on Γ. By continuity (C4)–(C5) then also
hold on Γ. Thus (except for the case of Γ being the empty set) Condition (C5)
follows from Conditions (C3)–(C4).

D e f i n i t i o n 3.1. A pair (p12, p22) ∈ R
+
0 × R

+ is admissible, if there exist
κ0 ≥ 0 and γ0 ∈ R such that (C1)–(C5) hold with κ = κ0 and γ1 = γ2 = γ0.

L emma 3.1. If (p12, p22) is admissible for some κ0 ≥ 0 and γ0 ∈ R, then
(p12, p22) is admissible also for all κ ∈ [0, κ0] and given γ0.

P r o o f. The Conditions (C1)–(C3) continue to hold for all κ ∈ [0, κ0] and
given γ0. The admissible parameters (p12, p22) define a symmetric positive defi-
nite matrix P satisfying Qγ0P+PQT

γ0 ≥ 2κ0P. Due to P ≥ 0, Qγ0P+PQT
γ0 ≥

2κ0P ≥ 2κP for all κ ∈ [0, κ0]. Hence also Condition (C4) is satisfied for
all κ ∈ [0, κ0] and given γ0. Since p22 > 0, Condition (C5) carries over to
κ ∈ [0, κ0]. �

We rewrite δ(κ, γ) with respect to powers of γ as

(3.11) δ(κ, γ) = −γ2 − (4p212 − 2νp12 − 2p22)γ − c(κ)

with

(3.12) c(κ) := 4κ(ν − κ)(p22 − p212) + (νp12 − p22)
2 = 4κ(ν − κ)α1 + α2 ,

with α1 := (p22− p212) > 0 due to Condition (C1), and α2 := (νp12− p22)2 ≥ 0.
The function c(κ) satisfies c(0) = c(ν) = α2 ≥ 0, hence, c(κ) is non-negative for
all κ ∈ [0, ν] and monotonically increasing for all κ ∈ [0, ν2 ].

L emma 3.2. Admissible pairs (p12, p22) exist only for κ ∈ [0, ν2 ].

P r o o f. Assume (p12, p22) is admissible for some κ0 > ν
2 . Then γ can

be increased until δ(κ0, γ0) = 0. Due to Lemma 3.1, 0 ≥
(
∂
∂κδ(κ, γ0)

)∣∣
κ=κ0

.
Moreover,

0 ≥
( ∂
∂κ
δ(κ, γ0)

)∣∣
κ=κ0

= − dc

dκ
(κ0) = 8α1(κ0 − ν

2 )

and α1 > 0 imply κ0 − ν
2 ≤ 0, contradicting our initial assumption. �
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Rema r k 3.2. δ(κ, γ) describes a parabola (as the function (3.11) of γ)
and δ(κ, γ)|γ=0 = −c(κ) ≤ 0 for κ ∈ [0, ν]. Therefore, each γ-interval with
δ(κ, γ) ≥ 0 is either included in R

+
0 or in R

−
0 . But, in the latter case, V ′′(x) ≤ 0

for all x ∈ R, which would not give an integrable steady state. Hence, only
γ ≥ 0 is relevant.

Next we establish an important condition:
√
γ2 −

√
γ1 ≤ ν.

P r o p o s i t i o n 3.1. Let 0 ≤ γ1 < γ2 be given. If and only if they satisfy
the condition

√
γ2 − √

γ1 ≤ ν, then there exists an admissible pair (p12, p22)
satisfying Conditions (C1)–(C5) for some κ0 ≥ 0 and for all γ ∈ [γ1, γ2].

The proof is deferred to Section 3.2.

T h e o r em 3.1. Suppose 0 < ν and 0 ≤ γ1 < γ2 satisfy
√
γ2 − √

γ1 ≤ ν.
Then the following (p12, p22) ∈ R

+
0 × R

+ are all admissible pairs for κmax ∈
[0, ν2 ], the maximal possible value of κ, and for all γ ∈ [γ1, γ2]:

(B1) If 3γ1 + γ2 ≤ ν2 then κmax = ν
2 − 1

2

√
ν2 − 4γ1 and

(p12, p22) =
(
ν
2 + τ

2

√
ν2 − 3γ1 − γ2,

1
2 (ν

2 − 2γ1 + τν
√
ν2 − 3γ1 − γ2)

)

with τ ∈ [−1, 1] satisfy the conditions (C1)–(C5) .

(B2) If 3γ1+γ2 > ν2 then κmax = ν
2 −

γ2−γ1

2
√

2(γ1+γ2)−ν2
, p12 = ν

2 and p22 = γ2+γ1
2

satisfy the conditions (C1)–(C5) .

The proof is deferred to Section 3.3.

R ema r k 3.3. The expressions for κmax, p12 and p22 are continuous at the
interface 3γ1 + γ2 = ν2.

Following Theorem 3.1, we obtain for given ν > 0 and 0 ≤ γ1 < γ2 ≤
(ν+

√
γ1)

2 that a symmetric positive definite matrix P and κ = κmax ≥ 0 exist
such that (3.5) holds. Hence, the modified entropy method yields the following
theorem.

Th e o r em 3.2. Let ψ generate an admissible entropy and let f be the so-
lution to the kinetic Fokker-Planck equation (2.2) with a potential V (x) satisfy-
ing (3.7) and an initial state f0 satisfying Sψ(f0) <∞. Under the assumptions
of Theorem 3.1 we then have:

(3.13) eψ(f(t)|f∞) ≤ c Sψ(f0)e
−2κmaxt, t ≥ 0 ,

for some constant c > 0 independent of f0 and κmax given in Theorem 3.1.

P r o o f. We already noticed that, following Theorem 3.1, we obtain for given
ν > 0 and 0 ≤ γ1 < γ2 ≤ (ν+

√
γ1)

2 a symmetric positive definite matrix P and
κ = κmax ≥ 0 such that (3.5) holds. Consequently, inequality (3.6) follows and
implies the exponential decay of the modified entropy dissipation functional

(3.14) Sψ(f(t)) ≤ Sψ(f0)e
−2κt, t ≥ 0.
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ν
2 ν

ν
2

ν

√
γ1

√
γ2

√
γ2 =

√
γ1

√
γ2 = ν +

√
γ1

3γ1 + γ2 = ν2

Figure 3.1: A visualization of the (γ1, γ2) subset such that for a given 0 <
ν there exist parameters (p11, p12, p22, κ) ∈ R

+ × R
+
0 × R

+ × [0, ν2 ] satisfying
conditions (C1)–(C5) according to Theorem 3.1.
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Moreover, due to Lemma 2.7, the convex Sobolev inequality

eψ(g|f∞) ≤ 1

2λP
Sψ(g) , ∀g ∈ L1

+(R
d) with

∫

Rd

g dξ = 1

holds, where λP > 0 is the smallest eigenvalue of P. Thus (3.13) follows from
(3.14). �

In a previous work [5, §7] the authors considered potentials of the form

(3.15) V (x) = ω2
0

x2

2
+ Ṽ (x) with ‖Ṽ ′′‖L∞ <∞, and ω0 6= 0.

Following the proof of Lemma 2.6, a matrix P, corresponding to the potential

term ω2
0
x2

2 , can be constructed as

(3.16) P :=





(
2 ν

ν ν2 − 2ω2
0

)
if 4ω2

0 < ν2 ,

(
2 ν

ν 2ω2
0

)
if 4ω2

0 > ν2 ,

and

(3.17) 2κ0 :=

{
ν −

√
ν2 − 4ω2

0 , if 4ω2
0 < ν2 ,

ν, if 4ω2
0 > ν2 .

P r o p o s i t i o n 3.2 ([5, Proposition 7.3]). Let 4ω2
0 6= ν2 and let Ṽ from (3.15)

satisfy ‖Ṽ ′′‖L∞ <
√
|ν2 − 4ω2

0 |κ0 with κ0 defined in (3.17). Then the modified
entropy dissipation Sψ(f(t)) with the matrix P chosen in (3.16) satisfies

Sψ(f(t)) ≤ Sψ(f0) e
−2

(
κ0−

‖Ṽ ′′‖L∞√
|ν2−4ω2

0
|

)
t

for t ≥ 0.

Th e o r em 3.3 ([5, Theorem 7.4]). Let ψ generate an admissible entropy and
let f be the solution to the kinetic Fokker-Planck equation (2.2) with an initial
state f0 satisfying Sψ(f0) < ∞. Under the assumptions of Proposition 3.2 we
then have:

(3.18) eψ(f(t)|f∞) ≤ c Sψ(f0) e
−2

(
κ0−

‖Ṽ ′′‖L∞√
|ν2−4ω2

0
|

)
t

, t ≥ 0 ,

for some constant c > 0 independent of f0.

The defective case 4ω2
0 = ν2 is omitted in [5]; but it is noted that a matrix

P = P(ε) could easily be constructed from the proof of Lemma 2.6 (ii).
To compare the decay rates in Theorem 3.2 and Theorem 3.3, we have to

relate the parameters in Theorem 3.3 with the parameters γ1 and γ2 in Theo-
rem 3.2. Moreover, in Theorem 3.3, the parameter ω0 has to be chosen as to
optimize the decay rate.
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P r o p o s i t i o n 3.3. If 0 < ν and V (x) with 0 < γ1 := inf V ′′ < supV ′′ =: γ2

are given, then the largest rate κ̃ := supω0
κ0 − ‖V ′′−ω2

0‖L∞√
|ν2−4ω2

0
|

in Proposition 3.2

is equal to κmax in Theorem 3.1.

P r o o f. For given 0 < ν and γ1 ≤ V ′′(x) ≤ γ2, we need to decompose V ′′

as V ′′ = ω2
0 + Ṽ ′′ such as to maximize the function

κ̃(ω0) = κ0(ω0)−
‖Ṽ ′′‖L∞√
|ν2 − 4ω2

0 |
= κ0(ω0)−

max{|γ2 − ω2
0 |, |γ1 − ω2

0 |}√
|ν2 − 4ω2

0 |

with κ0(ω0) given in (3.17). After distinguishing several cases, one obtains that
κ̃(ω0) = κmax for

ω2
0 =

{
−γ1 + ν2

2 for ν2 ≤ 3γ1 + γ2 ,
γ1+γ2

2 for 3γ1 + γ2 < ν2 .

�

In case γ1 = γ2, the admissible potentials in §3.1 are V (x) = γ1
x2

2 +c1x+c2
for any constants c1, c2 ∈ R. Consider the limit γ1 → γ2 in Theorem 3.1:
we recover in the limit γ1 → γ2 the decay rate and matrix P from [5, §7] by
choosing τ = 0 in the case (B1).

3.2 - Proof of Proposition 3.1

L emma 3.3. Let (p12, p22) be admissible for some κ0 ≥ 0 and γ0 > 0. Then
(p12, p22) is also admissible for κ0 and exactly for γ ∈ [γ1, γ2] with

(3.19) γ1,2 = −2p212 + νp12 + p22 ∓
√

(−2p212 + νp12 + p22)2 − c(κ0) ≥ 0 .

P r o o f. Conditions (C1)–(C3) and δ(κ0, γ0) ≥ 0 hold, since (p12, p22)
is admissible. Consequently, the equation δ(κ0, γ) = 0 has (one or two) real
solutions γ1 ≤ γ2, satisfying 0 < γ0 ∈ [γ1, γ2] and Condition (C4) holds for
all γ ∈ [γ1, γ2]. Due to Remark 3.2, 0 ≤ γ1 ≤ γ2. Moreover, δ(κ0, γ) > 0 for
γ ∈ (γ1, γ2) and Condition (C3) holds. Hence, Condition (C5) follows for all
γ ∈ (γ1, γ2), and for all γ ∈ [γ1, γ2] by continuity, see Remark 3.1. �

Rema r k 3.4. Due to (3.12), Lemma 3.2 and Lemma 3.3, the possible γ-
interval decreases strictly monotonically with κ (as expected fromQγP+PQT

γ ≥
2κP). For any fixed ν, p12, p22, the largest possible γ-interval is obtained for
κ = 0, i.e. with c(0) = α2 = (νp12 − p22)

2 ≥ 0.

P r o o f o f P r o p o s i t i o n 3.1. Following Lemma 3.3 and Remark 3.4,
we seek the largest γ-interval [γ1, γ2] (which maximizes γ2−γ1 for fixed p12, p22)
and consequently set κ = 0. The expressions for γ1 < γ2 in (3.19) and κ = 0
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yield

−2p212 + νp12 + p22 = γ1+γ2
2 ,

2
√

(−2p212 + νp12 + p22)2 − c(0) = γ2 − γ1 ,

or, equivalently with α1 = p22 − p212 and α3 := p12(ν − p12),

α1 + α3 = (p22 − p212) + (p12(ν − p12)) =
γ1+γ2

2 =: β2 ,

α1 α3 = (p22 − p212)(p12(ν − p12)) =
(
γ2−γ1

4

)2
=: β1 ≥ 0 .

Combining the last two equations, we derive

−α3 (β2 − α3) + β1 = 0

which has two real solutions α3,± = β2

2 ± 1
2

√
β2
2 − 4β1 = 1

4

(√
γ2 ±

√
γ1
)2
. We

recall α3 = p12(ν − p12), which has real solutions p12 if and only if α3 ≤ ν2

4 .
Due to 0 ≤ γ1 < γ2, this restriction is equivalent to

(3.20) 2
√
α3,± =

√
γ2 ±

√
γ1 ≤ ν .

For 0 ≤ γ1 < γ2, Condition (3.20) with “+” is more restrictive than with “−”.
Therefore, we consider in the sequel α3,− = 1

4 (
√
γ2 −

√
γ1)

2, in accordance with
the key assumption in Proposition 3.1.

Condition (C1) is equivalent to α1 > 0. Due to α1 + α3 = γ1+γ2
2 and

α3 = α3,− = 1
4 (
√
γ2 − √

γ1)
2, we deduce α1 = 1

4 (
√
γ2 +

√
γ1)

2 > 0 since
0 ≤ γ1 < γ2. Condition (C2) is satisfied due to our choice κ = 0. Next,
p12(ν − p12) = α3,− has two real solutions 0 ≤ p12,− ≤ p12,+ ≤ ν with p12,− +
p12,+ = ν; hence, Condition (C3) holds. Due to our construction starting
from (3.19), Condition (C4) holds. Finally, Condition (C5) follows again from
Conditions (C3)–(C4) and Remark 3.1. �

3.3 - Proof of Theorem 3.1

L emma 3.4. Let (p12, p22) be admissible for some κ0 ≥ 0. Then p12 ≤
ν − κ0.

P r o o f. By Lemma 3.3, γ1,2 ≥ 0. Hence, the discriminant in (3.19) satisfies

0 ≤ (−2p212 + νp12 + p22)
2 − (νp12 − p22)

2 − 4κ0α1(ν − κ0)

= 4α1[p12(ν − p12)− κ0(ν − κ0)]

which is equivalent to κ0 ≤ p12 ≤ ν − κ0 since α1 > 0. �
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Rema r k 3.5. The maximal value of κ given by Lemma 3.2, i.e. κ = ν
2 , is

possible, but only for quadratic potentials: It implies p12 = ν
2 , γ = γ1 = γ2 =

p22 >
ν2

4 (due to (C1)).

L emma 3.5. For γ, γ1, γ2 given as in Theorem 3.1, let κmax denote the
maximal decay rate and let P denote the set of admissible pairs (p12, p22) ∈
R

+
0 × R

+ (w.r.t. the whole interval [γ1, γ2]). Then,

(a) P is convex and compact; and P lies in the interior of the set defined by
the inequalities (C1) and (C3);

(b) P is a finite, possibly one-pointed, line segment with p12 ∈ [p−12, p
+
12].

P r o o f. (a) The convexity is clear from (3.8).
(C3) and Lemma 3.4 imply the boundedness of p12. (3.10) yields an upper

bound for p22 (by considering the balance of p222 and the linear terms in p22).
For 0 ≤ γ1 < γ2, no points of P can lie on the curve p22 = p212 (cf. (C1)), since
otherwise we would obtain: δ(κ, γ) = −(γ + p212 − νp12)

2, and (C4) would only
be true for a single value of γ. Hence, the strict inequality (C1) also holds for
accumulation points of P (for (C2)–(C5) this is trivial). This implies that the
bounded set P is closed. Hence, P is compact.

By the same argument we have for all (p12, p22) ∈ P:

(3.21) p12 > κ,

since otherwise δ(κ, γ) = −(γ − (ν − 2κ)κ − p22)
2. Hence, P = P lies in the

interior of the set defined by the inequalities (C1) and (C3).
(b) For each fixed (p12, p22) ∈ P, we have

(3.22) δ(κmax, γ1) = 0 or δ(κmax, γ2) = 0

(or both): Otherwise, due to Remark 3.4 and (3.21), κmax could be increased
slightly, which contradicts maximality of κmax. For fixed p12, assume now that
P
∣∣
p12

:= {p > 0 | (p12, p) ∈ P} is not one point, but rather a closed interval

(due to the convexity of P). Then, one of the equations in (3.22) holds for more
than two values of p22. But this is impossible, since δ(κ, γ) = 0 is a quadratic
equation for p22 (cf. (3.8)). Hence, P

∣∣
p12

consists only of one point and P is a

line segment. �

By Lemma 3.5, P is uniquely determined by its endpoints.

L emma 3.6. Let γ, γ1, γ2 be given as in Lemma 3.5. For an endpoint
(p12, p22) ∈ P we have δ(κmax, γ1) = δ(κmax, γ2) = 0.

P r o o f. W.l.o.g. we now assume that δ(κmax, γ1) = 0 and δ(κmax, γ2) > 0.
So the inequalities (C4) for γ = γ2 and (C3) hold strictly, as well as (C5) for
γ = γ2 (due to Remark 3.1). Hence, (C1)–(C5) also hold for γ = γ2 and all
(p̃12, p̃22) in a small neighborhood of (p12, p22).
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Finally we consider, for p12 fixed, δ(κmax, γ1) = 0 as a quadratic equation
for p22. The discriminant for its real solvability reads

[p12ν − 2κ(ν − κ) + γ1]
2 + [−γ1 + (ν − 2κ)p12]

2 + 4(p12 − κ)γ1p12 .

For γ1 > 0 this is positive due to (3.21), and for γ1 = 0 since κ < ν
2 . Hence,

δ(κmax, γ1) = 0 is also solvable for p22, if p12 lies in a small neighborhood of
p12. Thus, p12 is not an endpoint of the line segment P. �

P r o o f o f T h e o r em 3.1.
S t e p 1 : For given 0 ≤ γ1 < γ2, we shall first find admissible endpoints
(p12, p22) ∈ P such that (C1)–(C5) hold exactly for all γ ∈ [γ1, γ2] with the
maximal κ ∈ [0, ν2 ]. The expressions for γ1 < γ2 in (3.19) yield

−2p212 + νp12 + p22 = γ1+γ2
2 ,

√
(−2p212 + νp12 + p22)2 − c(κ) = γ2−γ1

2 ,

or, equivalently with α1 = p22 − p212 and α3 := p12(ν − p12),

α1 + α3 = (p22 − p212) + (p12(ν − p12)) =
γ1+γ2

2 =: β2 ,(3.23)

α1 [α3 − κ (ν − κ)] =
(
γ2−γ1

4

)2
=: β1 > 0 .(3.24)

For the line α3 = β2 − α1 to intersect the hyperbola α3 = β1

α1
+ κ (ν − κ) at

some α1 > 0, we require that 0 ≤ κ (ν − κ) < β2, see also Figure 3.2.
The solutions of (3.23)–(3.24) read

(3.25) α3,± = β2+κ (ν−κ)
2 ± 1

2

√
(β2 − κ (ν − κ))2 − 4β1 .

We seek the maximum κ ∈ [0, ν2 ] such that α3,± ∈ R (for κ = 0 this always
holds by the proof of Proposition 3.1). This maximal value is either obtained
as κ = ν

2 or when the discriminant of (3.25) is zero. The latter case implies

−κ (ν − κ) = 2
√
β1 − β2 = −γ1 .

This is solvable (for κ) in R iff
√
γ1 ≤ ν

2 , yielding κ = ν
2 −

√
ν2

4 − γ1 ∈ [0, ν2 ].

Hence, for the solvability of (3.23)–(3.24) in R, we obtain

κmax ≤ κ̂ :=

{
ν
2 −

√
ν2

4 − γ1 for
√
γ1 ≤ ν

2 ,
ν
2 for

√
γ1 >

ν
2 .

Using κ̂ in (3.25) yields one or two values for α3 ≥ 0. Next, we need to check
the solvability of α3 = p12(ν − p12): To obtain p12 ∈ R, we must have

(3.26) α3 ≤ ν2

4 .

Since α3 with the negative sign gives the weaker constraint, we shall use only
α3,− in the sequel. Now, we have to distinguish between three cases:
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α1

α3

β2

β2

β3

α3 = β2 − α1

α3 = β1

α1
+ β3

α3 = β1

α1

Figure 3.2: For the line α3 = β2 − α1 to intersect the hyperbola α3 = β1

α1
+ β3

at some α1 > 0, we require that 0 ≤ β3 < β2.
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(A1)
√
γ1 ≤ ν

2 and 3γ1 + γ2 ≤ ν2: The unique α3,−(κ̂) =
β2+κ̂ (ν−κ̂)

2 = 3γ1+γ2
4

satisfies condition (3.26). Hence, (3.23)–(3.24) yield the two endpoints for
(p12, p22) given in (B1).

(A2)
√
γ1 ≤ ν

2 and 3γ1+γ2 > ν2: Here α3,−(κ̂) violates condition (3.26). Hence,
κmax has to be chosen smaller than κ̂. Since α3,−(κ) is monotonically

increasing, the obvious choice α3 := ν2

4 also yields the maximal value of

κ: Equations (3.23)–(3.24) give α1 = β2 − ν2

4 and hence κ (ν − κ) =
ν2

4 − 4β1

4β2−ν2 with the solution κmax ∈ [0, ν2 ] in case (B2).

(A3)
√
γ1 >

ν
2 : Using κ̂ = ν

2 yields from (3.25)

α3,− = β2

2 + ν2

8 − 1
2

√
(β2 − ν2

4 )2 − 4β1 > 0.

But one easily checks that it violates again condition (3.26). As in case

(A2), one chooses α3 := ν2

4 and the expressions for (p12, p22, κmax) in
case (B2) follow.

Finally, Conditions (C1)–(C5) are easily verified for each subcase.
S t e p 2 : The whole interval of solutions in (B1) is obtained due to the

convexity of P. �

4 - Fokker-Planck equations with non-local perturbations

4.1 - Introduction

In this chapter we investigate properties of the following class of perturbed
Fokker-Planck equations:

ft = ∇ · (D∇f +Cxf) + Θf ≡ Lf +Θf,(4.1a)

f(t = 0,x) = ϕ(x).(4.1b)

Thereby f = f(t,x), and t ≥ 0 and x ∈ R
n, with n ∈ N. The matrices

D−1C,D ∈ R
n×n are symmetric and positive definite, hence L is a symmetric

Fokker-Planck operator in L2(Rn; exp( 12x
TD−1Cx)), in fact it is a special case

of (2.4). The perturbation is given by a convolution Θf = ϑ ∗ f with respect
to x. The convolution kernel ϑ is assumed to be t-independent, and massless,
i.e.

∫
Rn ϑ(x) dx = 0. To keep the solution f real valued we shall consider here

only real valued kernels ϑ, but the analysis would be equally valid for complex
ϑ’s. Further, technical assumptions are specified in the beginning of Section 4.4.

The aim of this chapter is to make a spectral analysis of the perturbed
Fokker-Planck operator in an appropriate weighted L2-space, and to show the
existence of a unique (up to normalization) stationary solution. Furthermore,
the exponential decay of any solution of (4.1) to the stationary solution is
proven.

37



The following analysis is structured as follows. After notational preliminar-
ies in Section 4.2 we investigate in Section 4.3 the unperturbed Fokker-Planck
operator in several functional spaces. First, we recall some of its properties in
the L2-space weighted with the reciprocal of the zero eigenfunction (this weight
grows super-exponentially), in which the Fokker-Planck operator is self-adjoint.
Then, a spectral analysis in a larger, exponentially weighted space is given for
this operator. Finally, in Section 4.4 we consider the influence of the perturba-
tion Θ on the spectral properties of the unperturbed Fokker-Planck operator in
the exponentially weighted space.

Equation (4.1) is a toy model for the Wigner-Fokker-Planck equation, see
[6]. Other examples for equations of this form can be found in [20] and [29].
The following analysis of (4.1) is a generalization of the results published in
[37], where only the case C = D = I was considered. In this chapter we use
a similar approach for proving the desired results. However, several proofs and
technicalities differ from [37].

4.2 - Preliminaries

We use the convention N = {1, 2, . . .}, and we write N0 := N ∪ {0}. Given
a complex number z ∈ C the complex conjugate is denoted by z. For n ∈ N

the elements of Cn are denoted by bold lowercase letters. Given some vector
z ∈ C

n, the i-th component is denoted by zi, and we write z = [z1, . . . , zn]
T as

a column vector. For a multiindex k ∈ N
n
0 we use the notation zk := zk11 · · · zknn .

Given a real number s > 0 we define

sz := [sz1 , . . . , szn ]T .

For i ∈ {1, . . . , n} the i-th unit vector in C
n is denoted by ei. For every 1 ≤

p ≤ ∞ we define the corresponding p-norm on C
n by

|z|p :=
( n∑

i=1

|zi|p
) 1

p

, 1 ≤ p <∞,

|z|∞ := max
1≤i≤n

|zi|.

With respect to the norm | · |p the open ball in C
n with radius r > 0 and center

a ∈ C
n is defined by

Bpr (a) = {z ∈ C
n : |z− a|p < r}.

Its complement in C
n is denoted by Bpr (a)

c := C
n \Bpr (a). Whenever we work

in R
n instead of Cn we use the same notation. Matrices are denoted by bold

capital letters. For a matrix M ∈ C
n×n and a real number s > 0 we define

sM := exp(M ln s), using the matrix exponential.

On a domain Ω ⊆ R
n we call a real-valued function w ∈ L∞

loc(Ω) a weight
function if 1

w ∈ L∞
loc(Ω). The corresponding weighted L2-space L2(Ω;w) is the
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set of all measurable functions f : Ω → C such that the norm

‖f‖Ω;w :=
(∫

Ω

|f(x)|2w(x) dx
) 1

2

is finite, and the corresponding inner product is denoted by 〈·, ·〉Ω;w.
Also, we introduce weighted Sobolev spaces. For two weight functions w0

and w1 the space H1(Ω;w0, w1) consists of all functions f ∈ L2(Ω;w0) whose
distributional first order derivatives satisfy ∂f/∂xj ∈ L2(Ω;w1) for all 1 ≤ j ≤
n. We equip the space H1(Ω;w0, w1) with the norm

‖f‖Ω;w0,w1
:=
(
‖f‖2Ω,w0

+ ‖∇f‖2Ω,w1

) 1
2 ,

which makes it a Hilbert space, see Theorem 1.11 in [28]. If Ω = R
n we shall

omit the symbol Ω in these notations. We call two sets of weight functions
equivalent if the corresponding weighted spaces are the same. In the case where
the weight functions are equivalent to the constant function, we omit the weight
function in the notation, e.g. L2(Ω; 1) ≡ L2(Ω).

For functions f ∈ L1(Rn) we define the Fourier transform of f as

F [f ](ξ) ≡ f̂(ξ) :=

∫

Rn

f(x)e−ix·ξ dx.

We use the same notation for the natural extension of the Fourier transform to
tempered distributions f ∈ S ′(Rn). With this scaling we may identify f̂(0)
with the mass (or mean) of f . For a tempered distribution f ∈ S ′(Rn) and a
multiindex k ∈ N

n
0 we define

∇kf(x) :=
∂|k|1f

∂xk11 · · · ∂xknn
(x)

as a distributional derivative.

Furthermore, we present some definitions and properties concerning linear
operators and their spectrum. Let X,X be Hilbert spaces. If X is continuously
and densely embedded in X we write X →֒ X , and X →֒→֒ X indicates that
the embedding is compact. Given a subset Y ⊂ X, the closure of Y in X is
denoted by either Y or clX Y . C (X) denotes the set of all closed operators A
in X with dense domain D(A). The set of all bounded operators A : X → X
is B(X,X ); if X = X we just write B(X). Thereby ‖ · ‖B(X) denotes the
operator norm. For an operator A ∈ C (X) its range is ranA and its null space
is kerA. Note that there always holds kerA ⊂ D(A). A closed, linear subspace
Y ⊂ X is said to be invariant under A ∈ C (X) (or A-invariant) iff D(A)∩Y is
dense in Y and ranA|Y ⊂ Y , see e.g. [1]. For any ζ ∈ C lying in the resolvent
set ρ(A), we denote the resolvent by RA(ζ) := (ζ − A)−1. The complement of
ρ(A) is the spectrum σ(A), and σp(A) is the point spectrum. For an isolated
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subset σ′ ⊂ σ(A) the corresponding spectral projection PA,σ′ is defined via the
line integral

(4.2) PA,σ′ :=
1

2πi

∮

Γ

RA(ζ) dζ,

where Γ is a closed Jordan curve with counter-clockwise orientation, strictly
separating σ′ from σ(A)\σ′, with σ′ in the inside of Γ and σ(A)\σ′ on the out-
side. The following results can be found in [26, Section III.6.4] and [38, Section
V.9]: The spectral projection is a bounded projection operator, decomposing X
into two A-invariant subspaces, namely ranPA,σ′ and ker PA,σ′ . This property
is referred to as the reduction of A by PA,σ′ . A remarkable property of this
decomposition is the fact that σ(A|ranPA,σ′ ) = σ′ and σ(A|ker PA,σ′ ) = σ(A)\σ′.
Most of the time we will be concerned with the situation where σ′ = {λ} is an
isolated point of the spectrum.

A final remark concerns constants occurring in estimates: Throughout this
chapter, C denotes some positive constant, not necessarily always the same.
Dependence on certain parameters will be indicated in brackets, e.g. C(t) for
dependence on t.

4.3 - Analysis of the Fokker-Planck operator

In this section we investigate the (unperturbed) Fokker-Planck equation

(4.3) ft = ∇ · (D∇f +Cxf).

Indeed we can find coordinates that simplify this equation. To this end we
proceed similarly to the “normalization” of the Fokker-Planck operator after
Theorem 2.1. Since D is symmetric and positive definite we may introduce

the coordinate transformation y =
√
D

−1
x. With g(y) := f(x) equation (4.3)

transforms to

(4.4) gt = ∇y · (∇yg + C̃yg),

with C̃ =
√
D

−1
C
√
D. Since C̃ is symmetric and positive definite, we may

express the variable y in terms of an eigenfunction basis of C̃. Applying this
change of coordinates to (4.4) yields an equation of the same form, but now the
matrix C̃ is diagonal (compare to the situation in (2.28)).

Therefore, without loss of generality we shall always assume that D = I,
and C is diagonal in the following, i.e. C = diag(c1, . . . , cn) with the entries
0 < c1 ≤ c2 ≤ · · · ≤ cn. We introduce c := [c1, . . . , cn]

T . The unperturbed
Fokker-Planck operator L is then

L = ∆+ xTC∇+TrC.

Note that the perturbation Θ in (4.1) still is a convolution in the new coordi-
nates.
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One can check that
µ := exp(− 1

2x
TCx)

is a steady state of (4.3), i.e. a zero eigenfunction of L. The natural (self-adjoint)
setting for L is the space H := L2(1/µ), with the inner product denoted by
〈·, ·〉H . There, L is properly defined as the closure of L|C∞

0
(Rn). This procedure

also yields the domain D(L). The behavior of L in H is well studied (cf. [31,
11, 21, 35]), we list its main properties in the following theorem. For the case
C = I an analogous result has been published in [37]. A complete proof of the
following theorem can be found in [36].

T h e o r em 4.1. The Fokker-Planck operator L in H has the following prop-
erties:

(i) The operator L = clH L|C∞
0

on the domain D(L) is self-adjoint and has a
compact resolvent.

(ii) The spectrum consists entirely of isolated eigenvalues and it is given by

σ(L) = {−c · k : k ∈ N
n
0}.

(iii) The zero eigenspace is spanned by µ0(x) := det(C/(2π))1/2 exp(− 1
2x

TCx),
and for every k ∈ N

n
0 the function µk(x) := ∇kµ0(x) is an eigenfunction

to the eigenvalue −c · k.

(iv) For every ζ ∈ σ(L) we have ker(ζ − L) = span{µk : ζ = −c · k}.

(v) The family of eigenfunctions {µk : k ∈ N
n
0} is an orthogonal basis of H.

(vi) L generates a C0-semigroup of contractions (etL)t≥0 in H, and

‖etL|Hk
‖B(H) = e−kc1t, k ∈ N0,

where c1 is the smallest entry of c, and Hk := span{µk : |k|1 ≤ k − 1}⊥.

The following result is useful in the subsequent analysis:

L emma 4.1. For every k ∈ N
n
0 the eigenfunction µk is of the form

(4.5) µk(x) = µ0(x)

n∏

j=1

p
kj
j (xj),

where p
kj
j (xj) is a polynomial of order kj.

P r o o f. We prove this by induction. For k = 0 the statement clearly holds
true. Let it now hold true for some k ∈ N

n
0 , and we deduce the validity for
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k + eℓ for any ℓ ∈ {1, . . . , n}. According to the property µk = ∇kµ0 and the
induction hypothesis we have

µk+eℓ
(x) = ∂ℓ

(
µ0(x)

n∏

j=1

p
kj
j (xj)

)

=
(
µ0(x)

∏

j 6=ℓ

p
kj
j (xj)

)(
− cℓxℓp

kℓ
ℓ (xℓ) + pkℓℓ (xℓ)

′
)
.

We define the new polynomial pkℓ+1
ℓ (xℓ) := −cℓxℓpkℓℓ (xℓ) + (pkℓℓ (xℓ))

′ and it is
obviously of order kℓ + 1, since cℓ > 0. This proves (4.5). �

For the subspaces Hk, k ∈ N0, which were introduced in Theorem 4.1 (vi)
we find the following characterization:

L emma 4.2. Let k ∈ N0. There holds f ∈ Hk iff

(4.6)

∫

Rn

f(x)xk dx = 0, ∀|k|1 ≤ k − 1.

P r o o f. For this we will rely on the representation (4.5) for the µk. The
result is then shown by induction. Clearly, we have H0 = H and for k = 1 we
obtain

H1 = µ⊥
0 =

{
f ∈ H :

∫

Rn

f(x) dx = 0
}
.

Let us assume now that (4.6) holds for some k ∈ N0. According to (4.5) we
have

Hk+1 =
{
f ∈ Hk :

∫

Rn

f(x)

n∏

j=1

p
kj
j (xj) dx = 0, ∀|k|1 = k

}
.

For f ∈ Hk and |k|1 = k we get due to the induction hypothesis

0 =

∫

Rn

f(x)

n∏

j=1

p
kj
j (xj) dx = ak

∫

Rn

f(x)xk dx,

where ak 6= 0 is the leading coefficient of the polynomial in the integral. All
other parts of the first integral vanish due to the induction assumption (4.6).
Since this holds for all |k|1 = k this proves the desired condition for f ∈ Hk+1.
�

For every k ∈ N
n
0 we define the projection operator ΠL,k corresponding to

µk by the orthogonal projection

ΠL,k := 〈·, µk〉H
µk

‖µk‖2H
.

With this, the spectral projection corresponding to an eigenvalue ζ = −c · k is
given by the orthogonal sum

ΠL,ζ :=
∑

k∈Nn
0

−c·k=ζ

ΠL,k.
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So far we have discussed the operator L in H. However, for investigating the
perturbed Fokker-Planck operator L + Θ the space H is not convenient. This
can be illustrated in the one-dimensional case with Θf := f(x+α)−f(x−α), for
any α > 0. There one can explicitly show that the zero eigenfunction of L+Θ
does not lie in H, for more details see [36]. Thus we are forced to investigate
L+Θ in a weighted L2-space with a weight which grows more slowly than 1/µ0

as |x|1 → ∞. It turns out that

(4.7) ω(x) :=

n∑

i=1

coshβxi

is a convenient weight function. Thereby β > 0 is an arbitrary constant which is
not yet specified. Note that this differs slightly from the weight function chosen
in [37]. However, this choice is more practical for the subsequent analysis. In
the following we analyze L+Θ in the weighted space H := L2(ω). The natural
norm and the inner product in H are denoted by ‖ · ‖ω and 〈·, ·〉ω, respectively.

The space H possesses a useful characterization via the Fourier transform.

P r o p o s i t i o n 4.1. There holds f ∈ H iff its Fourier transform f̂ possesses
an analytic continuation (still denoted by f̂) to the open set Ωβ/2 := {z ∈ C

n :
| Im z|1 < β/2}, with the property

(4.8) sup
b∈R

n

|b|1<β/2

‖f̂(·+ ib)‖L2(Rn) <∞.

In this case we have:

(i) For every b ∈ R
n with |b|1 < β/2 there holds

(4.9) f̂(ξ + ib) = F [f(x) exp(b · x)](ξ), ξ ∈ R
n.

(ii) For every b ∈ R
n with |b|1 = β/2 we define f̂(ξ + ib) := F [f(x) exp(b ·

x)](ξ), which lies in L2(Rn). With this there holds b 7→ f̂(· + ib) ∈
C(B1

β/2(0);L
2(Rn)).

See Theorem IX.13 in [34] for a very similar result. For a detailed proof see
[36]. Often we shall use the following norm, which is equivalent to ‖ · ‖ω due to
the Plancherel theorem:

(4.10) |||f |||2ω :=
n∑

ℓ=1

∥∥∥f̂
(
·+i

β

2
eℓ

)∥∥∥
2

L2(Rn)
+
∥∥∥f̂
(
· −i

β

2
eℓ

)∥∥∥
2

L2(Rn)
.

A useful property of H is the validity of the following Poincaré inequality:

L emma 4.3. There exists a constant Cp > 0 such that for every f ∈
H1(ω, ω) there holds

(4.11) ‖f‖ω ≤ Cp‖∇f‖ω.
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P r o o f. For this we use the norm ||| · |||ω. We compute

|||∇f |||2ω =

n∑

j=1

n∑

ℓ=1

(∥∥(ξj + iβ2 δjℓ
)
f̂
(
ξ + iβ2 eℓ

)∥∥2
L2(Rn)

+
∥∥(ξj − iβ2 δjℓ

)
f̂
(
ξ − iβ2 eℓ

)∥∥2
L2(Rn)

)

≥
n∑

ℓ=1

(∥∥(ξℓ + iβ2
)
f̂
(
ξ + iβ2 eℓ

)∥∥2
L2(Rn)

+
∥∥(ξℓ − iβ2

)
f̂
(
ξ − iβ2 eℓ

)∥∥2
L2(Rn)

)

≥
(
β
2

)2 n∑

ℓ=1

(∥∥f̂
(
ξ + iβ2 eℓ

)∥∥2
L2(Rn)

+
∥∥f̂
(
ξ − iβ2 eℓ

)∥∥2
L2(Rn)

)

=
(
β
2

)2|||f |||2ω.

This proves the Poincaré inequality with the constant Cp =
2
β . �

Using the above properties of H we can investigate L in H. The follow-
ing theorem is the main result of this section and describes the (unperturbed)
Fokker-Planck operator in H:

T h e o r em 4.2. Let ω(x) be the weight function defined in (4.7) for any
β > 0, and H := L2(ω) is the corresponding weighted space. Then the Fokker-
Planck operator L|C∞

0
(Rn) is closable in H, we write L := clH L|C∞

0
(Rn). In H

the operator L has the following properties:

(i) The resolvent of L is compact, and σ(L) consists entirely of isolated eigen-
values.

(ii) The spectrum of L is given by

σ(L) = {−c · k : k ∈ N
n
0},

where c is the row vector containing the diagonal entries of C.

(iii) For every λ ∈ σ(L) the corresponding eigenspace of L is given by

span{µk : k ∈ N
n
0 ∧ −c · k = λ},

where the eigenfunctions µk were introduced in Theorem 4.1.

(iv) For every k ∈ N0 the following is a closed subspace of H:

Hk :=
{
f ∈ H :

∫

Rn

f(x)xk dx = 0, ∀k ∈ N
n
0 with |k|1 ≤ k − 1

}
.

Hk is L-invariant, and σ(L|Hk
) = {−c · k : |k|1 ≥ k}. There holds the

identity
H = Hk ⊕ span{µk : |k|1 ≤ k − 1}.
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(v) L generates a C0-semigroup of bounded operators (etL)t≥0 on H. For every
k ∈ N0 there exists a constant Ck such that

(4.12) ‖etL|Hk
‖B(H) ≤ Cke

−tkc1 , ∀t ≥ 0.

The rest of this section is dedicated to proving Theorem 4.2. The proof
is structured into several lemmata and propositions. To this end we begin by
showing that the Fokker-Planck operator can be defined as a closed operator in
H and we characterize its domain. The first preparatory result is the following
lemma, which is also essential for showing the compactness of the resolvent of
the Fokker-Planck operator in H.

L emma 4.4. Let Re ζ ≥ 1
2 (1 + β2 + TrC), and f, g ∈ C∞

0 (Rn) such that
(ζ − L)f = g. Then there exists a constant C > 0, independent of f, g, such
that

(4.13) ‖f‖̟ + ‖∇f‖ω ≤ C‖g‖ω.

Thereby ̟(x) := (1 + |x|2)ω(x).
P r o o f. For f ≡ 0, g ≡ 0 (4.13) holds trivially. For f 6≡ 0 we apply 〈·, f〉ω

to (ζ − L)f = g, and compute

Re

∫

Rn

gfω dx = Re

∫

Rn

(
ζf −∇ · (∇f +Cxf)

)
fω dx

= Re ζ

∫

Rn

|f |2ω dx+Re

∫

Rn

(∇f +Cxf) · (ω∇f + f∇ω) dx

= ‖∇f‖2ω +
1

2

∫

Rn

|f |2(2Re ζω −∆ω − ωTrC+ xTC∇ω) dx

= ‖∇f‖2ω +
1

2

∫

Rn

|f |2ν dx.(4.14)

Thereby we temporarily define ν(x) := 2Re ζω −∆ω − ωTrC + xTC∇ω. We
observe that ∆ω = β2ω and xTC∇ω = β

∑n
i=1 cixi sinhβxi ≥ 0 for all x ∈ R

n.
So if Re ζ ≥ 1

2 (1 + β2 + TrC), the function ν(x) is a weight function with
ν(x) ≥ ω(x) on R

n. Next we apply the Cauchy-Schwarz inequality to the left
hand side of (4.14), which yields

‖∇f‖2ω +
1

2
‖f‖2ν ≤ ‖f‖ω‖g‖ω.

We now use the Poincaré inequality on the first term and ν(x) ≥ ω(x) on the
second term, and divide by ‖f‖ω:

‖∇f‖ω + ‖f‖ν ≤ C‖g‖ω.

Finally we observe that for any fixed Re ζ ≥ 1
2 (1+β

2+TrC) there is a constant
C > 0 such that ν(x) ≥ C̟(x) for all x ∈ R

n. This concludes the proof. �
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Before we properly define the Fokker-Planck operator as a closed operator
in H, we need the lemma below. It determines all formal eigenfunction of
the Fokker-Planck operator, i.e. the eigenfunctions of the distributional Fokker-
Planck operator L in H. Thereby, we define the distributional Fokker-Planck
operator as L := ∆+xTC∇+TrC in the sense of tempered distributions. L is
then a well-defined linear map from H into S ′, defined on the whole space H.
As a consequence of the following lemma it will be straightforward to determine
the spectrum of the Fokker-Planck operator in H.

L emma 4.5. The distributional Fokker-Planck operator L satisfies the eigen-
value equation Lf = ζf for some ζ ∈ C and some f ∈ H \ {0} iff ζ ∈ {−c · k :
k ∈ N

n
0}. For such values of ζ, there holds f ∈ span{µk : −c · k = ζ}.

P r o o f. Since all the functions µk are eigenfunctions of L and lie in H it is
clear that they are also eigenfunctions of L. In order to show that they already
span all eigenspaces we consider the Fourier transform of (ζ − L)f = 0 for any
ζ ∈ C, which reads

(4.15) (ζ + |ξ|22)f̂ + ξTC∇f̂ = 0.

Now we are looking for f ∈ H and ζ ∈ C satisfying this (eigenvalue) equation.

This means that we are interested in solutions f̂ which are analytic in Ωβ/2.
Expecting f to be generated from µ0 by repeated differentiation (see Theo-

rem 4.1 (iii)), we make the ansatz f̂ = pµ̂0, with p analytic in Ωβ/2. This is
admissible (and not restrictive) since µ̂0 is nonzero and analytic in Ωβ/2. We

know that µ̂0 satisfies the zero eigenvalue equation |ξ|22µ̂0 + ξTC∇µ̂0 = 0, so

after inserting f̂ = pµ̂0 in (4.15) we obtain the following equation for p:

(4.16) ξTC∇p = −ζp.

To solve this first order PDE we consider its characteristics: We introduce
the (unique) solution ξ(t) of the ordinary differential equation ξ̇ = Cξ with
ξ(0) = ξ0 ∈ C

n. It is verified by application of the chain rule that for any such
curve and any differentiable function p we have

d

dt
p(ξ(t)) = ξ(t)TC∇p(ξ(t)).

In particular, any solution of (4.16) fulfills the ordinary differential equation

d

dt
p(ξ(t)) = −ζp(ξ(t))

along these curves, and it follows p(ξ(t)) = p(ξ0)e
−ζt. Using the fact that

ξ(t) = etCξ0 and introducing s = et (with s ∈ R
+) we obtain ξ(t) = sCξ0 (see

Section 4.2 concerning the notation), and consequently we obtain

(4.17) p(sCξ0) = p(ξ0)s
−ζ .
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Now p needs to be analytic in Ωβ/2. So (4.17) implies that Re ζ ≤ 0 is necessary,
otherwise p would have a singularity at the origin ξ = 0 (corresponding to
s ց 0), which is a contradiction. By induction we deduce from (4.16) that for
all k ∈ N

n
0

ξTC∇
(
∇kp

)
= −(ζ + c · k)∇kp.

Since all derivatives∇kp need to be analytic in Ωβ/2 as well, the above argument
proves that either Re ζ ≤ −c ·k for all k ∈ N

n
0 (which is impossible since C > 0)

or ∇kp ≡ 0 in Ωβ/2 for some k ∈ N0. So p has to be a polynomial, and we make
the ansatz

p(ξ) =
∑

k∈Nn
0

pkξ
k,

where pk = 0 for almost all k ∈ N
n
0 . We now insert this in (4.16) and obtain

∑

k∈Nn
0

(c · k)pkξk = −ζ
∑

k∈Nn
0

pkξ
k.

This holds true iff ζ = −c · k for all k ∈ N
n
0 for which pk 6= 0. This proves the

first statement of the lemma.
From the above analysis we conclude

f̂(ξ) =
( ∑

k∈N
n
0

c·k=−ζ

pkξ
k
)
µ̂0(ξ) .

Now recall from Theorem 4.1 (iii) that µ̂k = i|k|1ξkµ̂0 holds for all k ∈ N
n
0 .

Hence, f ∈ span{µk : −c · k = ζ}. So we conclude that the eigenspaces of L in
H are precisely spanned by the µk. �

Now we can properly define the Fokker-Planck operator in the space H.

L emma 4.6. The operator L|C∞
0

is closable in H, and L := clH L|C∞
0
. The

domain is D(L) = {f ∈ H : Lf ∈ H}, and for f ∈ D(L) we have Lf = Lf .

The following proof is based on the proof of Lemma 2.6 in [37].
P r o o f. According to (4.14) we have that (L − ζ)|C∞

0
is dissipative in H

if Re ζ ≥ 1
2 (1 + β2 + TrC). This implies (cf. [33, Theorem 1.4.5 (c)]) that

(L− ζ)|C∞
0

and consequently also L|C∞
0

is closable in H.
Now we define L := clH L|C∞

0
. The domain D(L) consists of all f ∈ H for

which there exists some g ∈ H and a sequence (fn)n∈N0
⊂ C∞

0 (Rn) such that

(4.18)





lim
n→∞

‖fn − f‖ω = 0,

lim
n→∞

‖Lfn − g‖ω = 0.

This also implies that ((ζ−L)fn)n∈N0
is a Cauchy sequence in H. Thus, ac-

cording to (4.13) (∇fn)n∈N0
is a Cauchy sequence in H. So altogether, (fn)n∈N0

is a Cauchy sequence in the Hilbert space H1(ω, ω). But since we already know
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that fn → f in H, this implies that even f ∈ H1(ω, ω). Next we temporar-
ily introduce the weight ω2(x) := ω(x2 ) and the corresponding weighted space
H2 := L2(ω2). Due to the previous results (xTC∇fn+TrCfn)n∈N0

is a Cauchy
sequence inH2. According to (4.18), (Lfn)n∈N0

is also a Cauchy sequence inH2.
Altogether, this implies that (∆fn)n∈N0

is a Cauchy sequence in H2. Applying
the Fourier transform and the norm (4.10) we have that, for every ℓ ∈ {1, . . . , n},
the two sequences ((

ξ ± i
β

4
eℓ

)2
f̂n

(
ξ ± i

β

4
eℓ

))
n∈N0

are Cauchy sequences in L2(Rn). But we also know that f̂n(· ± iβ4 eℓ) converges

to f̂(· ± iβ4 eℓ) in L2(Rn). Thus it is clear that ∆f ∈ H2, and ∆fn → ∆f
in H2 and also Lfn → Lf in H2. According to (4.18) Lf = g in H2, and
since g ∈ H, we conclude that Lfn → Lf in H. This proves the inclusion
D(L) ⊆ {f ∈ H : Lf ∈ H}.

Finally we prove that this inclusion indeed is an equality. First we note that
D(L) ⊂ D(L) since L = clH L|C∞

0
and H →֒ H. So we have the inclusion L ⊂ L

for the graphs. Let us then take ζ > 0 so large that the estimate (4.13) holds.
As we have mentioned in the beginning of the proof the operator (L− ζ)|C∞

0
is

(uniformly) dissipative in H, and from Theorem 1.4.5 in [33] it follows that the
closure, L−ζ, is also (uniformly) dissipative. In particular it is injective and thus
invertible. So (ζ−L)−1 exists. Now according to Theorem 4.1 ζ−L : D(L) → H
is a bijection, so ran(ζ − L) ⊃ H, which is dense in H. Due to this and the
estimate (4.13) (ζ − L)−1 is a densely defined bounded operator in H. But by
definition (ζ − L)−1 is already closed, so ran(ζ − L) = H and ζ ∈ ρ(L) (and
thus ρ(L) 6= ∅).

For the proof by contradiction we take now this ζ ∈ ρ(L), and assume there
exists some f∗ ∈ H \ D(L) such that f∗ ∈ H. Hence also (ζ − L)f∗ ∈ H.
Since ζ ∈ ρ(L) we have (ζ − L)−1(ζ − L)f∗ ∈ D(L). Since D(L) is a linear
space we have f ♯ := (ζ − L)−1(ζ − L)f∗ − f∗ ∈ H \D(L) with (ζ − L)f ♯ = 0.
But according to Lemma 4.5 we know that ζ ∈ ρ(L) cannot be an eigenvalue
of L in H. So f ♯ = 0, contradicting f ♯ ∈ H \ D(L). Hence we conclude
D(L) = {f ∈ H : Lf ∈ H}. �

L emma 4.7. For any ζ ∈ ρ(L) the resolvent (ζ − L)−1 is compact in H.

P r o o f. We fix ζ > 0, and first show the result for this given ζ. Choosing ζ
large enough we can apply Lemma 4.4 which proves that (ζ−L)−1 is an element
of B(H, H1(̟,ω)). Note that this requires the density of C∞

0 (Rn) in H, which
is assured by Lemma A.2 in the Appendix.

Now we shall show that H1(̟,ω) is compactly embedded in H. By the
definition of ̟ (in Lemma 4.4) it is clear that for all n ∈ N0 there holds

sup
|x|2>n

ω(x)

̟(x)
=

1

1 + n
,
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which tends to zero as n→ ∞. Thus we can apply Lemma A.1 in the appendix,
which proves the compact embedding H1(̟,ω) →֒→֒ H. Hence, the resolvent
(ζ − L)−1 : H → H is compact. Finally we remark that, according to Theo-
rem III.6.29 in [26], the compactness of (ζ −L)−1 follows for all other ζ ∈ ρ(L).
�

Co r o l l a r y 4.1. The spectrum σ(L) consists entirely of eigenvalues, and
σ(L) = {−c · k : k ∈ N

n
0}. The eigenspace corresponding to the eigenvalue

ζ ∈ σ(L) is given by span{µk : ζ = −c · k}.
P r o o f. We apply Theorem III.6.29 in [26] which states that σ(L) consists

entirely of eigenvalues, and the corresponding eigenspaces are finite-dimensional.
According to Lemma 4.6 the eigenfunctions of L in D(L) are precisely the
(formal) eigenfunctions of L in H. With this, Lemma 4.5 concludes the proof.
�

We introduce the closed subspaces Hk ⊂ H for every k ∈ N0, which we define
as Hk := clHHk, where the subspaces Hk were specified in Theorem 4.1. The
following lemma gives a characterization of the spaces Hk, compare Lemma 4.2
for an analogous result in H.

L emma 4.8. For every k ∈ N0 there holds

(4.19) Hk =
{
f ∈ H :

∫

Rn

f(x)xk dx = 0, ∀k ∈ N
n
0 with |k|1 ≤ k − 1

}
.

P r o o f. We start from the characterization of the Hk in Lemma 4.2. Our
plan is to apply Lemma A.5 in the appendix. For every k ∈ N

n
0 we define the

functional

ηk : H → C : f 7→
∫

Rn

f(x)xk dx.

We first prove the continuity of the ηk. For k ∈ N
n
0 and f ∈ H we have

∣∣∣
∫

Rn

f(x)xk dx
∣∣∣ ≤

∫

Rn

|f(x)ω(x)1/2| ·
∣∣∣ xk

ω(x)1/2

∣∣∣ dx

≤ ‖f‖ω ·
(∫

Rn

x2k

ω(x)
dx
) 1

2

.

Since ω grows exponentially in every direction it is clear that the last integral
on the right hand side is finite for every k ∈ N

n
0 . Thus the ηk are bounded

linear functionals in H. Next we shall verify that the family {ηk : k ∈ N
n
0} is

linearly independent. If the family would be linearly dependent, there would
exist a polynomial p(x) 6≡ 0 such that

∫

Rn

f(x)p(x) dx = 0, ∀f ∈ H.

But this implies p ≡ 0, since C∞
0 (Rn) ⊂ H.

49



Now we have verified the assumptions of Lemma A.5. Since

Hk =
⋂

|k|1≤k−1

ker ηk|H ,

we conclude that
Hk := clHHk =

⋂

|k|1≤k−1

ker ηk.

The intersection on the right is exactly the set (4.19). �

Co r o l l a r y 4.2. For k ∈ N0 there holds the identity

(4.20) Hk =
{
f ∈ H : ∇kf̂(0) = 0, ∀|k|1 ≤ k − 1

}
.

P r o o f. This follows immediately from the fact that for f ∈ H and k ∈ N
n
0

∫

Rn

xkf(x) dx = F [xkf(x)](0) = i|k|1∇kf̂(0).

We use this in (4.19) and the result follows. �

At every λ ∈ σ(L) the resolvent map ζ 7→ RL(ζ) has an isolated singularity.
We denote the corresponding spectral projection of L by ΠL,λ, which satisfies
(4.2). In particular there holds ΠL,λ = clH ΠL,λ, as we will see in the following.

P r o p o s i t i o n 4.2. For every k ∈ N0 we have the following facts:

(i) The space H can be written as the following direct sum: H = Hk ⊕
span{µk : |k|1 ≤ k − 1}.

(ii) Both spaces Hk and span{µk : |k|1 ≤ k − 1} are closed in H and L-
invariant. In particular σ(L|Hk

) = {−c · k : |k|1 ≥ k}.
P r o o f. Step 1 (decomposition of Hk): In H there holds for any fixed k ∈ N

(4.21) H⊥
k = span

{
µk : |k|1 ≤ k − 1

}
,

and for every λ ∈ σ(L) we have for the corresponding spectral projection

ranΠL,λ = span
{
µk : −c · k = λ

}
,(4.22a)

kerΠL,λ = span
{
µk : −c · k 6= λ

}
.(4.22b)

For a given k ∈ N we define the set

σk := {−c · k : |k|1 ≤ k − 1} ⊂ R
−
0 ,

which is the set of all eigenvalues which “contribute” to H⊥
k (note that there

may be k ∈ N
n
0 such that −c · k ∈ σk but |k|1 ≥ k). From (4.22a) we conclude

that ⋃

λ∈σk

ranΠL,λ ⊃ H⊥
k .
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Taking the orthogonal complement of this relation yields:

(4.23)
⋂

λ∈σk

kerΠL,λ ⊂ Hk.

Next we investigate which eigenfunctions µk need to be added to the left hand
side of (4.23) such that the corresponding span equals Hk. First we observe

that, according to (4.22), there holds µk ∈
(⋂

λ∈σk
kerΠL,λ

)⊥
iff µk ∈ ranΠL,λ

for some λ ∈ σk. This is also equivalent to the condition −c · k ∈ σk. To
complement the left hand side of (4.23), we also require µk ∈ Hk, which gives
the constraint |k|1 ≥ k, see (4.21). Hence, we conclude that

(4.24) Hk =
( ⋂

λ∈σk

kerΠL,λ

)
⊕⊥ span{µk : −c · k ∈ σk ∧ |k|1 ≥ k}.

Step 2 (decomposition of H): For ζ ∈ ρ(L) we have RL(ζ) ⊂ RL(ζ) (in the
sense of graphs), and as a consequence the spectral projection for λ ∈ σ(L)
satisfies ΠL,λ ⊂ ΠL,λ, see (4.2). Furthermore, both ΠL,λ and ΠL,λ are bounded
projections in H and H, respectively. Due to Lemma A.6 in the appendix there
holds

(4.25) kerΠL,λ = clH kerΠL,λ and ranΠL,λ = clH ranΠL,λ.

Since the projections are bounded we have H = kerΠL,λ ⊕ ranΠL,λ, and both
components of the direct sum are closed subspaces of H, see Section III.3.4 in
[26].

Step 3 (decomposition of Hk): Due to the arguments of Step 2 we obtain,
by applying the closure in H to (4.24):

(4.26) Hk =
( ⋂

λ∈σk

kerΠL,λ

)
⊕ span{µk : −c · k ∈ σk ∧ |k|1 ≥ k}.

Notice that σk is finite. The sum is still a direct sum, since every µk in the
“span-term” of the right hand side lies in the range of some ΠL,λ with λ ∈ σk.
Altogether this implies that Hk is a closed subspace of H such that

H = Hk ⊕ span{µk : |k|1 ≤ k − 1},

and the two components are closed and disjoint subspaces of H.

Step 4 (L-invariance, σ(L|Hk
) ): The L-invariance of the finite dimensional

combination of eigenfunctions span{µk : |k|1 ≤ k − 1} is evident. For every
λ ∈ σ(L) also the corresponding kernel kerΠL,λ is L-invariant. Therefore the
expression (4.26) has to be L-invariant, since it is just a (finite) direct sum of
L-invariant spaces.

51



Concerning the spectrum of L inHk we recall that σ(L|kerΠL,λ
) = σ(L)\{λ}.

Thus, we obtain from (4.26) that σ(L|Hk
) = {−c · k : |k|1 ≥ k}. �

After having established the subspaces Hk we now turn to the semigroup
which is generated by L.

L emma 4.9. The Fokker-Planck operator L generates a C0-semigroup of
bounded operators in H, which is denoted by (etL)t≥0.

P r o o f. From (4.14) in the proof of Lemma 4.4 we find that for ζ = 1
2 (1 +

β2 + TrC) the operator (L − ζ)|C∞
0

(Rn) and thus L − ζ is dissipative. So we
may apply the Lumer-Phillips Theorem (cf. Theorem 1.4.3 in [33]) which proves
that L − ζ generates a C0-semigroup of contractions, thus L generates a C0-
semigroup of bounded operators in H. �

According to equation (1.2) in [30] the semigroup operators etL for t > 0 are
given by

(4.27) (etLf)(x) =
etTrC

(4π)n/2 detQ
1/2
t

∫

Rn

exp
(
− 1

4
yTQ−1

t y
)
f(etCx− y) dy,

where Qt = (2C)−1(e2tC − I). We can equivalently use the following represen-
tation in Fourier space, which is useful for the subsequent analysis.

L emma 4.10. For f ∈ H and t ≥ 0 there holds

(4.28) F [etLf ](ξ) = exp
(
− ξT [(2C)−1(I− e−2tC)]ξ

)
· f̂(e−tCξ).

P r o o f. If t = 0 the identity (4.28) is obviously fulfilled, so we assume t > 0
in the following. For f ∈ H, (4.27) is well defined, and we can write it as

(etLf)(x) = (4π)−n/2(detQt)
−1/2etTrC(φ ∗ f)(etCx),

where φ(x) = exp(− 1
4x

TQ−1
t x). Using the fact that Qt is diagonal we immedi-

ately obtain that φ̂(ξ) = (det 4πQt)
1/2 exp(−ξTQtξ). With this we can write

the Fourier transform of (4.27) as

F [etLf ](ξ) = (4π)−n/2 detQ
−1/2
t etTrC

∫

Rn

(φ ∗ f)(etCx) exp(−ix · ξ) dx

= (4π)−n/2 detQ
−1/2
t F [φ ∗ f ](e−tCξ)

= exp
(
− ξT [(2C)−1(I− e−2tC)]ξ

)
f̂(e−tCξ).

So (4.27) and (4.28) are equivalent for all f ∈ H. �

In the next step we investigate the long-time behavior of (etL)t≥0 on the
subspaces Hk. In the subspaces Hk, the analogue of this analysis was pre-
sented in Theorem 4.1(vi). Its proof was elementary since the eigenfunctions
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{µk : k ∈ N
n
0} form an orthogonal basis of H. But in H the orthogonality

of the eigenfunctions is lost, which hence requires more technical estimates of
the semigroup. For the rest of this chapter they will be mostly based on the
representation (4.28) of (etL)t≥0.

P r o p o s i t i o n 4.3. For every k ∈ N0 there exists a constant Ck > 0 such
that there holds

(4.29) ‖etL|Hk
‖B(H) ≤ Cke

−tkc1 , ∀t ≥ 0,

where c1 is the smallest entry of c.

P r o o f. We fix k ∈ N0 and take any f ∈ Hk. Our aim is to estimate
|||etLf |||ω.

Step 1 (pointwise estimates of f̂): f̂ is analytic on Ωβ/2, and since f ∈ Hk

we get due to (4.20) that f̂(ξ) = O(|ξ|k2) as |ξ|2 → 0. More precisely, its Taylor
expansion with remainder in Lagrange form reads for all ξ ∈ Ωβ/2:

f̂(ξ) =
∑

|k|=k

1
k!ξ

k(∇k
ξ f̂)(κξ), for some κ ∈ [0, 1] .

Lemma A.4 provides a uniform bound of |∇k
ξ f̂ | on Ωβ′/2, for 0 < β′ < β. Hence

(4.30) |f̂(z)| ≤ C |z|k2 |||f |||ω, ∀z ∈ Ωβ′/2 .

For estimating the semigroup (4.28) in the norm ||| · |||ω we shall need the
following estimate for each ℓ ∈ {1, . . . , n}: For t > 1 we have

z := e−tC
(
ξ ± i

β

2
eℓ

)
∈ Ωβ′/2, ∀ ξ ∈ R

n ,

with β′ = e−c1β < β. Hence, (4.30) yields for all ξ ∈ R
n:

∣∣∣f̂
(
e−tC

(
ξ ± i

β

2
eℓ

))∣∣∣ ≤ C
∣∣∣e−tC

(
ξ ± i

β

2
eℓ

)∣∣∣
k

2
|||f |||ω(4.31)

≤ C e−kc1t
∣∣∣ξ ± i

β

2
eℓ

∣∣∣
k

2
|||f |||ω.

Step 2 (semigroup estimate): For estimating (4.28) we compute with (4.31)
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for any ℓ ∈ {1, . . . , n} and for t > 1:

∥∥∥F [etLf ]
(
ξ ± i

β

2
eℓ

)∥∥∥
2

L2(Rn
ξ
)
=

∫

Rn

∣∣∣ exp
[
−
(
ξ ± i

β

2
eℓ

)T
[(2C)−1(I− e−2tC)]

·
(
ξ ± i

β

2
eℓ

)]∣∣∣
2 ∣∣∣f̂
(
e−tC

(
ξ ± i

β

2
eℓ

))∣∣∣
2

dξ

≤ C

∫

Rn

exp
(
− ξT [C−1(I− e−2tC)]ξ

) ∣∣∣f̂
(
e−tC

(
ξ ± i

β

2
eℓ

))∣∣∣
2

dξ

≤ C

∫

Rn

e−|ξ|22γC
∣∣∣f̂
(
e−tC

(
ξ ± i

β

2
eℓ

))∣∣∣
2

dξ

(4.32)

≤ C
( 2
β

)2k
e−2kc1t|||f |||2ω

∫

Rn

e−|ξ|22γC
∣∣∣ξ ± i

β

2
eℓ

∣∣∣
2k

2
dξ

= C ′
( 2
β

)2k
e−2kc1t |||f |||2ω,

where γC := (1− e−2c1)/c1.
Summing (4.32) over all ℓ ∈ {1, . . . , n} we conclude: There exists some C > 0

such that for all t > 1 there holds

(4.33) |||etLf |||ω ≤ Ce−kc1t |||f |||ω, ∀f ∈ Hk .

But since (etL)t≥0 are bounded operators on H, uniformly for 0 ≤ t ≤ 1 (cf.
Lemma 4.9) the above estimate (4.33) holds true for all t ≥ 0 with an appropri-
ately large constant C > 0. �

With this proposition we conclude the proof of Theorem 4.2.

4.4 - The perturbed Fokker-Planck operator

Having defined the extension of the Fokker-Planck operator L in H we now
turn to the investigation of the properties of the perturbed operator L + Θ.
Note that our x-coordinates are such that D = I, and C is diagonal, see the
discussion in the beginning of Section 4.3. We make the following assumptions
on Θ:
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(C) Conditions on Θ: We assume that Θf := ϑ ∗ f for all f ∈ H, for some
function ϑ : R

n → R. Thereby the convolution kernel ϑ has the following
properties:

(i) The Fourier transform ϑ̂ can be extended to an analytic function in Ωβ/2
(also denoted by ϑ̂), and ϑ̂ ∈ L∞(Ωβ/2).

(ii) There holds ϑ̂(0) = 0, i.e. ϑ is massless.

(iii) The function

ξ 7→
∫ 1

0

1

s
ϑ̂(ξT sC) ds

is analytic in Ωβ/2, and its real part lies in L∞(Ωβ/2).

L emma 4.11. Under the assumptions (C) the operator Θ has the following
properties in H:

(i) Θ ∈ B(H).

(ii) For every k ∈ N0 there holds Θ: Hk → Hk+1.

P r o o f. We start by proving (i). Due to (C)(i) we have for every f ∈ H
that F [Θf ] = ϑ̂f̂ is analytic in Ωβ/2, and since f satisfies (4.8) we find

sup
|b|1<β/2
b∈R

n

‖ϑ̂f̂(·+ ib)‖L2(Rn) <∞.

So, according to Proposition 4.1, Θ maps H into H. It remains to show it is
bounded. To this end we use the norm ||| · |||ω, see (4.10). We start with the
following computation, where ℓ ∈ {1, . . . , n}:

∫

Rn

∣∣∣(ϑ̂f̂)
(
ξ ± i

β

2
eℓ

)∣∣∣
2

dξ = lim
bրβ/2

∫

Rn

∣∣(ϑ̂f̂)(ξ ± ibeℓ)
∣∣2 dξ

≤ ‖ϑ̂‖2L∞(Ωβ/2)
lim

bրβ/2

∫

Rn

∣∣f̂(ξ ± ibeℓ)
∣∣2 dξ

= ‖ϑ̂‖2L∞(Ωβ/2)

∫

Rn

∣∣∣f̂
(
ξ ± i

β

2
eℓ

)∣∣∣
2

dξ.

Thereby we have used (ii) in Proposition 4.1. Note that ϑ̂f̂ is the Fourier-
transform of an element of H, and thus we may evaluate it at the boundary
of Ωβ/2 in the sense of L2-functions. We can repeat this estimate for every
ℓ ∈ {1, . . . , n} and conclude from (4.10) that Θ is bounded in H with a norm

proportional to ‖ϑ̂‖L∞(Ωβ/2).

Next we show (ii). According to (4.20) f lies in Hk iff f̂ has a zero of order

greater or equal to k at the origin. Now due to (C)(ii) ϑ̂f̂ has a zero of order
greater or equal to k + 1 at the origin. Since Θ maps H into H (due to Result
(i)) this shows that Θ: Hk → Hk+1. �
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Co r o l l a r y 4.3. If Θ satisfies (C) then for every k ∈ N0 the space Hk is
invariant under L+Θ.

P r o o f. This is a direct consequence of Proposition 4.2 and Lemma 4.11 (ii)
above. �

Throughout the rest of this section we always assume that Θ is such that
the conditions (C) are satisfied in H for some β > 0. Now we fix this β and
consider H with the corresponding weight function ω(x) =

∑n
i=1 coshβxi. In

the following we discuss properties of L+Θ in H, which then lead to the final
theorem.

L emma 4.12. The spectrum σ(L + Θ) consists entirely of isolated eigen-
values.

P r o o f. According to Theorem 4.2, L generates a C0-semigroup of bounded
operators in H and has a compact resolvent. Due to Lemma 4.11 (i), Θ is a
bounded operator. Thus we can apply Proposition III.1.12 in [18], which proves
that RL+Θ(ζ) is compact for every ζ ∈ ρ(L+Θ).

It now remains to apply Theorem III.6.29 in [26], which proves that σ(L+Θ)
consists entirely of isolated eigenvalues. �

In order to characterize the spectrum of L+Θ and the corresponding semi-
group we introduce the operator Ψ: H → H : f 7→ f ∗ ψ. Thereby ψ is defined
by

ψ̂(ξ) := exp
(∫ 1

0

1

s
ϑ̂(ξT sC) ds

)
.

As we shall see below, Ψ provides a similarity transformation between the re-
solvents of L and L+Θ.

L emma 4.13. Ψ satisfies the following properties in H:

(i) For every k ∈ N0 the operator Ψ is a bijection from Hk to Hk.

(ii) Both Ψ and its inverse Ψ−1 are bounded. Thereby Ψ−1f = F−1[f̂/ψ̂] for
all f ∈ H.

P r o o f. For the moment we define the operator Ψ̄f := F−1[f̂/ψ̂] for all f ∈
H, and show in the following that it is the inverse of Ψ. To begin with we note
that, due to the condition (C)(iii), both ψ̂ and 1/ψ̂ are analytic and uniformly
bounded in Ωβ/2. Thus it follows analogously to the proof of Lemma 4.11 (i)
that both Ψ and Ψ̄ are bounded operators in H.

Since ψ̂ and 1/ψ̂ both do not have any zeros in Ωβ/2, it follows from the
characterization (4.20) of the space Hk that Ψ and Ψ̄ map Hk into itself for
every k ∈ N0.

Finally we observe that for every f ∈ H there holds ΨΨ̄f = Ψ̄Ψf = f , which
finally proves that Ψ̄ = Ψ−1. �
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P r o p o s i t i o n 4.4. There holds

(i) σ(L+Θ) = σ(L).

(ii) For every k ∈ N
n
0 the function fk := Ψµk is an eigenfunction of L+Θ to

the eigenvalue −c · k. Furthermore, for every ζ ∈ σ(L+Θ)

ker(ζ − (L+Θ)) = span{fk : −c · k = ζ}.

(iii) The eigenfunctions fk satisfy fk = ∇kf0 for all k ∈ N
n
0 .

P r o o f. Due to Lemma 4.12 we know that the spectrum of L+Θ consists
entirely of eigenvalues. So, in order to determine the spectrum we look for ζ ∈ C

and non-trivial solutions f ∈ H of (ζ−L−Θ)f = 0. After applying the Fourier
transform this equation reads

(ζ + |ξ|22)f̂ + ξTC∇ξf̂ = ϑ̂f̂ .

We now make the (non-restrictive) ansatz f̂ = p̂ψ̂. Note that due to (C)(iii)

and ψ̂ 6= 0 in Ωβ/2, the requirement f ∈ H implies that p̂ is analytic in Ωβ/2. A

short calculation shows that ψ̂ϑ̂ = ξTC∇ξψ̂. Using this, we obtain the following
equation for p̂:

(ζ + |ξ|22)p̂+ ξTC∇p̂ = 0.

We find that this is exactly equation (4.15). In the proof of Lemma 4.5 we have
shown that 0 6≡ p ∈ H is a solution iff ζ ∈ {−c · k : k ∈ N

n
0}. And for a fixed

ζ ∈ C, p ∈ span{µk : −c · k = ζ}. �

Note that f̂0(0) = ψ̂(0)µ̂0(0) = 1, hence f0 has mass one.

P r o p o s i t i o n 4.5. L+Θ generates a C0-semigroup of bounded operators,
(et(L+Θ))t≥0. For every k ∈ N0 the space Hk is invariant under the semigroup,

and there exists some C̃k > 0 such that

‖et(L+Θ)|Hk
‖B(Hk) ≤ C̃ke

−tkc1 , ∀t ≥ 0.

P r o o f. According to Proposition 4.4 the eigenfunctions of L and L + Θ
are related by fk = Ψµk, for every k ∈ N

n
0 . So we find for every ζ /∈ σ(L) and

k ∈ N
n
0 that the resolvents satisfy

RL(ζ)µk =
1

ζ + c · kµk = Ψ−1 1

ζ + c · kfk = Ψ−1RL+Θ(ζ)Ψµk.

Since span{µk : k ∈ N
n
0} ⊂ H is dense and all operators in the above formula

are bounded, we conclude the following operator equality in H:

(4.34) ΨRL(ζ)Ψ
−1 = RL+Θ(ζ).

Take any k ∈ N0. According to Corollary 4.3 and Lemma 4.13 the identity
(4.34) holds also in Hk, and RL+Θ(ζ) is a bounded operator in Hk. Now we
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apply the Hille-Yosida Theorem to the decay estimate for (etL)t≥0 stated in
Theorem 4.2 (v). It shows that for all m ∈ N0 and Re ζ > −kc1 there holds

‖RL(ζ)
m|Hk

‖B(Hk) ≤
Ck

(Re ζ + kc1)m
,

where Ck > 0 is the same constant as in (4.12). Applying this resolvent estimate
to (4.34) yields for all m ∈ N0 and Re ζ > −kc1:

‖RL+Θ(ζ)
m|Hk

‖B(Hk) ≤
Ck‖Ψ‖B(Hk)‖Ψ−1‖B(Hk)

(Re ζ + kc1)m
.

Applying the Hille-Yosida Theorem again implies that L + Θ generates a C0-
semigroup of bounded operators, which satisfies the following estimate:

‖et(L+Θ)|Hk
‖B(Hk) ≤ C̃ke

−tkc1 ,

where 0 < C̃k ≤ Ck‖Ψ‖B(Hk)‖Ψ−1‖B(Hk). �

We conclude this section by summarizing the main results.

T h e o r em 4.3. Under the conditions (C) on Θ, the perturbed Fokker-
Planck operator L+Θ has the following properties in H:

(i) σ(L + Θ) = σ(L) = {−c · k : k ∈ N
n
0}, i.e. L + Θ is an isospectral

deformation of L.

(ii) The functions fk := Ψµk are eigenfunctions of L+Θ for all k ∈ N
n
0 . For

every λ ∈ σ(L+Θ) the corresponding eigenspace is given by

ker(λ− (L+Θ)) = span{fk : −c · k = λ}.

(iii) For every k ∈ N0, the operator L+Θ generates a C0-semigroup (et(L+Θ))t≥0

on Hk, and there exists some constant C̃k > 0 such that

∥∥et(L+Θ)|Hk

∥∥
B(Hk)

≤ C̃ke
−tkc1 , ∀t ≥ 0.

In particular, this theorem implies exponential convergence of the solutions
of the perturbed Fokker-Planck equation towards the stationary solution:

C o r o l l a r y 4.4. Let ϕ ∈ H be given, and let f(t) := et(L+Θ)ϕ be the
corresponding solution of (4.1). Set m :=

∫
Rn ϕ(x) dx ∈ C. Then there exists a

constant C > 0 such that

‖f(t)−mf0‖ω ≤ C‖ϕ−mf0‖ωe−tc1 , ∀t ≥ 0,

i.e. f(t) converges exponentially to mf0.
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P r o o f. Since f0 is the unique normalized zero eigenfunction of L + Θ we
obtain:

f(t)−mf0 = et(L+Θ)(ϕ−mf0).

Since ϕ−mf0 has zero mean, it follows from Lemma 4.8 that it lies in H1. But
(et(L+Θ))t≥0 decays exponentially on H1 with rate −c1, see Theorem 4.3 (iii).
So we get for all t ≥ 0:

‖f(t)−mf0‖ω = ‖et(L+Θ)(ϕ−mf0)‖ω ≤ C̃1‖(ϕ−mf0)‖ω e−tc1 .
�

Rema r k 4.1. Note that L + Θ is neither self-adjoint in H nor in H. But
the fact that σ(L + Θ) ⊂ R and that L + Θ is only a “deformation” of L, see
(4.34), suggests that L+Θ is self-adjoint in an appropriate space. To verify this
we introduce the inner product

〈f, g〉H :=

∫

Rn

1

µ
Ψ−1f ·Ψ−1g dx,

and the corresponding norm ‖ · ‖H. The associated space H is the set of all
functions such that ‖ · ‖H is finite. This is indeed a Hilbert space, and Ψ is an
isometry between H and H. Using (4.34) we see the self-adjointness of L + Θ
in H:

〈(L+Θ)f, g〉H = 〈Ψ ◦ L ◦Ψ−1f, g〉H
= 〈L(Ψ−1f),Ψ−1g〉H = 〈Ψ−1f, L(Ψ−1g)〉H
= 〈f, (L+Θ)g〉H,

where we have used the self-adjointness of L in H. In H the eigenfunctions fk
of L + Θ are orthogonal again (like the functions µk in H). Altogether, we
conclude that L in H and L+Θ in H are isometrically equivalent via the map
Ψ. Hence, L + Θ inherits most properties of L. However, we point out that
discovering the map Ψ, without the preceding analysis, is a non-trivial issue.

Furthermore, the Hilbert space H is difficult to be characterized explicitly.
In particular, it is usually not possible to describe H as a weighted L2-space. A
simple calculation shows that H = L2(ν) for some weight function ν only if for
all f ∈ C∞

0 (Rn) there holds

ν =
1

f
·
( 1
ψ

)
∗
( (1/ψ) ∗ f

µ

)
.

But in general this function ν will not be independent of f .

A - Results in functional analysis and deferred proofs

On Ω = R
n it is possible to find compact embeddings of weighted Sobolev

spaces into weighted L2-spaces if certain conditions on the weight functions are
satisfied. Here we need the following corollary from Theorem 2.4 in [32]:
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L emma A.1. Let v, w be two weight functions on Ω = R
n. Assume further

that

(A.1) lim
r→∞

ess sup
x∈B2

r(0)
c

w(x)

v(x)
= 0.

Then there holds the compact embedding H1(v, w) →֒→֒ L2(w).

L emma A.2. Let ν be a weight function on R
n. Then C∞

0 (Rn) is dense in
L2(ν).

The proof of the above lemma is straightforward, see [36] for more details.

L emma A.3. There exists a constant C > 0 such that for every f ∈ H we
have

|∇kf̂(0)| ≤ C‖f‖ω, k ∈ N
n
0 .

P r o o f. We have

|∇kf̂(0)| ≤ ‖∇kf̂‖L∞(Rn) = ‖F [xkf(x)]‖L∞(Rn) ≤ ‖xkf(x)‖L1(Rn)

=

∫

Rn

|f(x)|ω(x)1/2 ·
∣∣xkω(x)−1/2

∣∣ dx ≤ ‖f‖ω
(∫

Rn

x2kω(x)−1 dx
)1/2

.

Since ω(x)−1 decays exponentially as |x|2 → ∞ the last integral on the right
hand side is finite. �

L emma A.4. For every 0 < β′ < β and k ∈ N
n
0 , there exists a positive

constant C such that

sup
z∈Ωβ′/2

|∇kf̂(z)| ≤ C ‖f‖ω, ∀f ∈ H .

P r o o f. Due to Proposition 4.1, all functions f ∈ H satisfy f̂(ξ + ib) =
F [f(x)eb·x](ξ) for |b|1 < β/2. Hence,

(∇kf̂)(ξ + ib) = F [(−ix)kf(x)](ξ + ib) = F [(−ix)kf(x)eb·x](ξ)

follows for |b|1 < β′/2 and k ∈ N
n
0 . Then,

sup
z∈Ωβ′/2

|∇kf̂(z)| ≤ sup
|b|1<β′/2

‖F [(−ix)kf(x)eb·x](ξ)‖L∞(Rn
ξ
)

≤ sup
|b|1<β′/2

‖xkf(x)eb·x‖L1(Rn
x
)

≤ sup
|b|1<β′/2

∥∥ xkeb·x√
ω(x)

∥∥
L2(Rn

x
)
‖f‖ω .

The norm ‖ xkeb·x√
ω(x)

‖2L2(Rn
x
) can be estimated as

∫

Rn

x2ke2b·x

ω(x)
dx ≤

∫

Rn

x2keβ
′|x|∞

ω(x)
dx ≤ 2

∫

Rn

x2kω
(
β′

β x
)

ω(x)
dx =: C2 <∞,
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where C is finite due to 0 < β′ < β. Thus, the estimate supz∈Ωβ′/2
|∇kf̂(z)| ≤

C ‖f‖ω for all f ∈ H follows. �

L emma A.5. Let X →֒ X be Hilbert spaces, and ψ0, . . . , ψk−1 ∈ B(X ,C)
be linearly independent functionals. Then ψ̃j := ψj |X ∈ B(X,C) for all 0 ≤
j ≤ k − 1, and

k−1⋂

j=0

kerψj = clX

k−1⋂

j=0

ker ψ̃j .

This result coincides with Lemma C.2 in [37]. The proof can be found in
therein.

L emma A.6. Consider two Hilbert spaces X →֒ X and a projection PX ∈
B(X ), such that PX := PX |X ∈ B(X). Then ranPX = clX ranPX and ker PX =
clX ker PX .

This result coincides with Lemma C.1 in [37].
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[14] Carrillo, J. A., Jüngel, A., Markowich, P. A., Toscani, G., and

Unterreiter, A. Entropy dissipation methods for degenerate parabolic
problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1
(2001), 1–82.

[15] Costabel, M., and McIntosh, A. On Bogovskĭı and regularized
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