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Abstract We study hypocoercivity for a class of linear and linearizedBGK mod-
els for discrete and continuous phase spaces. We develop methods for constructing
entropy functionals that prove exponential rates of relaxation to equilibrium. Our
strategies are based on the entropy and spectral methods, adapting Lyapunov’s di-
rect method (even for “infinite matrices” appearing for continuous phase spaces) to
construct appropriate entropy functionals. Finally, we also prove local asymptotic
stability of a nonlinear BGK model.
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1 Introduction

This paper is concerned with the large time behavior of linear BGK models (named
after the physicists Bhatnagar-Gross-Krook [5]) for a phase space densityf (x,v, t);
x, v∈ R

d, satisfying the kinetic evolution equation

ft +v·∇x f −∇xV ·∇v f = Q f := MT(t)(v)
∫

Rd
f (x,v, t) dv− f (x,v, t) , t ≥ 0,

(1.1)
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with some given confinement potentialV(x) and whereMT denotes the normalized
Maxwellian at some temperatureT:

MT(v) = (2πT)−d/2e−|v|2/2T .

We assume that the initial condition is normalized as
∫

Rd×Rd
f (x,v,0)dxdv= 1 ,

and this normalization persists under the flow of (1.1). The functionT(t) is defined
so that the energy is conserved:

∫

Rd×Rd

[ |v|2
2

+V(x)

]

f (x,v, t)dxdv=
∫

Rd×Rd

[ |v|2
2

+V(x)

]

f (x,v,0)dxdv=: E0 .

This is achieved in case

T(t) :=
2
d

[

E0−
∫

Rd
V(x)ρ(x, t)dx

]

, (1.2)

whereρ(x, t) :=
∫

Rd f (x,v, t)dv, which completes the specification of the equation.
This model differs form the usual BGK model in that the Maxwellian MT has

a spatially constant temperature and zero momentum. This isalready a simplifi-
cation of the standard BGK model in whichMT would be replaced by the local
Maxwellian corresponding tof ; i.e., the local Maxwellian with the same hydro-
dynamic moments asf . However, (1.1)-(1.2) is still non-linear sinceT(t) depends
linearly on f , but thenMT depends nonlinearly onT. This simplified equation arises
in certain models of thermostated systems [4]. Under sufficient growth assumptions
onV as|x| → ∞, the unique normalized steady state of (1.1) is

f ∞(x,v) = exp

(

− 1
T∞

[

V(x)+
|v|2
2

]

)

,

where the normalization constant shall be included inV andT∞ such that the energy
associated tof ∞ is E0.

In fact, we simplify the model further: We taked = 1, replace the spatial domain
R

d by the unit circleT1, and then dispense with the confining potential. Thus we
shall first investigate the linear BGK model

ft +v fx = Q f := MT(v)
∫

R

f (x,v, t) dv− f (x,v, t) , t ≥ 0. (1.3)

Let dx̃ denote the normalized Lebesgue measure onT1, and consider normalized
initial data f (x,v,0) such that

∫

T1×R
f (x,v,0)dx̃dv = 1 (a normalization which is

conserved under the flow). In this case, equation (1.2) for the temperature reduces
to T(t) = 2E0, independent oft, with
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E0 :=
∫

T1×R

v2

2
f (x,v,0)dx̃dv .

For the simplified linear equation (1.3), the unique steady state is f ∞ = MT , uni-
form on the circle. We shall study the rate at which normalized solutions of (1.3)
approach the steady statef ∞ = MT ast → ∞. This problem is interesting since the
collision mechanism drives the local velocity distribution towardsMT , but a more
complicated mechanism involving the interaction of the streaming termv∂x and the
collision operatorQ is responsible for the emergence of spatial uniformity.

To elucidate this key point, let us define the operatorL by

L f (x,v) :=−v ∂x f (x,v)+Q f (x,v) .

Then the evolution equation (1.3) can be writtenft = L f . Let H denote the
weighted spaceL2(T1 ×R;M−1

T (v) dv). ThenQ is self-adjoint onH , L f ∞ = 0,
and a simple computation shows that iff (t) is a solution of (1.3),

d
dt
‖ f (t)− f ∞‖2

H = 2〈 f (t),L f (t)〉H = 2〈 f (t),Q f (t)〉H =−2‖ f −MTρ‖2
H ,

where, as before,ρ(x, t) :=
∫

R
f (x,v, t)dv. Thus, while the norm‖ f (t)− f ∞‖H is

monotone decreasing, the derivative is zero wheneverf (t) has the formf (t) =MTρ
for anysmooth densityρ . In particular, the inequality

〈 f − f ∞,L( f − f ∞)〉H ≤−λ‖ f − f ∞‖2
H (1.4)

is valid in general forλ = 0, but for no positive value ofλ . If (1.4) were valid
for someλ > 0, we would have had‖ f (t)− f ∞‖2

H
≤ e−tλ‖ f (0)− f ∞‖2

H
for all

solutions of our equation, and we would say that the evolution equation iscoercive.
However, while this is not the case, it does turn out that one still has constants
1<C< ∞ andλ > 0 such that

‖ f (t)− f ∞‖2
H ≤Ce−tλ‖ f (0)− f ∞‖2

H . (1.5)

(The fact that there exist initial dataf (0) 6= f ∞ for which the derivative of the norm
is zero shows that necessarilyC > 1.) In Villani’s terminology (see§3.2 of [21]),
this means that our evolution equation ishypocoercive.

Many hypocoercive equations have been studied in recent years [21, 12, 11, 10,
2], including BGK models in§1.4 and§3.1 of [10] (see also§4.1 below), but sharp
decay rates were rarely an issue there. The fact that normalized solutions of (1.3)
converge exponentially fast atsomerate to f ∞ is a consequence of a probabilistic
analysis of such equations in [4]: In fact, equation (1.3) isthe Kolmogorov forward
equation for a certain Markov process, and as shown in [4] an argument based on
a Doeblin condition yields exponential convergence. However, this approach relies
on compactness arguments and does not yield explicit valuesfor C or λ . We shall
discuss another approach to the problem of establishing hypocoercivity for such
models that does yield explicit – and quite reasonable – values forC andλ . To this
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end, our main tool will be variants of theentropy–entropy production method.Our
first main result will be a decay estimate for (1.3):

Theorem 1. [decay estimate for(1.3)] Fix unit temperature T= 1. There exists an
entropy functional e( f ) satisfying

1
2

e( f )≤ ‖ f −M1‖2
H ≤ 4e( f )

such that for all (normalized) solutions f(t) of (1.3) with e( f I )< ∞,

e( f (t))≤ e−t·0.547592...e( f I ) , t ≥ 0 .

Finally, we shall study the linearization of a one dimensional BGK equation
around a Maxwellian with some constant-in-x temperature. In one dimension, if col-
lisions conserve both energy and momentum, they are trivial: The only kinematic
possibilities are an exchange of velocities which has no effect at all at the kinetic
level. Therefore, in one dimension the natural BGK equation, which would corre-
spond for example to the Kac equation [13], uses Maxwelliansdetermined by the
density and temperature alone. The method will be applied tothe three dimensional
equation in a follow-up paper.

For a probability densityf (x,v) on T1×R we thus consider the nonlinear BGK
equation

ft(x,v, t)+v fx(x,v, t) = M f (x,v, t)− f (x,v, t) , t ≥ 0 , (1.6)

whereM f is the local Maxwellian having the same local density and “temperature”
as f : The density is defined asρ(x, t) :=

∫

R
f (x,v, t) dv and the pressure asP(x, t) :=

∫

R
v2 f (x,v, t) dv. In analogy to the situation with zero velocity we shall refer to the

conditional second moment,̃T(x, t) := P(x, t)/ρ(x, t) as temperature (with the gas
constant scaled asR= 1). Then, for fixedt, the local MaxwellianM f is defined as

M f (x,v) =
ρ(x)

√

2πT̃(x)
e−v2/2T̃(x) =

ρ3/2(x)
√

2πP(x)
e−v2ρ(x)/2P(x) , (1.7)

and we shall mostly use the second version of it in the sequel.The existence of
global solutions for the Cauchy problem of similar nonlinear BGK models has been
proven in [16, 18, 7].

We assume
∫

T1 ρ(x) dx̃ = 1 and defineT :=
∫

T1 P(x) dx̃, which are both con-
served by the flow of (1.6). Now we considerf close to the global equilibrium
MT(v), with h defined byf = MT +h. Then

ρ(x, t) = 1+σ(x, t) with σ(x, t) :=
∫

R

h(x,v, t) dv ,

P(x, t) = T + τ(x, t) with τ(x, t) :=
∫

R

v2h(x,v, t) dv ,
(1.8)
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which implies
∫

T1
σ(x, t) dx̃= 0 and

∫

T1
τ(x, t) dx̃= 0 . (1.9)

The perturbationh then satisfies

ht(x,v, t)+v hx(x,v, t) = [M f (x,v, t)−MT(v)]−h(x,v, t) , t ≥ 0 .

For σ andτ small we have

M f (x,v)−MT(v) =
(1+σ)3/2(x)
√

2π(T + τ(x))
e−v2(1+σ(x))/2(T+τ(x))− 1√

2πT
e−v2/2T

(1.10)

≈
(

3
2
− v2

2T

)

MT(v)σ(x)+

(

− 1
2T

+
v2

2T2

)

MT(v)τ(x) ,

(1.11)

which yields the linearized BGK model that we shall analyze in this paper:

ht(x,v, t)+v hx(x,v, t) (1.12)

= MT(v)

[(

3
2
− v2

2T

)

σ(x, t)+

(

− 1
2T

+
v2

2T2

)

τ(x, t)
]

−h(x,v, t) , t ≥ 0 .

Following the same approach as for Theorem 1 we shall obtain adecay estimate for
(1.12), and then local asymptotic stability for the nonlinear BGK equation (1.6). For
the latter purpose, we need to introduce another set of norms.

For γ ≥ 0, let Hγ(T1) be the Sobolev space consisting of the completion of
smooth functionsϕ onT1 in the Hilbertian norm

‖ϕ‖2
Hγ := ∑

k∈Z
(1+k2)γ |ϕk|2 ,

where ϕk is the kth Fourier coefficient ofϕ. Let Hγ denote the Hilbert space
Hγ(T1)⊗L2(R;M−1

T ). Then the inner product inHγ is given by

〈 f ,g〉Hγ =
∫

T1

∫

R

f (x,v)
[

(

1−∂ 2
x

)γ
g(x,v)

]

M−1
T (v)dvdx̃ .

Theorem 2. [decay estimates for(1.12), (1.6)] Fix unit temperature T= 1.

(a) For all γ ≥ 0 there is an entropy functional eγ( f ) satisfying

2
3

eγ( f )≤ ‖ f −M1‖2
Hγ ≤

4
3

eγ( f ) (1.13)

such that if h= f −M1 is a solution of the linearized BGK equation(1.12)
with initial data hI = f I − M1 such that

∫

T1
∫

R
(1, v2) f I dv dx̃ = (1, 1), and
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eγ( f I )< ∞, then

eγ( f (t))≤ e−t/25eγ( f I ) , t ≥ 0 . (1.14)

(b) Moreover, for allγ > 1/2, there is an explicitly computableδγ > 0 such that
if f is a solution of the nonlinear BGK equation(1.6)with initial data fI such
that

∫

T1
∫

R
(1, v2) f I dv dx̃ = (1, 1), and‖ f I −M1‖Hγ < δγ , then for the same

entropy function eγ , (1.14)is again valid.

Before turning to our main investigation, i.e. exponentialdecay in the BGK equa-
tions (1.3), (1.12), (1.6), we shall study some still simpler models with a finite num-
ber of positions and velocities: In§2 we analyze coercive BGK models with first
two and then finitely many velocities using relative entropies. Since this approach
fails for discrete hypocoercive BGK models (considered in§3), their analysis will
be based on spectral methods and Lyapunov’s direct method.§4 is concerned with
space-inhomogeneous BGK models. We shall start with its discrete velocity analogs
in §4.1–§4.2, where the velocity modes will be expanded in Krawtchoukpolynomi-
als – a discrete analog of the Hermite polynomials. In section 4.3 we shall finally
analyze the exponential convergence of the linear BGK equation (1.3), using a Her-
mite expansion of the velocity modes and an adaption of Lyapunov’s! direct method,
used here for “infinite matrices”. This will yield the proof of Theorem 1. This strat-
egy is modified in§4.4 for the linearized BGK equation (1.12), proving Theorem
2(a). Finally, in§4.5 we analyze the local asymptotic stability of the nonlinear BGK
equation (1.6), as stated in Theorem 2(b).

2 Discrete coercive BGK models

In this section we consider space-homogeneous BGK models with a finite number
of velocities. Our main tool in the investigation is the relative entropy, which is
defined as follows (see§2.2 of [3] for more details):

Definition 1. (a) LetJ be eitherR+ or R. A scalar functionψ ∈C(J̄)∩C2(J) sat-
isfying the conditions

ψ(1) = 0, ψ ≥ 0, ψ ′′ ≥ 0, onJ (2.1)

(and hence alsoψ ′(1) = 0) is calledentropy generator.
(b) Let f1∈ L1(R2d), f2∈ L1

+(R
2d)with

∫ ∫

f1 dx dv=
∫ ∫

f2 dx dv= 1 and f1
f2
(x,v)∈

J̄ a.e. (w.r.t. the measuref2(dx dv)). Then

eψ( f1| f2) :=
∫ ∫

R2d
ψ
( f1

f2

)

f2 dx dv≥ 0 (2.2)

is called arelative entropyof f1 with respect tof2 with generating functionψ.
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In applications, the most important examples are the logarithmic entropye1( f1| f2),
generated by

ψ1(σ) := σ lnσ −σ +1,

and the power law entropiesep( f1| f2), generated by

ψp(σ) := σ p−1− p(σ −1) , p> 1. (2.3)

Except for the quadratic entropye2 we shall always useJ=R
+. Below we shall use

also a second family of power law entropies ˆep( f1| f2) generated by

ψ̂p(σ) := |σ −1|p , p> 1. (2.4)

The above definition clearly shows thateψ( f1| f2) = 0 iff f1 = f2. In the next
section we shall hence try to prove that solutionsf (t) to BGK models satisfy
eψ( f (t)| f ∞)→ 0 ast →∞. For the entropiesep, p≥ 1 such a convergence in relative
entropy then also impliesL1–convergence, due to theCsisźar-Kullback inequality:

‖ f1− f2‖2
L1(R2d)

≤ 2e1( f1| f2)≤
2

p(p−1)
ep( f1| f2) ,

where we usedψ1(σ) ≤ ψp(σ)/ψ ′′
p(1), σ ≥ 0 in the second inequality. For the

entropies defined in (2.4) one has a substitute for the Csiszár-Kullback inequality,
namely the identity

êp( f1| f2) = ‖ f1− f2‖p

Lp( f 1−p
2 )

.

To illustrate the standard entropy method on a very simple example, we first
revisit the ODE (1.10) from [3] for the vectorf (t) = ( f1(t), f2(t))⊤ ∈ R

2:

d
dt

f = λA f , t ≥ 0, (2.5)

f (0) = f I ∈ R
2 ,

with the parameterλ > 0, and the matrixA has BGK form:

A :=

(

−1 1
1 −1

)

= 2

[( 1
2
1
2

)

⊗ (1, 1)−
(

1 0
0 1

)]

. (2.6)

This ODE can be seen as anx–homogeneous variant of (1.3) with just two discrete
velocities. In fact, on the right hand side of (2.6), the column vector(1

2,
1
2)

⊤ cor-
responds to the MaxwellianM(v) in the BGK equation (1.3), and the row vector
(1, 1) corresponds to the velocity integral. The symmetric matrixA has an eigen-
value 0 with corresponding eigenvectorf ∞ := (1

2,
1
2)

⊤ and an eigenvalue -2. Hence
A is coercive on{ f ∞}⊥. Since each column ofA sums up to 0, the “total mass” of
the system, i.e.f1(t)+ f2(t), stays constant in time. Hence, we shall assume w.l.o.g.
that f I is normalized, i.e.f I

1 + f I
2 = 1. Thus, ast → ∞, f (t) = f ∞ +( f I − f ∞) e−2λ t

converges tof ∞ exponentially with rate 2λ . For f I
1,2 ≥ 0 we havef1,2(t)≥ 0.
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In analogy to Definition 1 we introduce for (2.5) (withn= 2) the relative entropy
generated byψ:

eψ( f (t)| f ∞) :=
n

∑
j=1

ψ
( f j(t)

f ∞
j

)

f ∞
j . (2.7)

Its time derivative under the flow of (2.5) reads

d
dt

eψ( f (t)| f ∞) =−λ ( f1− f2)

[

ψ ′
( f1(t)

f ∞
1

)

−ψ ′
( f2(t)

f ∞
2

)

]

(2.8)

=: −Iψ( f (t)| f ∞) =−2λψ ′′(ζ )( f1− f2)
2 ≤ 0,

whereζ = ζ (t) is an intermediate value between 2f1(t) and 2f2(t). Iψ( f (t)| f ∞)
denotes theFisher information(of f (t) w.r.t. f ∞).

As pointed out in [3], it is not obvious to bound this Fisher information from
below directly by a multiple of the relative entropy (exceptfor quadratic entropies).
The goal of such an estimate would be to establish the exponential decay of the rel-
ative entropy. Hence, it is the essence of the entropy methodto consider the entropy
dissipation rate: Differentiating (2.8) once more in time gives

Rψ( f (t)| f ∞) :=− d
dt

Iψ( f (t)| f ∞) (2.9)

= 2λ Iψ( f (t)| f ∞)+λ 2( f1(t)− f2(t)
)2
[

ψ ′′
( f1(t)

f ∞
1

) 1
f ∞
1
+ψ ′′

( f2(t)
f ∞
2

) 1
f ∞
2

]

.

Due toψ ′′ ≥ 0 the second term is nonnegative. Hence,

− d
dt

Iψ( f (t)| f ∞)≥ 2λ Iψ( f (t)| f ∞) .

And this yielded in [3] the exponential decay ofIψ( f (t)| f ∞) and ofeψ( f (t)| f ∞)
at thesub-optimalrate 2λ . But this procedure can be improved easily to give the
following sharp result:

Theorem 3.Let the convex entropy generatorψ satisfy either:ψ ′′ is convex on J;
or ψ ′ is concave on(0,1) along withψ ′ is convex on(1,∞). Then the solution to
(2.5)satisfies

Iψ( f (t)| f ∞)≤ e−4λ t Iψ( f I | f ∞) , t ≥ 0, (2.10)

eψ( f (t)| f ∞)≤ e−4λ t eψ( f I | f ∞) , t ≥ 0. (2.11)

Proof. Case 1:ψ ′′ convex onJ
We have for 0≤ s≤ 1:

sψ ′′(σ2)+(1−s)ψ ′′(σ1)≥ ψ ′′(sσ2+(1−s)σ1
)

.

Integrating this inequality overs∈ [0,1] yields∀σ1 6= σ2 ∈ J:
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ψ ′′(σ1)+ψ ′′(σ2)

2
≥ κ

∫ σ2
σ1

ψ ′′(σ) dσ
σ2−σ1

= κ
ψ ′(σ2)−ψ ′(σ1)

σ2−σ1
, (2.12)

whereκ is introduced only for later reference. Here we setκ = 1.
We now recall thatf ∞

1 = f ∞
2 . Hence, (2.9) and (2.12) give

d
dt

Iψ( f (t)| f ∞)≤−4λ Iψ( f (t)| f ∞) , (2.13)

and (2.10) follows. As usual in the entropy method, one next integrates (2.13) in
time (fromt to ∞) to obtain

d
dt

eψ( f (t)| f ∞)≤−4λeψ( f (t)| f ∞) ,

and this finishes the proof for the caseψ ′′ convex.

Case 2:ψ ′ concave on(0,1) along withψ ′ convex on(1,∞)
We may assume without loss of generality thatf1 > f2. Then f1/ f ∞

1 > 1> f2/ f ∞
2 ,

and by the tangent line inequality for the concave functionψ ′∣
∣

(0,1) ,

0= ψ ′(1)≤ ψ ′
(

f2
f ∞
2

)

+ψ ′′
(

f2
f ∞
2

)(

f ∞
2 − f2

f ∞
2

)

.

Likewise, using the tangent line inequality for the convex functionψ ′∣
∣

(1,∞)
,

ψ ′
(

f1
f ∞
1

)

≤ ψ ′(1)+ψ ′′
(

f1
f ∞
1

)(

f1− f ∞
1

f ∞
1

)

= ψ ′′
(

f1
f ∞
1

)(

f1− f ∞
1

f ∞
1

)

.

Altogether we have

ψ ′′
(

f1
f ∞
1

)(

f1− f ∞
1

f ∞
1

)

≥ψ ′
(

f1
f ∞
1

)

and ψ ′′
(

f2
f ∞
2

)(

f ∞
2 − f2

f ∞
2

)

≥−ψ ′
(

f2
f ∞
2

)

.

(2.14)
Now continuing to assume thatf1 > f2, and using the fact thatf ∞

1 = f ∞
2 so that

f1− f2 = 2( f1− f ∞
1 ) = 2( f ∞

2 − f2),

(

f1− f2
)

[

ψ ′′
( f1

f ∞
1

) 1
f ∞
1
+ψ ′′

( f2
f ∞
2

) 1
f ∞
2

]

= 2
(

f1− f ∞
1

)

ψ ′′
( f1

f ∞
1

) 1
f ∞
1
+2( f ∞

2 − f2)ψ ′′
( f2

f ∞
2

) 1
f ∞
2

≥ 2

[

ψ ′
(

f1
f ∞
1

)

−ψ ′
(

f2
f ∞
2

)]

.

Therefore,
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λ 2( f1− f2
)2
[

ψ ′′
( f1

f ∞
1

) 1
f ∞
1
+ψ ′′

( f2
f ∞
2

) 1
f ∞
2

]

≥ 2λ Iψ( f | f ∞) .

Again from (2.9) we obtain (2.13). ⊓⊔

Remark:

1. Concerning the logarithmic and power law entropies from (2.3) one easily ver-
ifies: ψp satisfies the conditionψ IV ≥ 0 onJ (or the inequality (2.12)) exactly
for p∈ [1,2]∪ [3,∞).

2. Forψp with p ∈ (2,3), inequality (2.12) holds withκ = p−1
2 (but not for any

larger constantκ). This follows fromgp(z) := zp−2 + 1− zp−1−1
z−1 > 0 onR

+

andgp(0) = 0, which can be verified by elementary computations. Hence, for
p∈ (2,3), the entropy method yields exponential decay ofep( f (t)| f ∞) with the
reduced rate 2(κ +1)λ = (p+1)λ :

ep( f (t)| f ∞)≤ e−(p+1)λ tep( f I | f ∞), t ≥ 0.

But the decay estimates (2.11), (2.10) are in general false for p∈ (2,3).

In an alternative approach, one can verify for 2< p< 3 the estimates

ψp(σ)≤ ψ3(σ), ∀σ ≥ 0; ψ3(σ)≤Cpψp(σ), ∀0≤ σ ≤ 2,

where[0,2] is the maximum range of values forf1f ∞
1

and f2
f ∞
2

. Here the constant

is Cp =
ψ3(2)
ψp(2)

= 4
2p−1−p. With (2.11) this implies

ep( f (t)| f ∞)≤ e−4λ te3( f I | f ∞)≤Cpe−4λ tep( f I | f ∞), t ≥ 0.

Hence, the entropiesep, p ∈ (2,3) still decay with the optimal rate 4λ , but at
the price of the multiplicative constantCp > 1.

3. The relative entropies ˆep, p≥ 2 from (2.4) satisfy the second set of assumptions
in Theorem 3. Note thatψ ′′′ does not have to be continuous atσ = 1.

2.1 Multi-velocity BGK models

Now, we consider discrete space-homogeneous BGK models inR
n: The evolution

of a vectorf (t) = ( f1(t), f2(t), . . . , fn(t))⊤ ∈ R
n is governed by

{

d
dt f = 2λA f , t ≥ 0,

f (0) = f I ∈ R
n ,

(2.15)

for someλ > 0 and a matrixA ∈ R
n×n in BGK form
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A =







ρ1
...

ρn






⊗ (1, . . . , 1)− I (2.16)

with ρ = (ρ1, . . . ,ρn)
⊤ ∈ (0,1)n such that∑n

j=1 ρ j = 1.
Such a matrixA has a simple eigenvalue 0 with left eigenvectorl1 = (1, . . . ,1)

and right eigenvectorr1 = ρ , and an eigenvalue−1 with geometric multiplicity
n−1. Since each column ofA sums up to 0, the “total mass” of system (2.15) stays
constant in time, i.e.∑n

j=1 f j(t) = ∑n
j=1 f I

j .
Matrix A = (a jk) j,k=1,...,n has only non-negative off-diagonal coefficientsa jk

( j 6= k); such matrices are calledessentially non-negativeor Metzler matrices [19].
An essentially non-negative matrixA induces via (2.15) a semi-flow which pre-
serves non-negativity of its initial datumf I , i.e. f I

j ≥ 0 for all j = 1, . . . ,n, implies
f j(t)≥ 0 for all t ≥ 0.

Remark:An essentially non-negative matrix is calledQ-matrix (or W-matrix in
[20]) if it has an eigenvalue 0 with right eigenvector(1, . . . ,1)⊤. Q-matrices are
the infinitesimal generators of continuous-time Markov processes with finite state
space [15].

In the following, we consider normalized positive initial data f I , i.e.∑n
j=1 f I

j = 1,
such that the solutionf of (2.15) is positive and normalized for allt ≥ 0. Thus, as
t →∞, f (t)= f ∞+( f I − f ∞) e−2λ t converges to the normalized steady statef ∞ := ρ
exponentially with rate 2λ .

The study of the long-time behavior of solutionsf to (2.15) is a classical topic,
an approach via entropy methods can be found in [20, 17]. Notethat Perthame [17,
§6.3] considers essentially positive matrices (i.e. off-diagonal elements are posi-
tive) to simplify the presentation. However, the results generalize to irreducibleQ-
matrices, since only the non-negativity of off-diagonal elements is used, see also
[17, Remark 6.2]. While [17, Proposition 6.5] establishes only exponential decay in
entropy, we aim at the optimal decay rate in the entropy approach.

We consider the time derivative of the relative entropy (2.7) under the flow of
(2.15)

d
dt

eψ( f (t)| f ∞) =
n

∑
j=1

ψ ′
(

f j (t)
f ∞
j

)

2λ ( f ∞
j − f j(t)) =: −Iψ( f (t)| f ∞)≤ 0 (2.17)

which is non-positive due to the properties (2.1) of an entropy generator (ψ ′ is an
increasing function withψ ′(1) = 0). Next, we compute the second order derivative
of eψ( f (t)| f ∞) w.r.t. time:
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Rψ( f (t)| f ∞) : =− d
dt

Iψ( f (t)| f ∞) =
d
dt

n

∑
j=1

ψ ′
(

f j (t)
f ∞
j

) d
dt

f j

=
n

∑
j=1

ψ ′
(

f j (t)
f ∞
j

) d2

dt2 f j +
n

∑
j=1

ψ ′′
(

f j (t)
f ∞
j

)

1
f ∞
j

( d
dt

f j

)2

= 2λ Iψ( f (t)| f ∞)+
n

∑
j=1

ψ ′′
(

f j (t)
f ∞
j

)

1
f ∞
j

( d
dt

f j

)2
≥ 2λ Iψ( f (t)| f ∞) ,

sinceA2 = −A andψ ′′ ≥ 0. This yields the non-optimal entropy dissipation rate
2λ . To obtain a better entropy dissipation rate, we want to estimate the neglected
term via

n

∑
j=1

ψ ′′
(

f j (t)
f ∞
j

)

1
f ∞
j

( d
dt

f j

)2
≥ µ Iψ( f (t)| f ∞)≥ 0 (2.18)

for someµ > 0.

Theorem 4.Letρ = (ρ1, . . . ,ρn)
⊤ ∈ (0,1)n such that∑n

j=1 ρ j = 1 and let the convex

entropy generatorψ ∈ C2(J) satisfy for someµ > 0 and all u= (u1, . . . ,un)
⊤ ∈

[0,1]n with ∑n
j=1u j = 1:

n

∑
j=1

ψ ′′
(

u j
ρ j

)

1
ρ j
(ρ j −u j)

2 ≥ µ
2λ

n

∑
j=1

ψ ′
(

u j
ρ j

)

(u j −ρ j). (2.19)

Then, for all non-negative normalized initial data fI , the solution f to(2.15)satis-
fies

Iψ( f (t)| f ∞)≤ e−(2λ+µ)t Iψ( f I | f ∞) , t ≥ 0, (2.20)

eψ( f (t)| f ∞)≤ e−(2λ+µ)t eψ( f I | f ∞) , t ≥ 0. (2.21)

Proof. The solutionf to (2.15) is positive and normalized for allt > 0. Under As-
sumption (2.19) onψ, we obtain the estimates (2.18), and

d
dt

Iψ( f (t)| f ∞)≤−(2λ +µ) Iψ( f (t)| f ∞) , (2.22)

hence (2.20) follows. Next, one integrates (2.22) in time (from t to ∞) to obtain

d
dt

eψ( f (t)| f ∞)≤−(2λ +µ) eψ( f (t)| f ∞) ,

and this finishes the proof. ⊓⊔
For the quadratic entropy generatorψ2 inequality (2.19) holds withµ = 2λ . Thus

we recover the optimal decay rate 4λ in (2.20)–(2.21). For the logarithmic entropy
generatorψ1 an estimate forµ in (2.19) has been given in [9, 6] as

µ
2λ

≥
√

ρmin(1−ρmin) with ρmin = min
j=1,...,n

ρ j .
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Next, we consider entropy generatorsψ in the sense of Definition 1, such thatψ ′ is
concave on(0,1) along withψ ′ convex on(1,∞). Thus, for f1 ≥ f ∞

1 > 0 and f ∞
2 ≥

f2 > 0, the inequalities (2.14) continue to hold. Distinguishing the casesu j < ρ j ,
u j > ρ j and the trivial caseu j = ρ j , we deduce for allj = 1, . . . ,n,

ψ ′′
(

u j
ρ j

)

1
ρ j
(ρ j −u j)

2 ≥ ψ ′
(

u j
ρ j

)

(u j −ρ j),

hence (2.19) holds withµ = 2λ . However, for the entropy generatorsψ̂p in (2.4)
with p≥ 2 the optimal value isµ = (p−1)2λ .

In the following, we restrict ourselves ton= 2 and determine the best constant
for some polynomial entropy generators:

Lemma 1. Letρ1,ρ2 ∈ (0,1) with ρ1+ρ2 = 1. The entropy generatorψ(σ) satisfies
condition(2.19)with

1≥ µ
2λ

=











1 for ψ(σ) = ψ2(σ),

2min{ρ1, ρ2} for ψ(σ) = ψ3(σ),

2−2
√

1−3ρ2 (1−ρ2)> 0 for ψ(σ) = ψ4(σ).

Proof. For n= 2, the assumptions onρ andu in (2.19) imply

−(ρ2−u2) = ρ1−u1 = ρ1(u1+u2)−u1 = ρ1u2−ρ2u1 = ρ1ρ2(
u2
ρ2

− u1
ρ1
).

Thus condition (2.19) is equivalent to

2

∑
j=1

ψ ′′
(

u j
ρ j

)

1
ρ j

ρ2
1ρ2

2(
u2
ρ2

− u1
ρ1
)2 ≥ µ

2λ

2

∑
j=1

ψ ′
(

u j
ρ j

)

(−1) jρ1ρ2(
u2
ρ2

− u1
ρ1
)≥ 0.

Settingv1 := u1/ρ1 andv2 := u2/ρ2, we deduce forψp(σ), p> 1,

(p−1)
[

vp−2
1 ρ2+vp−2

2 ρ1
]

(v1−v2)
2 ≥ µ

2λ
[

vp−1
1 −vp−1

2

]

(v1−v2) ∀v1,v2 ≥ 0.

Moreover, forv2 > 0, dividing byvp
2 and definingz := v1/v2, we obtain

(p−1)
[

zp−2ρ2+ρ1
]

(z−1)2 ≥ µ
2λ
[

zp−1−1
]

(z−1) ∀z≥ 0.

We show the statement for the quartic entropy generatorψ4(σ), the (simpler)
proof for quadratic and cubic entropy generators is omitted. Forψ4, condition (2.19)
is equivalent to

g(z) := z2(3ρ2− µ̃)− µ̃z+3ρ1− µ̃ ≥ 0 ∀z≥ 0

with µ̃ := µ/(2λ ). Evaluatingg(z) at z= 0 and taking the limitz→ ∞, we deduce
the necessary conditions 3ρ1 ≥ µ̃ and 3ρ2 > µ̃ , respectively. The minimum ofg(z)
on z∈ (0,∞) is zero, iff µ̃ solvesµ̃2− 4(3ρ1− µ̃) (3ρ2− µ̃) = 0. This quadratic
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polynomial has a simple positive zero given byµ̃0 = 2−2
√

1−3ρ2 (1−ρ2) > 0,
sinceρ1+ρ2 = 1.

The expressioñµ0 = 2−2
√

1−3ρ2 (1−ρ2)> 0 attains its maximum 1 forρ2 ∈
(0,1) at ρ2 = 1/2. ⊓⊔

Remark:The quadratic entropyψ2(σ) satisfies Assumption (2.19) withµ = 2λ
for all f ∞

1 , f ∞
2 ∈ (0,1). The cubic entropyψ3(σ) and the quartic entropyψ4(σ)

satisfy (2.19) withµ = 2λ only for f ∞
1 = f ∞

2 = 1
2.

3 A discrete hypocoercive BGK model

In this section we consider an example for a discrete version(both in x and v)
of (1.1). More precisely, we consider the evolution of a vector f (t) =

(

f j(t); j =

1, ...,4
)⊤ ∈ R

4, where its four components may correspond to the following points
in thex−v–phase space:(1,1), (1,−1), (−1,−1), (−1,1), in this order. Its evolu-
tion is given by

d
dt

f = (A+B) f , t ≥ 0, (3.1)

f (0) = f I ∈ R
4 .

Similarly to (2.6), the matrixA has BGK form:

A :=
1
2









−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1









=
1
2

(

1 1
1 1

)

⊗
(

1 0
0 1

)

− I , (3.2)

where the first summand on the r.h.s. is the projection onto the kernel ofA,

kerA = span[(1100)⊤,(0011)⊤] .

In (3.1), the matrixB is skew-symmetric and reads

B :=









0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0









=

(

0 −1
1 0

)

⊗
(

1 −1
−1 1

)

. (3.3)

B corresponds to a discretization of the transport operator in (1.1) by symmetric
finite differences. We remark that (3.1) does not preserve positivity but, as we shall
show, the hypocoercivity of (1.1). Motivated by the theory of hyperbolic systems,
one may also replace the transport operator by an upwind discretization with a then
non-symmetric matrix̃B. Then, the resulting system would preserve positivity. But
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it would be coercive rather than hypocoercive. Here we opt todiscuss the situation
with B given in (3.3).

The spectrum ofA+B is given by 0,−1
2±

√
15
2 i,−1. The unique, (in the 1-norm)

normalized steady state of (3.1) is given byf ∞ = w1 =
1
4 (1111)⊤, which spans the

kernel ofA +B. Eigenvectors of the non-trivial eigenvalues are given byw2,3 :=
(
√

5,±
√

3i,−
√

5,∓
√

3i)⊤ andw4 := (1,−1, 1,−1)⊤, and all three of them have
mass 0. This shows that1

2 is the sharp decay rate of any (normalized)f (t) towards
f ∞. But this “spectral gap” of size12 disappears in the symmetric part of the matrix:

σ
(

A + B+B⊤
2

)

= {0, 0,−1,−1}. Hence, the matrixA +B is only hypocoerciveon
{ f ∞}⊥ (as defined by C. Villani, see§3.2 of [21]). But using an appropriate sim-
ilarity transformation ofA +B one can again recover the sharp decay rate of the
hypocoercive BGK-model (3.1) via energy or entropy methods.

In particular, we shall use Lyapunov’s direct method –see Lemma 3 in the fol-
lowing subsection– to prove decay to equilibrium for normalized solutions: Iff I is
normalized, then the solution to (3.1) satisfies (for any norm onR4)

‖ f (t)− f ∞‖ ≤ ce−t/2‖ f I − f ∞‖ , t ≥ 0,

with some generic constantc≥ 1.

3.1 Lyapunov’s direct method

We consider an ODE for a vectorf (t) = ( f1(t), f2(t), . . . , fn(t))⊤ ∈ R
n:

{

d
dt f = A f , t ≥ 0,

f (0) = f I ∈ R
n ,

(3.4)

for some real (typically non-symmetric) matrixA ∈ R
n×n. The origin 0 is a steady

state of (3.4). The stability of the trivial solutionf 0(t) ≡ 0 is determined by the
eigenvalues of matrixA:

Theorem 5.Let A ∈ R
n×n and let λ j ( j = 1, . . . ,n) denote the eigenvalues ofA

(counted with their multiplicity).

(S1) The equilibrium f0 of (3.4) is stable if and only (i)ℜλ j ≤ 0 for all j = 1, . . . ,n;
and (ii) all eigenvalues withℜλ j = 0 are non-defective1.

(S2) The equilibrium f0 of (3.4) is asymptotically stable if and only ifℜλ j < 0 for
all j = 1, . . . ,n.

(S3) The equilibrium f0 of (3.4) is unstable in all other cases.

1 An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplic-
ity.
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To study the stability forf 0 via Lyapunov’s direct method, a first guess for a Lya-
punov functionV( f ) is the (squared) Euclidean normV( f ) = ‖ f‖2

2. The derivative
of V( f ) along solutionsf (t) of (3.4) satisfies

d
dt

V( f (t)) = 〈 f (t) , (A⊤+A) f (t)〉 .

Thus the derivative depends only on the symmetric part1
2(A

⊤+A) of a matrixA.
Hence the choiceV( f ) = ‖ f‖2

2 is only suitable for symmetric matricesA.
To study the stability off 0(t) ≡ 0 w.r.t. (3.4) for a generalA, it is standard to

consider the generalized (squared) norm

V( f ) := 〈 f , P f 〉 for some symmetric, positive definite matrixP∈ R
n×n.

The derivative ofV( f ) along solutionsf (t) of (3.4) satisfies

d
dt

V( f (t)) = 〈A f (t) , P f (t)〉+ 〈 f (t) , PA f (t)〉= 〈 f (t) , R f (t)〉 , (3.5)

with matrix R := A⊤P+PA. Conclusions on the stability off 0 are possible, de-
pending on the (negative) definiteness ofR, see e.g. [14, Proposition 7.6.1].

To determine the decay rate of an asymptotically stable steady state, we shall use
the following algebraic result.

Lemma 2. For any fixed matrixC∈C
n×n, let µ :=min{ℜ{λ}|λ is an eigenvalue of

C}. Let{λ j |1≤ j ≤ j0} be all the eigenvalues ofC with ℜ{λ j}= µ , only counting
their geometric multiplicity.

If all λ j ( j = 1, . . . , j0) are non-defective, then there exists a Hermitian, positive
definite matrixP∈ C

n×n with

C∗P+PC≥ 2µP, (3.6)

whereC∗ denotes the Hermitian transpose ofC. Moreover, (non-unique) matrices
P satisfying(3.6)are given by

P :=
n

∑
j=1

b j w j ⊗w j
⊤ , (3.7)

where wj ( j = 1, . . . ,n) denote the eigenvectors ofC∗, and bj ∈ R
+ ( j = 1, . . . ,n)

are arbitrary weights.

Remark:Lemma 2 is the complex analog of [2, Lemma 4.3] or [1, Lemma 2.6]. In
particular, ifC ∈ R

n×n is a real matrix, then the inequality (3.6) of Lemma 2 holds
true for real, symmetric, positive definite matricesP∈ R

n×n. Moreover, the case of
defective eigenvalues is also treated in [2, 1].

If A ∈ R
n×n has only eigenvalues with negative real parts, then the origin is the

unique and asymptotically stable steady statef 0 = 0 of (3.4). Due to Lemma 2, there
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exists a symmetric, positive definite matrixP∈R
n×n such thatA⊤P+PA ≤−2µP

whereµ = min|ℜλ j |. Thus, the derivative ofV( f ) := 〈 f , P f 〉 along solutions of
(3.4) satisfies

d
dt

V( f (t))≤−2µV( f (t)) with µ = min|ℜλ j |, (3.8)

which impliesV( f (t))≤ e−2µtV( f I ) and‖ f (t)‖2 ≤ ce−2µt‖ f I‖2 for somec≥ 1 by
equivalence of norms onRn.

In contrast, we consider next matricesA ∈ R
n×n having only eigenvalues with

non-positive real part. More precisely, letA satisfy

(A1) A has a simple eigenvalueλ1 = 0 with left eigenvectorw⊤
1 ∈R

n and right eigen-
vectorv1 ∈ R

n;
(A2) the other eigenvaluesλ j ( j = 2, . . . ,n) of A have negative real part.

Then, the space of steady states of (3.4) consists of span{v1}, and solutions to (3.4)
will typically not decay to 0. More precisely, iff is a solution of ODE (3.4) with
initial datum f I satisfying〈w1 , f I 〉 = c for somec∈ R, then〈w1 , f (t)〉 = c for all
t ≥ 0. Therefore we aim to prove the convergence of solutionsf (t) of (3.4) for an
initial datum f I (normalized in the sense of〈w1 , f I 〉= 1) to the unique steady state
f ∞ ∈ span{v1} (again normalized as〈w1 , f ∞〉= 1).

Lemma 3. Let A ∈ R
n×n satisfy (A1)–(A2) with non-defective eigenvaluesλ j for

j = 1, . . . ,n. If f is a solution of(3.4) for some normalized initial datum fI (i.e.
〈w1 , f I 〉= 1), then

‖ f (t)− f ∞‖ ≤ c ‖ f I − f ∞‖e−λ∗ t , t ≥ 0, (3.9)

whereλ∗ := minλ j 6=0 |ℜλ j | and some constant c≥ 1.

Proof. To present a unified approach for symmetric and non-symmetric matrices
A satisfying (A1)–(A2), we consider again the “distorted” vector norm‖ f‖P :=
√

〈 f , P f 〉, and the relative entropy-type functional

Eψ2( f (t)| f ∞) := ‖ f (t)− f ∞‖2
P

with some real, symmetric and positive definite matrixP to be determined. Its
derivative satisfies

d
dt

Eψ2( f (t)| f ∞) =
〈

( f − f ∞) , (A⊤P+PA)( f − f ∞)
〉

.

Every matrixA ∈ R
n×n induces an orthogonal decomposition ofR

n via

R
n = ker(A) ⊕ ran(A⊤) = ker(A⊤) ⊕ ran(A).

Thus, there exists an orthogonal projection fromRn onto ran(A), which is repre-
sented by a matrixP1 ∈ R

n×n with P2
1 = P1. Due to assumption (A1), matrixA⊤
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has a one-dimensional kernel which is spanned byw1, henceP1w1 = 0. Sincew⊤
1 is

a left eigenvector ofA for the eigenvalue 0, a solutionf of (3.4) for a normalized ini-
tial datum f I (i.e.〈w1 , f I 〉= 1) is again normalized, i.e.〈w1 , f (t)〉= 1 for all t ≥ 0.
Thus,〈w1 , f (t)− f ∞〉 ≡ 0 iff 〈w1 , f I − f ∞〉= 0, which impliesf (t)− f ∞ ∈ ran(A)
for all t ≥ 0. Moreover,

d
dt

Eψ2( f (t)| f ∞) =
〈

P1( f − f ∞) , P⊤
1 (A

⊤P+PA)P1 P1( f − f ∞)
〉

.

In order to prove
P⊤

1 (A
⊤P+PA)P1 ≤−2λ∗P⊤

1 PP1 (3.10)

we consider the modified matrix̃A :=A−λ∗v1⊗w⊤
1 ∈R

n×n. Due to (A1)–(A2) and
the assumptions in Lemma 3,Ã has only non-defective eigenvalues with negative
real part. Due to Lemma 2, there exists a real, symmetric, positive-definite matrix
P such thatÃ⊤P+PÃ ≤ −2λ∗P. This implies (3.10) sinceP⊤

1

(

(v1 ⊗w⊤
1 )

⊤P+

P(v1⊗w⊤
1 )
)

P1 = 0. Therefore we conclude

d
dt

Eψ2( f (t)| f ∞)≤−2λ∗Eψ2( f (t)| f ∞) , (3.11)

andEψ2( f (t)| f ∞)≤Eψ2( f I | f ∞)e−2λ∗ t follows. Moreover, 0≤ λP,minI ≤P≤ λP,maxI ,
whereλP,min > 0 is the smallest eigenvalue andλP,max> 0 is the biggest eigenvalue
of P. Therefore,λP,min‖ f‖2

2 ≤ ‖ f‖2
P ≤ λP,max‖ f‖2

2 and (3.9) follows. ⊓⊔
Remark:For a symmetric matrixA, the choiceP= I is admissible and one recovers
the optimal decay rate and constantc= 1 in estimate (3.9).

Remark:Assume now that the matrixA from Lemma 3 satisfies also ker(A) =
ker(A⊤), which corresponds todetailed balancefor the steady state. Then, Lemma
3 allows for a simpler proof: Letw1 = f ∞ ∈ R

n be a normalized steady state. Then
the orthogonal projectorw1⊗w1

⊤ commutes with bothA andA⊤. Let P1 denote
its complementary projection. Then ran(P1) is invariant undereAt , and (3.10) with
P from (3.7) follows from Lemma 2 applied toA restricted to ran(P1).

4 Space-inhomogeneous BGK models

In this section we study the large-time behavior of the BGK equation (1.3) on
L2(T1 ×R;M−1

T (v) dv) with periodic boundary conditions inx. We start with the
x–Fourier series off :

f (x,v, t) = ∑
k∈Z

fk(v, t)eikx , (4.1)

and obtain the following evolution equation for the spatialmodesfk, k∈ Z:

∂t fk+ ikv fk = Q fk = MT(v)
∫

R

fk(v, t)dv− fk(v, t) , k∈ Z; t ≥ 0. (4.2)
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Since the BGK operatorQ projects onto the centered Maxwellian at temperatureT,
it is natural to consider (4.2) in the basis spanned by the Hermite functions (inv).
This is natural for the following reason:

The Hermite polynomials (for temperatureT) are the system of orthonormal
polynomials that one obtains by applying the Gram-Schmidt orthonormalization
procedure to the sequence of monomials{vℓ} in L2(MT); let Pℓ(v) denote theℓth
Hermite polynomial. TheHermite functionsthemselves are the functions of the form
g̃ℓ(v) = Pℓ(v)MT(v), and evidently these are orthonormal inL2(M−1

T ). This is the
space in which we work.

The key fact concerning the Hermite functions is that multiplication by v acts
on them in a very simple way, and this is relevant since the action of our streaming
operator on thekth mode is multiplication byikv. In fact, the reason for the simple
nature of its action is very general and thus applies to generalizations of the Hermite
functions. Since we use this below, we explain the simple action from a general
point of view, using only the fact thatMT is even.

Note that multiplication byv is evidently self adjoint onL2(M−1
T ). Also, for each

ℓ, vg̃ℓ(v) is in the span of{g̃0, . . . , g̃ℓ+1}. Hence, form> ℓ+1

0= 〈g̃m,vg̃ℓ〉L2(M−1
T ) = 〈g̃ℓ,vg̃m〉L2(M−1

T )

from which we conclude that theℓ,m matrix elements of multiplication byv are
zero for|ℓ−m|> 2. Finally, by the symmetry ofMT , the diagonal matrix elements
are all zero. Hence,in the Hermite basis, multiplication by v is represented by a
tridiagonal symmetric matrix that is zero on the main diagonal. The operatorQ is
evidently diagonal in the Hermite basis. Hence the operatorLk := −ikv+Q has a
simple tridiagonal structure. We shall see that the matrix representingikv is

ik
√

T











0
√

1 0 · · ·√
1 0

√
2 0

0
√

2 0
√

3
... 0

√
3

...











while Q = diag(0,−1,−1, · · ·).
The infinite tridiagonal matrix representingLk =−ikv+Q in the Hermite basis

is still not easy to analyze directly. We cannot compute its eigenfunctions in closed
form, and hence cannot apply formula (3.7) to implement Lyapunov’s method.

However, we can do this for a related family of discrete velocity models, since
then we are dealing with finite matrices. The discrete models, using the binomial
approximation to the Gaussian distribution, are sufficiently close in structure to the
continuous velocity BGK model that they suggest an ansatz for theP operator that
specifies the entropy function norm. In fact, a complete solution of a 2-velocity
model provides the essential hint for proving hypocoercivity of the continuous ve-
locity BGK model.

We shall present the details of this analysis in§4.3 below. Here, the above re-
mark only serves as a motivation for our analysis of discretevelocity models, which



20 Franz Achleitner, Anton Arnold, Eric A. Carlen

are velocity discretizations of the BGK equation (1.3). We shall start with the two
velocity case, and then discuss its generalization ton velocities.

4.1 A two velocity BGK model

In this section we revisit the following hyperbolic system,which can be considered
as a kinetic equation with the two velocitiesv=±σ , and some parameterσ > 0:

∂t f±±σ∂x f± =±1
2
( f−− f+), t ≥ 0, (4.3)

for the distributionsf±(x, t) of right- and left-moving particles, 2π–periodic inx.
The matrix of the interaction term on the r.h.s. has the form

1
2

(

−1 1
1 −1

)

,

and hence (4.3) is also of BGK-form. Due to the conservation of the total mass
∫ 2π

0

(

f+(x, t)+ f−(x, t)
)

dx of (4.3), its unique normalized steady state isf ∞
+ = f ∞

− =

const= 1
4π
∫ 2π

0

(

f I
+(x)+ f I

−(x)
)

dx.
This toy model (with the choiceσ = 1) was analyzed in§1.4 of [10] to illustrate

the hypocoercivity method presented there. As for (4.2), weFourier transform (4.3)
in x and expand it in the discrete velocity basis{

(1
1

)

,
( 1
−1

)

}. This yields for each
modek∈ Z the following decoupled ODE-system:

d
dt

uk =−Ck uk, Ck =

(

0 ikσ
ikσ 1

)

, (4.4)

with uk(t) ∈ C
2, k ∈ Z. The matrices−Ck have the eigenvalues−1

2 ±
√

1
4 −k2σ2

in the case|k| ≤ 1
2σ and−1

2 ± i
√

k2σ2− 1
4 in the case|k| > 1

2σ . Hence, ast → ∞,

u0(t) converges to an eigenvector of the 0-eigenvalue, i.e.u∞
0 = ( f ∞

+ + f ∞
− , 0)⊤, with

the exponential rateλ0 := 1. All modesuk(t) with k 6= 0 converge tou∞
k = 0 with

an exponential rate determined by the spectral gap of the matrix Ck. For simplicity
we shall assume here that1

2σ 6∈N. This avoids defective eigenvalues of the matrices
Ck, but they could be included as discussed in Lemma 4.3 of [2]. The spectral gap

of the low modes (i.e. for 0< |k| < 1
2σ ) is λk := 1

2 −
√

1
4 −k2σ2, and it isλk := 1

2
for the high modes. Hence, the exponential decay rate of the sequence of modes
{uk(t)}k∈Z is given by the decay of the modesk=±1: λ := mink∈Z{λk}= ℜ

(

1
2 −

√

1
4 −σ2

)

. By Plancherel’s theorem this is then also the convergence rate of f (t) =

( f+(t), f−(t))⊤ towards the steady statef ∞ = ( f ∞
+ , f ∞

− )
⊤.

The goal of entropy methods is to prove this exponential decay towards equilib-
rium, possibly with the sharp rate, by constructing an appropriate Lyapunov func-
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tional. In the hypocoercive method developed in [10] the authors obtained, for the
caseσ = 1 and the quadratic entropy, a decay rate bounded above by1

5. But the
sharp rate for this case isλ = 1

2. We shall now construct a refined Lyapunov func-
tional that captures the sharp decay rate.

Following Lemma 2(i) we introduce the positive definite transformation matrices
P0 := I ,

Pk :=

(

4k2σ2 −2ikσ
2ikσ 2−4k2σ2

)

, for 0< |k|< 1
2σ

,

and

Pk :=

(

1 −i
2kσ

i
2kσ 1

)

, for |k|> 1
2σ

. (4.5)

In the latter case,Pk is unique only up to a multiplicative constant, which is chosen
here such that TrPk = n= 2. We define the “distorted” vector norms for each mode
uk:

‖uk‖Pk :=
√

〈uk, Pkuk〉 .
Due to the ODE (4.4) and the matrix inequality (3.6) it satisfies

d
dt
‖uk‖2

Pk
=−〈uk ,(C

∗
kPk+PkCk)uk〉 ≤ −2λk‖uk‖2

Pk
, k∈ Z\{0} , (4.6)

and hence

‖uk(t)−u∞
k ‖Pk ≤ e−λkt‖uk(0)−u∞

k ‖Pk , t ≥ 0, k∈ Z . (4.7)

With this motivation we define the following norm as a Lyapunov functional for
the sequence of modes:

E
(

{uk}k∈Z
)

:=
√

∑
k∈Z

‖uk‖2
Pk
. (4.8)

From (4.7) we obtain

E
(

{uk(t)−u∞
k }
)

≤ e−λ tE
(

{uk(0)−u∞
k }
)

, t ≥ 0,

with λ = mink∈Z{λk}. Due to Plancherel’s theorem, this is also a norm for the
corresponding distributionsf = ( f+, f−)⊤:

E
(

{uk}
)

= ‖B f‖L2(0,2π;R2) ,

whereB is a (nonlocal) bounded operator onL2(0,2π;R2) with bounded inverse.
More precisely,B = I +K, whereK is a compact operator with‖K‖ < 1, since

Pk
|k|→∞−→ I (cf. (4.5)). This implies the sought-for exponential decayof f (t) with

sharp rate:

Theorem 6.Let 1
2σ 6∈ N. Then the solution to(4.3)satisfies
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‖ f (t)− f ∞‖L2(0,2π;R2) ≤ ce−λ t‖ f I − f ∞‖L2(0,2π;R2) , t ≥ 0,

with λ = ℜ
(

1
2 −
√

1
4 −σ2

)

and some generic constant c> 0.

4.2 A multi-velocity BGK model

We now turn to a discrete velocity model analog of the linear BGK equation (1.3),
and we shall establish its hypocoercivity. Fixing unit temperatureT, recall that as a
consequence of the Central Limit Theorem, the measureM1(v)dv is the (weak) limit
of a sequence of discrete probability measures{µn} where

µn :=
n

∑
j=0

2−n
(

n
j

)

δ(2 j−n)/
√

n ,

whereδy denotes the unit mass aty∈R. Each of the probability measuresµn, n∈N,
has zero mean and unit variance.

The Hermite polynomials have a natural discrete analog, namely theKrawtchouk
polynomials. A good reference containing proofs of all of the facts we usebelow is
the survey [8]. (We are only concerned with a special family of the more general
Krawtchouk polynomials discussed in [8], namely thes= 2 case in the terminology
used there.) The standard Krawtchouk polynomials of orderm are a set ofn+ 1
polynomialsKn,m; m= 0, ...,n that are orthogonal with respect to the probability
measure

ωn =
n

∑
j=0

2−n
(

n
j

)

δ j ,

and are given by the following generating function:

(1+ t)n−v(1− t)v =
n

∑
m=0

tmKn,m(v) . (4.9)

The leading coefficient ofKn,m has the sign(−1)m. One has the orthogonality rela-
tions

∫

R

Kn,mKn,ℓdωn =

{

(n
m

)

m= ℓ ,

0 m 6= ℓ .
(4.10)

Then thediscrete Hermite polynomials Hn,m are defined by

Hn,m(v) := (−1)m
(

n
m

)−1/2

Kn,m

(

n
2
+

√
n

2
v

)

for m= 0,1, . . . ,n; v∈ R .

(4.11)
Then{Hn,0, . . . ,Hn,n} is the set ofn+1 polynomials that are orthogonal with respect
to µn, and hence are an orthonormal basis forL2(R; µn), and for eachm and v,
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limn→∞ Hn,m(v) = 1√
m!

Hm(v). The analog of the crucial Hermite–recurrence relation
(4.16) for the Krawtchouk polynomials is

(m+1)Kn,m+1 = (n−2v)Kn,m− (n−m+1)Kn,m−1 .

Rewriting this in terms of the discrete Hermite polynomials, one obtains

vHn,m(v) =
√

m+1

(

n−m
n

)1/2

Hn,m+1(v)+
√

m

(

n−m+1
n

)1/2

Hn,m−1(v) .

(4.12)
Notice that this reduces to (4.16) in the limitn→ ∞ (up to the multiplication by the
standard Gaussian).

We are now ready to produce a discrete velocity analog of (1.3) in continuous
x-space. The phase space isT1× [v0, . . . ,vn] where the discrete velocityv j = (2 j −
n)/

√
n. Our phase space density at timet is a vectorf(x, t) with n+1 non-negative

entriesf0(x, t), . . . , fn(x, t), such that

n

∑
j=0

(

∫

T1
f j(x, t)dx

)

= 1 .

We associate tof(x, t) the probability measure on the phase space given by

n

∑
j=0

f j(x, t)δ(2 j−n)/
√

n .

The discrete unit Maxwellian (of ordern) is the vectorm= 2−n
(

(n
0

)

,
(n

1

)

, . . . ,
(n

n

)

)⊤
.

Then the ordern discrete analog of (1.3) is the equation

∂t f(x, t)+V∂xf(x, t) = m

(

n

∑
j=0

f j(x, t)

)

− f(x, t) , t ≥ 0; x∈ T1 , (4.13)

with the(n+1)× (n+1) matrixV = diag(v0, ...,vn). Proceeding as for (4.2) yields
the evolution equation for the spatial modesfk(t), k∈Z. Expandingfk in the discrete
Hermite basis{Hn,m(v j); j = 0, ...,n}m=0,...,n, we obtain for eachk the equation

∂t f̂k+ ikL1f̂k = L2f̂k , t ≥ 0; k∈ Z ,

where the vector̂fk(t)∈C
n+1 represents the basis coefficients offk(t). As beforeL2

is the(n+1)× (n+1) matrix L2 = diag(0,−1,−1, · · ·), andL1 is the symmetric
tridiagonal matrix whose diagonal entries are all zero, andwhose superdiagonal
sequence is given by

[L1]m,m+1 =
√

m+1

(

n−m
n

)1/2

; m= 0,1, . . . ,n−1 .
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For example, withn= 4,

L1 =













0 1 0 0 0
1 0

√

3/2 0 0
0
√

3/2 0
√

3/2 0
0 0

√

3/2 0 1
0 0 0 1 0













.

Next we discuss the time decay of the solution to (4.13) towards f∞ = m. We
shall focus on the example with ordern = 4, but the other cases behave similarly.
Computing for the modesk = ±1 the eigenvalues of∓iL1+L2 we find two com-
plex pairs and one real eigenvalueλ0 =−0.526948302245121... which has the least
negative real part, and hence determines the exponential decay rate off±1(t). This
situation for higher|k| is similar, but even better, with faster decay. To see this we
write the eigenvalue equation for the matrices−ikL1+L2, k∈ Z as

h0(λ ) := λ (λ +1)4 =−k2(λ +1)2(5λ +1)−k4(4λ +
5
2
) =: −k2h2(λ )−k4h4(λ ) .

The functionh0 is negative on(−1,0), −h2 on (−1
5,0] and−h4 on (−5

8,0] (cf. Fig-
ure 1). Fork 6= 0, the functionk2h2(λ )+ k4h4(λ ) has exactly one real zero,λ̃ (k),
and it is nonnegative on[λ̃ (k),0]. For each fixedk ∈ Z, the functionk2h2+k4h4 is
strictly increasing w.r.t.λ . Hence, the above eigenvalue equation has exactly one
real zeroλ0(k), and it lies in(−5

8,0]. For each fixedλ ∈ [λ̃ (k),0], the function
k2h2+k4h4 is strictly increasing w.r.t. increasing|k|. Hence,λ0(k) decreases mono-
tonically (w.r.t.|k|) towards−5

8.

λ

1

5

− 5

8
−1

h0(λ)

−h2(λ)

−h4(λ)

Fig. 1 Functions appearing in the eigenvalue equation of−ikL1+L2; solid blue curve:h0(λ ); red
dash-dotted curve:−h2(λ ); purple dashed line:−h4(λ ). (colors only online)

This proves that the 5 velocity model is hypocoercive, at least in the normE
defined in (4.8) (with the transformation matricesPk now corresponding to−Ck :=
∓ikL1+L2). The sharp decay rate is given byλ0 =−0.526948302245121... .
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To establish a uniform-in-k spectral gap was already cumbersome for the case
n= 4, and it becomes even more involved for largern. In the following section we
present a much simpler strategy, at the price of giving up sharpness of the decay
rate. But more importantly, that strategy will also be applicable for the continuous
velocity case, which is represented by a tridiagonal “infinite matrix”.

4.3 A continuous velocity BGK model

In this subsection we continue our discussion of the space-inhomogeneous BGK
equation (1.3) or, equivalently, (4.2). This will yield theproof of Theorem 1.

Using the probabilists’ Hermite polynomials,

Hm(v) := (−1)me
v2
2

dm

dvme−
v2
2 , m∈ N0 , (4.14)

we define the normalized Hermite functions

gm(v) := (2πm!)−1/2Hm(v)e−
v2
2 , and g̃m(v) :=

1√
T

gm
( v√

T

)

. (4.15)

They satisfy
∫

R

g̃m(v)g̃n(v)M
−1
T (v)dv= δmn

and the recurrence relation

vg̃m(v) =
√

T
[√

m+1g̃m+1(v)+
√

mg̃m−1(v)
]

. (4.16)

In the basis{g̃m}m∈N0 Equation (4.2) becomes

∂t f̂k+ ik
√

T L1f̂k = L2f̂k , t ≥ 0; k∈ Z . (4.17)

Here, the “infinite vector”f̂k(t) ∈ l2(N0) is the representation of the function
fk(v, t) ∈ L2(R;M−1

T ) in the Hermite function basis, and the operatorsL1, L2 are
represented by “infinite matrices” as

L1 =











0
√

1 0 · · ·√
1 0

√
2 0

0
√

2 0
√

3
... 0

√
3

...











, L2 = diag(0,−1,−1, · · ·) . (4.18)

Next we shall prove the exponential decay of (4.17), using a modified strategy
compared to§4.2. For the 5 velocity model there, it was possible (with some effort)
to determine the sharp spectral gap of the matrices−ikL1+L2, uniform in all modes
k. But since this seems not (easily) possible for the infinite dimensional case in
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(4.17), we shall construct now approximate transformationmatricesPk that yield at
least a (reasonable) lower bound on the spectral gap, and hence on the decay rate.
For simplicity we set nowT = 1, as the temperature could be “absorbed” into the
parameterk by scaling.

Let A be an(n+1)×(n+1) tridiagonal matrix that is zero on the main diagonal.
That isAi, j = 0 unlessj = i +1 or i = j −1. We further suppose thatA is real and
symmetric, so thatA is characterized by the numbersa1, . . . ,an wherea j = A j−1, j .
Let B= diag(0,−1, . . . ,−1). Finally, fork∈Z, consider the matrix−Ck :=−ikA+
B.

In the simplest casen= 1 with a= 1, we obtain

A =

(

0 1
1 0

)

, B =

(

0 0
0 −1

)

and −Ck =

(

0 −ik
−ik −1

)

.

For this matrixCk, the transformation matrixPk was already computed in (4.5)
(with σ = 1). Fork 6= 0 a simple computation yields

C∗
kPk+PkCk = Pk

so that with this choice ofPk, Lyapunov’s method yields exponential decay of the
ODE-sequenced

dt uk =−Ckuk, k∈ Z at the optimal ratee−t/2 (cf. §4.1).

We now turn ton > 1. For k 6= 0 definePk to be the(n+ 1)× (n+ 1) matrix

whose upper left 2×2 block is

(

1 −iα/k
iα/k 1

)

, where 0< α < k is a parameter

to be chosen below, and with the remaining diagonal entries being 1, and all other
entries being 0. Then the eigenvalues ofPk are(k+α)/k, 1 and(k−α)/k, so that
Pk is positive definite, and close to the identity for largek.

We take−Ck :=−ikA+B as above. Then

C∗
kPk+PkCk =−ik(APk−PkA)− (BPk+PkB) ,

and its upper left 3×3 block reads




2a1α −iα/k a2α
iα/k 2−2a1α 0
a2α 0 2



 . (4.19)

The lower right(n−2)×(n−2) block is 2 times the identity, the off diagonal blocks
are zero. In all of our finite dimensional approximations to (4.18) we havea1 = 1.
The value ofa2 is different for the different discrete velocity models, but to simplify
matters, we only present calculations fora2 =

√
2, which is the value for the limiting

continuous velocity model.
The determinants of the upper left 2×2 and 3×3 blocks read, respectively,

δ2(α,k) = α
(

4−
(

4+
1
k2

)

α
)

and δ3(α,k) = 4α
(

(α −2)(α −1)− α
2k2

)

.
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For eachk, δ3(α,k)/α has two positive roots, and is negative between them. Hence
our matrix is positive definite whenα lies between zero and the smaller positive root
of δ3(α,k)/α. This root is least whenk= 1, when it has the value7−

√
17

4 ≈ 0.719.
Hence, by Sylvester’s criterion,C∗

kPk+PkCk is positive definite for allk 6= 0 if and

only if α ∈ (0, 7−
√

17
4 )≈ (0,0.719). Note that alsoδ2(α,k)> 0 for theseα,k.

Whenα is in this range, our 3×3 matrix (4.19) has three positive eigenvalues
λ1, λ2, λ3 which we may take to be arranged in increasing order. Then

√

λ1 =

√

δ3(α,k)√
λ2λ3

≥ 2
√

δ3(α,k)

λ2+λ3
>

√

δ3(α,k)

2

since the trace of our matrix is 4. Hence, the least eigenvalue λ1 of our 3×3 matrix
satisfies

λ1 = λ1(α,k)≥ 1
4

δ3(α,k) .

Hence we chooseα = αk to maximizeδ3(α,k) between its first two roots. Its max-
imal value,δ3(αk,k), depends onk, but it is easily seen to be least fork = 1 with
α1 = 1

3. Simple computations and estimates then yieldλ1(αk,k) ≥ 1
4δ3(α1,1) =

17/54 for allk.
Since we always takeα < 1, the largest eigenvalue of the matrixPk (defined with

α = αk) is no more than 2, uniformly ink. Hence

C∗
kPk+PkCk ≥

17
54

I ≥ 17
108

Pk (4.20)

uniformly in k. Thus in each Fourier mode, we at least have exponential decay (of a
quadratic type entropy) at the rate 17/108 (by proceeding as in (4.6)).

Since this is also uniform inn, we obtain a bound for the continuous velocity
model. Let the infinite matrixPk be the positive matrix using the optimal value ofα
in thekth mode, and regarded as a bounded operator onL2(M−1

T ) through its action
on Hermite modes. Define the entropy function by

e( f ) := ∑
k∈Z

〈

( fk(v)−M1(v)),Pk( fk(v)−M1(v))
〉

L2(M−1
1 )

. (4.21)

We obtain that, for solutionsf (t) of our BGK equation (1.3) or, equivalently, (4.2),

d
dt

e( f (t))≤− 17
108

e( f (t)) ,

giving exponential relaxation.
The least eigenvalue ofPk, 1−α/k, is at least 1− 7−

√
17

4 > 1
4 uniformly in k, and

hence we have the inequality

e( f )≥ 1
4
‖ f −M1‖2

H ,
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with H = L2(T1×R;M−1
T (v) dv).

The above method to establish exponential decay is simple toapply but does not
give the sharp decay rate (it is off by a factor of about 9, as indicated by numerical
results). Hence we shall now sketch how to improve on it. The essence of the above
method is to use an ansatz for the transformation matrixPk, namely to use for its
upper left 2× 2 block the matrix from the 2 velocity case. Using instead larger
blocks, will most likely improve the decay rate.

As a second alternative we shall now present an improvement of the crucial ma-
trix inequality (4.20), but we shall keep the same ansatz forthe matrixPk: In the
inequality

C∗
kPk+PkCk−2µPk ≥ 0 (4.22)

we shall chooseµ ∈ [0,1] as large as possible (related to the matrix inequality (3.6)).
The upper left 3×3 block of this matrix on the l.h.s. reads

D :=





2α −2µ −iα(1−2µ)/k
√

2α
iα(1−2µ)/k 2−2α −2µ 0√

2α 0 2−2µ



 .

We shall first derive strict inequalities onµ to obtain the positive definiteness of
this matrix, using Sylvester’s criterion. FromD0,0 we deduce the first condition
0≤ µ < α. The determinant of the upper left 2×2 block reads

δ2(µ ;α,k) = 4(α −µ)(1−α −µ)− α2

k2 (1−2µ)2 .

Since the last term increases with|k|, it suffices to considerδ2 for k = 1. Next we
want to establish the positivity of

δ2(µ ;α,1)
4(1−α2)

= µ2−µ +α
1−5α/4
1−α2 .

The zero order term of this quadratic polynomial is positiveon the relevantα–
interval(0, 7−

√
17

4 )⊂ (0, 4
5), taking its maximum value14 atα = 1

2. For that limiting
case, the r.h.s. reads(µ − 1

2)
2, and for 0< α < 1

2, δ2(µ ;α,1) always has a zero in
the interval(0, 1

2). This discussion yields the second condition 0≤ µ < 1
2, related to

α < 1
2.

Next we consider the positivity of the determinant of the upper left 3×3 block,
which reads

δ3(µ ;α,k)= 8(1−µ)(α−µ)(1−α−µ)−4α2(1−α−µ)−2
α2

k2 (1−µ)(1−2µ)2 .

For the same reason as before, we only have to consider the case k = 1. For the
resulting cubic polynomial inµ we want to find its largest zero in the interval[0, 1

2]

w.r.t. the parameterα ∈ [0, 1
2]. By numerical inspection we find thatα0 ≈ 0.4684

yieldsδ3(µ ;α0,1)≥ 0 for µ ∈ [0,0.273796...]. This yields the third condition onµ
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and shows that the matrix inequality (4.22) holds withµ0 := 0.273796..., uniformly
in k 6= 0. This somewhat more involved discussion shows that the decay rate can be
improved to 2µ0 ≈ 0.547592. This finishes the proof of Theorem 1.

Remark:To appreciate the above decay rateµ0 (sincee( f ) is a quadratic functional),
we compare it to a numerical computation of the spectral gap of the “infinite ma-
trices”−ikL1+L2, k ∈ Z from (4.18). To this end we cut out the upper leftn×n
submatrix for large values ofn. For increasingn the spectral gap approaches 0.6973.
Hence our decay rate is off by only a factor of about 2.5. If one desired a closer
bound, one could work with aP matrix with a larger block, say 3×3, in the upper
left.

4.4 Linearized BGK equation

Next we shall analyze here the linearized BGK equation (1.12) for the perturbation
h(x,v, t) = f (x,v, t)−MT(v). We recall the definition of the normalized Hermite
functionsg̃m(v), m∈ N0 from (4.15) and give explicit expressions for

g̃0(v) = MT(v) and g̃2(v) =
v2−T√

2T
MT(v) .

With this notation, (1.12) reads

ht(x,v, t)+vhx(x,v, t) =

(

g̃0(v)−
1√
2

g̃2(v)

)

σ(x, t)+
1√
2T

g̃2(v)τ(x, t)−h(x,v, t) .

Fourier transforming inx, as in (4.1), each spatial modehk(v, t) evolves as

∂thk+ ikvhk = g̃0(v)σk(t)+ g̃2(v)
1√
2

(

τk(t)
T

−σk(t)

)

−hk , k∈ Z; t ≥ 0 .

(4.23)
Here,σk andτk denote the spatial modes of thev–momentsσ andτ defined in (1.8).

Next we expandhk(·, t) ∈ L2(R;M−1
T ) in the orthonormal basis{g̃m(v)}m∈N0:

hk(v, t) =
∞

∑
m=0

ĥk,m(t) g̃m(v) , with ĥk,m = 〈hk(v), g̃m(v)〉L2(M−1
T ) ,

and the “infinite vector”̂hk(t) = (ĥk,0(t), ĥk,1(t), ...)⊤ ∈ ℓ2(N0) contains all Hermite
coefficients ofhk(·, t), for eachk∈ Z. In particular we have

ĥk,0 =
∫

R

hk(v)g̃0(v)M
−1
T (v) dv= σk

and
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ĥk,2 =
∫

R

hk(v)g̃2(v)M
−1
T (v) dv=

1√
2

(τk

T
−σk

)

.

Hence, (4.23) can be written equivalently as

∂thk(v, t)+ ikvhk(v, t) = g̃0(v)ĥk,0(t)+ g̃2(v)ĥk,2(t)−hk(v, t) , k∈ Z; t ≥ 0 .

In analogy to (4.17), its Hermite coefficients satisfy

∂t ĥk(t)+ ik
√

T L1ĥk(t) = L3ĥk(t) , k∈ Z; t ≥ 0 , (4.24)

where the operatorsL1, L3 are represented by “infinite matrices” onℓ2(N0) by

L1 =











0
√

1 0 · · ·√
1 0

√
2 0

0
√

2 0
√

3
... 0

√
3

...











, L3 = diag(0,−1, 0,−1,−1, · · ·) .

We remark that (4.24) simplifies for the spatial modek = 0. One easily verifies
that the flow of (1.12) preserves (1.9), i.e.σ0(t) = 0, τ0(t) = 0 ∀t ≥ 0. Hence, (4.23)
yields

∂th0(v, t) =−h0(v, t) , t ≥ 0 .

For k 6= 0, we note that the linearized BGK equation is very similar tothe equa-
tion specified in (4.17) and (4.18): The only difference is that L2 is replaced by
L3, which has one more zero on the diagonal. Our treatment ofik

√
TL1 − L2

in the previous section suggests the form of the positive matrix Pk that will pro-
vide our Lyapunov functional in this case. We obtained the matrix Pk in that case
by replacing four entries around the location of the zero inL2 with the entries

of

(

1 −iα/k
iα/k 1

)

, the matrix that provides the optimalPk for the two-velocity

model. In the present case, we use two such matrices, one for each zero.
For parametersα andβ to be chosen below, we definePk to be the matrix that

has








1 −iα/k 0 0
iα/k 1 0 0

0 0 1 −iβ/2k
0 0 iβ/2k 1









(4.25)

as its upper-left 4× 4 block, with all other entries being those of the identity. We
define−Ck = −ikL1 + L3, where, for the rest of this subsection, we use units in
whichT = 1.

Lemma 4. Choosingα = β = 1/3 in Pk uniformly in|k| ∈ N, we have

C∗
kPk+PkCk ≥ 2µPk (4.26)

where
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µ = 0.0206. (4.27)

Proof. We compute thatC∗
kPk+PkCk is twice the identity matrix whose upper left

5×5 block is replaced by

Dk,α ,β =













2α −iα/k
√

2α 0 0
iα/k 2−2α 0 −β/

√
2 0√

2α 0
√

3β −iβ/2k β
0 −β/

√
2 iβ/2k 2−

√
3β 0

0 0 β 0 2













.

We seek to chooseα andβ to make this matrix positive definite.
For 1≤ j ≤ 5, letδ j(k,α,β ) denote the determinant of the upper leftj × j sub-

matrix of Dk,α ,β . Forα = β , the first and third column ofDk,α ,β have the common
factorα. We then compute that

δ5(k,α,α) = α2p5(α,k) ,

wherep5(α,k) is a cubic polynomial inα with coefficients depending onk:

p5(α,k) = 16(
√

3−1)−
[

8
√

3+16+
2+4

√
3

k2

]

α

+

[

34−6
√

3+
24k2+1

2k4

]

α2−
[

4
√

3−1+

√
3

k2

]

α3 .

Next, we establish the bound

p5(α,k)≥ p5(α,1)

= 16(
√

3−1)− (12
√

3+18)α +(46.5−6
√

3)α2− (5
√

3−1)α3 > 0 (4.28)

for α ∈ [0,α1] with α1 ≈ 0.555 and|k| ∈ N. To see the first inequality we consider

p5(α,k)− p5(α,1) = α(1− 1
k2 )ϕ(α,k)

with
ϕ(α,k) :=

√
3α2−

(

1
2(1+

1
k2 )+12

)

α +2+4
√

3.

It satisfiesϕ(α,1)> 0 for α ∈ [0,α2]with α2 ≈0.765 and∂kϕ =α/k3 for α ≥ 0 and
k ∈ N. The r.h.s. of (4.28) is easily seen to be monotone decreasing and evaluating
it at α = 1/3 and simplifying, we obtainp5(α,k)≥ 2.5 for α ∈ [0,1/3]. Finally, we
then have

δ5(k,α,α)≥ 2.5α2

for α ∈ [0,1/3] and allk 6= 0. A similar but simpler analysis shows that forj =
1,2,3,4, δ j(k,α,α)> 0 for α ∈ [0,1/3] and allk 6= 0.
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Thus, we chooseα = β = 1/3 uniformly ink and this makesDk,α ,β positive def-
inite. Let{λ1,λ2,λ3,λ4,λ5} be the eigenvalues ofDk,1/3,1/3 arranged in increasing
order. We seek a lower bound onλ1. Note that by the arithmetic-geometric mean
inequality,

λ1 =
δ5(k,1/3,1/3)

λ2λ3λ4λ5
≥ δ5(k,1/3,1/3)

(

λ2+λ3+λ4+λ5

4

)−4

≥ 256
δ5(k,1/3,1/3)
(Tr[Dk,1/3,1/3])4 .

Since Tr[Dk,α ,β ] = 6 independent ofk, α andβ , we finally obtain the boundλ1 ≥
0.0549, and this means that, uniformly ink 6= 0,

C∗
kPk+PkCk ≥ 0.0549I . (4.29)

A simple computation shows that the eigenvalues ofPk are 1, 1±1/6k, and 1±1/3k.
Hence uniformly ink,

2
3

I ≤ Pk ≤
4
3

I . (4.30)

Combining (4.30) with (4.29) yields the result. ⊓⊔

To deduce the first statement of Theorem 2 we consider a solution h of (1.12), and
for γ ≥ 0 the entropy functionaleγ( f ) defined by

eγ( f ) := ∑
k∈Z

(1+k2)γ〈hk(v),Pkhk(v)〉L2(M−1
T ) , (4.31)

with f = M1+h. Here the matricesP0 = I andPk defined in (4.25) fork 6= 0 are
regarded as bounded operators onL2(M−1

T ). Then

d
dt

eγ( f ) =− ∑
k∈Z

(1+k2)γ〈hk(v),(C
∗
kPk+PkCk)hk(v)〉L2(M−1

T ) ≤−0.0412eγ( f ) ,

(4.32)
which implies (1.14) and this finishes the proof of Theorem 2(a).

We note that the constant in (4.32) is within a factor of 18 of what numerical
calculation shows is best possible. With more work, in particular not making the
simplifying assumptionα = β in the definition ofP, and also employing some of
the ideas in the final part of section 4.3, one can still betterwithin this framework.

4.5 Local asymptotic stability for the BGK equation

For γ ≥ 0, letHγ(T1) be the Sobolev space consisting of the completion of smooth
functionsϕ onT1 in the Hilbertian norm
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‖ϕ‖2
Hγ := ∑

k∈Z
(1+k2)γ |ϕk|2 ,

where ϕk is the kth Fourier coefficient ofϕ. Let Hγ denote the Hilbert space
Hγ(T1)⊗L2(R;M−1

T (v) dv), where the inner product inHγ is given by

〈 f ,g〉Hγ =
∫

T1

∫

R

f (x,v)
[

(

1−∂ 2
x

)γ
g(x,v)

]

M−1
T (v)dvdx̃ ,

where d ˜x denotes the normalized Lebesgue measure onT1.
ThenH0 is simply the weighted spaceL2(T1×R;M−1

T (v) dv) and, for allγ ≥ 0,
Q is self-adjoint onHγ .

Let ρ , P, σ andτ be defined in terms of a densityf as in (1.8). For allγ, ‖σ‖2
Hγ =

〈σMT , f − f ∞〉Hγ . Then by the Cauchy-Schwarz inequality,

‖σ‖2
Hγ ≤ ‖σMT‖Hγ‖ f − f ∞‖Hγ = ‖σ‖Hγ ‖ f − f ∞‖Hγ . (4.33)

Likewise,‖τ‖2
Hγ = 〈τv2MT , f − f ∞〉Hγ , and by the Cauchy-Schwarz inequality,

‖τ‖2
Hγ ≤ ‖τv2MT‖Hγ‖ f − f ∞‖Hγ =

√
3T‖τ‖Hγ‖ f − f ∞‖Hγ . (4.34)

For γ > 1/2, functions inHγ are Ḧolder continuous, and theHγ norm controls their
supremum norm. Combining this with the estimates proved above, we see that for
all γ > 1/2, there is a finite constantCγ such that the pressure and density satisfy

‖σ‖∞ = ‖ρ−1‖∞ ≤Cγ‖ f − f ∞‖Hγ and ‖τ‖∞ = ‖P−T‖∞ ≤Cγ‖ f − f ∞‖Hγ .
(4.35)

Using these estimates it is a simple matter to control the approximation in (1.10).
For s∈ [0,1] and(x,v) ∈ T1×R, define

F(s,x,v) :=
(1+sσ(x))3/2
√

2π(T +sτ(x))
e−v2(1+sσ(x))/2(T+sτ(x)) ,

so that the gain term in the linearized BGK equation (1.12) is∂sF(0,x,v). In this
notation,

Rf (x,v) :=

M f (x,v)−MT(v)−
[(

3
2
− v2

2T

)

MT(v)σ(x)+

(

− 1
2T

+
v2

2T2

)

MT(v)τ(x)
]

=
∫ 1

0
[∂sF(s,x,v)−∂sF(0,x,v)]ds=

∫ 1

0

∫ s

0

[

∂ 2
s F(r,x,v)

]

drds .

We compute
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∂ 2
s F(s,x,v) (4.36)

=
τ −Tσ
(1+sσ)2

[

− 3σ
4θs

+

(

3
2

v2σ +
3
4

τ
)

1
θ 2

s
−
(

1
4

v4σ +
3
2

v2τ
)

1
θ 3

s
+

v4τ
4θ 4

s

]

Mθs(v)

with the notationsθs := T+sτ
1+sσ andMθs(v) := 1√

2πθs
e−v2/(2θs). Note that the r.h.s. of

(4.36) is of the orderO(σ2+ τ2), which will be related toO(( f − f ∞)2) due to the
estimates (4.33)-(4.34).

Simple but cumbersome calculations now show that ifγ > 1/2 and‖ f − f ∞‖Hγ

is sufficiently small, then there exists a finite constantC̃γ ,T depending only onγ and
T such that for alls∈ [0,1],

∥

∥∂ 2
s F(s,x,v)

∥

∥

Hγ
≤ C̃γ ,T‖ f − f ∞‖2

Hγ , (4.37)

and hence
‖Rf ‖Hγ ≤ C̃γ ,T‖ f − f ∞‖2

Hγ . (4.38)

[The calculations are simplest for non-negative integerγ, in which case the Sobolev
norms can be calculated by differentiation. Forγ > 1/2 and sufficiently small
‖ f − f ∞‖Hγ , the estimates (4.35) ensure for alls∈ [0,1] the boundedness of 0<

ε < ‖1+sσ‖∞ , ‖T +sτ‖∞ < ∞ for some fixedε > 0 and theL2(R;M−1
T (v) dv)-

integrability of

e−v2(1+sσ(x))/2(T+sτ(x)) ≤ e−v2/3T for all x .

In (4.37), higher powers of‖ f − f ∞‖Hγ (arising due to derivatives ofσ andτ) can
be absorbed into the constant of the quadratic term.]

Now let f be a solution of the BGK equation (1.6) with constant temperature
T = 1 and defineh(x,v, t) := f (x,v, t)−MT(v) as in the introduction. Now define
the linearized BGK operator

Q2h(x,v, t) :=

(

3
2
− v2

2T

)

MT(v)σ(x)+

(

− 1
2T

+
v2

2T2

)

MT(v)τ(x)−h(x,v, t)

where of courseσ andτ are determined byf , and henceh. Then the nonlinear BGK
equation (1.6) becomes

ht(x,v, t)+v hx(x,v, t) = Q2h(x,v, t)+Rf (x,v, t) , t ≥ 0 , (4.39)

which deviates from the linearized BGK equation (1.12) onlyby the additional term
Rf .

It is now a simple matter to prove local asymptotic stability. We shall use here
exactly the entropy functionaleγ( f ) defined in (4.31) withf =M1+h. Now assume
that h solves (4.39). To computeddt eγ( f ) we use the inequality (4.32) for the drift
term and forQ2h in (4.39), as well as‖Pk‖ ≤ 4

3 and (4.38) for the termRf . This
yields
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d
dt

eγ( f )≤−0.0412eγ( f )+
8
3

C̃γ ,T‖h‖3
Hγ , (4.40)

(if ‖h‖Hγ is small enough) where we have used the fact thath= f − f ∞. Then since

2
3

eγ( f )≤ ‖h‖2
Hγ ≤

4
3

eγ( f ) ,

which is simply a restatement of (4.30), it is now simple to complete the proof of
Theorem 2(b): Estimate (4.40) shows that there is aδγ > 0 so that if the initial data
f I (x,v) satisfies‖ f I − f ∞‖Hγ < δγ , then the solutionf (t) satisfies

eγ( f (t))≤ e−t/25eγ( f I ) .

Here we used that the linear decay rate in (4.40) is slightly better than 1
25, to com-

pensate the nonlinear term.

We expect that the strategy from this section can be adapted also to nonlinear
kinetic Fokker-Planck equations; this will be the topic of asubsequent work.
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