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The dynamics of rarefied gases are governed by Boltzmann equation
(1872)

∂tF + v · ∇xF︸ ︷︷ ︸
Free Transport

= Q(F ,F )︸ ︷︷ ︸
Collisions

,

where ∀t ≥ 0,∀x , v ∈ R3, F (t, x , v) denotes the particles distribution

and Q(F ,F ) is the collision operator which takes the form

Q(F1,F2) := Qgain(F1,F2)− Qloss(F1,F2)

Mesoscopic description: statistic description aiming at describing
particles behavior
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Free transport

We suppose that the considered gas is made up of monoatomic identical
particles

In the absence of external forces, if the interactions between the particles
are not considered, they move along straight lines with constant speed

∀t ≥ 0,∀x , v ∈ R3 F (t, x + vt, v) = const = F (0, x , v)

Hence, their distribution is given by

∀t ≥ 0,∀x , v ∈ R3 ∂tF (t, x , v) + v · ∇xF (t, x , v) = 0
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Collision operator

Binary collisions
Instantaneous collisions
Elastic collisions : conservation of momentum and kinetic energy

v + v∗︸ ︷︷ ︸
pre-collisional

= v ′ + v ′∗︸ ︷︷ ︸
post-collisional

|v |2 + |v∗|2 = |v ′|2 + |v ′∗|2

This is equivalent to the existence of a unitary vector ω ∈ S2 such
that {

v ′ = v + [(v∗ − v) · ω]ω,
v ′∗ = v∗ − [(v∗ − v) · ω]ω

⇒ |v − v∗| = |v ′ − v ′∗| and
∣∣∣ v−v∗
|v−v∗| · ω

∣∣∣ =
∣∣∣ v ′−v ′∗
|v ′−v ′∗|

· ω
∣∣∣

Microreversible collisions
Molecular chaos
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Under the previous hypotheses Boltzmann proved that the general
equation becomes

∂tF + v · ∇xF = Q(F ,F ),

Qloss(F1,F2)(t, x , v) =

∫
R3

∫
S2
B(|v − v∗|,

∣∣∣∣ v − v∗
|v − v∗|

· ω
∣∣∣∣)F1(v∗)F2(v)dωdv∗

Qgain(F1,F2)(t, x , v ′) =

∫
R3

∫
S2
B(|v − v∗|,

∣∣∣∣ v − v∗
|v − v∗|

· ω
∣∣∣∣)F1(v∗)F2(v)dωdv∗

Q(F1,F2)(t, x , v) = Qgain(F1,F2)− Qloss(F1,F2)

=

∫
R3

∫
S2
B(|v − v∗|,

∣∣∣∣ v − v∗
|v − v∗|

· ω
∣∣∣∣)[F1(v ′∗)F2(v ′)− F1(v∗)F2(v)

]
dωdv∗
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In our case, the collision operator takes the form

Q(F1,F2) =

∫
R3

∫
S2
|v − v∗|κq0(θ)

[
F1(v ′∗)F2(v ′)− F1(v∗)F2(v)

]
dωdv∗,

where θ is the deviation angle and the collision rule is{
v ′ = v + [(v∗ − v) · ω]ω,
v ′∗ = v∗ − [(v∗ − v) · ω]ω

Hard potential 0 ≤ κ ≤ 1
Angular cutoff 0 ≤ q0(θ) ≤ C | cos θ| with cos θ = v∗−v

|v∗−v | · ω
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Bounded domain Ω ⊂ R3

The boundary of the phase space is

γ := {(x , v) ∈ ∂Ω× R3},

where n = n(x) the outward
normal direction at x ∈ ∂Ω

n(x)

x

Ω
 (x,v)
 ∈γ

(x,v)
∈γ 

+

-

 (x,v)∈γ0

We decompose γ as

γ− = {(x , v) ∈ ∂Ω× R3 : n(x) · v < 0}, the incoming set

γ+ = {(x , v) ∈ ∂Ω× R3 : n(x) · v > 0}, the outcoming set

γ0 = {(x , v) ∈ ∂Ω× R3 : n(x) · v = 0}, the grazing set
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Boundary conditions on γ−
In-flow boundary condition:

∀t ≥ 0, ∀(x , v) ∈ γ− F (t, x , v) = g(t, x , v)

where g precribes the density of the incoming particles.

Specular reflection boundary
condition: ∀t ≥ 0, ∀(x , v) ∈ γ−

F (t, x , v) = F (t, x ,Rxv),

where Rxv := v − 2n(x)(n(x) · v)

Bounce-back reflection boundary
condition: ∀t ≥ 0, ∀(x , v) ∈ γ−

F (t, x , v) = F (t, x ,−v)
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Diffuse boundary condition: ∀t ≥ 0, ∀(x , v) ∈ γ−

F (t, x , v) = cµT
µT (v)

∫
n(x)·u>0

F (t, x , u){n(x) · u}du

Where cµT

∫
n(x)·u>0 µT (u){n(x) · u}du = 1 and µT = 1

2πT e−
|v|2
2T is a

global Maxwellian distribution with constant temperature T > 0
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Known results in a general bounded domain

Existence and uniqueness of solutions
Existence of renormalized DiPerna-Lions solutions (weak regularity) :
Hamdache, Arkeryd, Cercignani, Maslova, Mischler,...
Perturbative framework (stronger solutions) :
Domains with a particular geometry: Ukai, Asano, Guiraud,
General Domains: Guo

Time-decay towards an absolute Maxwellian µ = e−
|v|2
2

Desvillettes-Villani, Villani : If F (t) exists in Hk with uniform in t
bound, k >> 1 then F (t)→ µ with some polynomial rate
Guo : F (t)→ µ in L∞ with e−λt rate
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[Guo 2010]

Existence and uniqueness of a
strong global solution in a
weighted in speed L∞x,v space
Time-decay towards an
absolute Maxwellian with an
exponential rate
In the case of a strictly convex
domain, for general boundary
conditions, C 0

x,v regularity
away from γ0 for all positive
time

Ω

Continuity

[Kim 2011]

In the case of a non convex
domain, for diffuse, in-flow,
bounce-back boundary
conditions, a discontinuity
may appear in non convexity
points and propagates inside
the domain through a linear
trajectory

Continuity

Discontin
uity

Ω
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Regularity Estimates

BV, Sobolev, Hölder regularity results for the Vlasov equation in a
half space with various boundary conditions [Guo 1995]

Hölder regularity results for the Vlasov equation in convex domains
with Specular BC [Hwang-Velazquez 2010]

In the case of Boltzmann equation very rare results exist when the
domain is non-trivial and in the presence of boundary conditions
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Perturbative framework
Let µ = e−

|v|2
2 be a global normalized Maxwellian

IDEA : look for solutions of the form F =
√
µf

Then f satisfies

∂t f + v · ∇x f = Γgain (f , f )− ν(
√
µf )f

where

ν(
√
µf )(v) = ν(F )(v) :=

1
√
µf

Qloss(
√
µf ,
√
µf )(v)

=

∫
R3

∫
S2
|v − v∗|κq0(θ)

√
µ(v∗)f (v∗)dωdv∗

Γgain(f1, f2)(v) :=
1
√
µ
Qgain(

√
µf1,
√
µf2)(v)

=

∫
R3

∫
S2
|v − v∗|κq0(θ)

√
µ(v∗)f1(v ′∗)f2(v ′)dωdv∗



Introduction Boundary conditions Known results Linear transport in-flow Existence Convex case Non convex case

The corresponding boundary conditions for f are followings :

In-flow boundary condition :

f (t, x , v) =
g(t, x , v)√

µ(v)
, on γ−

Diffuse boundary condition :

f (t, x , v) = cµ
√
µ(v)

∫
n(x)·u>0

f (t, x , u)
√
µ(u){n(x) · u}du, on γ−

Specular reflection boundary condition :

f (t, x , v) = f (t, x ,Rxv), on γ−

Bounce-back reflection boundary condition :

f (t, x , v) = f (t, x ,−v), on γ−
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For the initial datum f0, compatibility conditions are necessary

In-flow boundary compatibility condition:

f0(x , v) =
1√
µ(v)

g(0, x , v) on γ−

Diffuse boundary compatibility condition:

f0(x , v) = cµ
√
µ(v)

∫
n(x)·u>0

f0(x , u)
√
µ(u){n(x) · u}du, on γ−

Specular reflection boundary compatibility condition:

f0(x , v) = f0(x ,Rxv), on γ−

Bounce-back reflection boundary compatibility condition:

f0(x , v) = f0(x ,−v), on γ−
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Analysis of the characteristics

From now on we consider a domain with a smooth boundary

Let Ω be a bounded open subset of R3, i.e.

Ω = {x ∈ R3 : ξ(x) < 0}, and ∂Ω = {x ∈ R3 : ξ(x) = 0}

for a smooth ξ : R3 → R

For all x ∈ Ω̄ = Ω ∪ ∂Ω we say that the domain is strictly convex if :∑
i,j

∂ijξ(x)ζiζj ≥ Cξ|ζ|2 for all ζ ∈ R3

We assume that ∇ξ(x) 6= 0 when |ξ(x)| � 1 and we define the unit
outward normal as n(x) = ∇ξ(x)

|∇ξ(x)|
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Analysis of the characteristics

For (x , v) ∈ Ω̄× R3 we define tb(x , v) be the backward exit time as

tb(x , v) = inf{τ > 0 : x − sv /∈ Ω},

and xb(x , v) = x − tb(x , v)v

Note: the particle hits the boundary at time t − tb(x , v)

The characteristics ODE of the
Boltzmann equation is

dX (s)

ds
= V (s),

dV (s)

ds
= 0

Ω

(x,v)

x =x-vtb b

(x-vs,v)

t>0
t-s, 0<s<t b
t-tb

(x,v')

x' b
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tb(x , v) and xb(x , v) may have a singular behavior when

n(xb(x , v)) · v = 0

Define the grazing singular set as:

Sb := {(x , v) ∈ Ω̄× R3 : n(xb(x , v)) · v = 0}

Role of Sb: stationary transport equation

v · ∇x f (x , v) = 0

f |γ− = g ,

where g is a smooth function, then the solution is

f (x , v) = g(xb(x , v), v) = g(x − tb(x , v)v , v)

=⇒f (x , v) might be singular on the singular grazing set Sb.
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In the case the characteristic touches the boundary we need to define
generalized characteristics :

Let (x , v) /∈ γ0 and (t0, x0, v0) = (t, x , v)

the stochastic diffuse cycles are defined as:

(t1, x1, v1) = (t − tb(x , v), x − tb(x , v)v , v1) with n(x1) · v1 > 0

and for ` ≥ 1,

(t`+1, x`+1, v `+1) = (t`− tb(x`, v `), xb(x`, v `), v `+1) with n(x`) · v ` > 0

the specular cycles, are defined for all ` ≥ 1:

(t`+1, x`+1, v `+1) = (t` − tb(x`, v `), xb(x`, v `), v ` − 2n(x`)(v ` · n(x`)))
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the bounce-back cycles are defined for all ` ≥ 1:

(t`+1, x`+1, v `+1) = (t` − tb(x`, v `), xb(x`, v `),−v `)

Then for ` ≥ 1

t` = t1 − (`− 1)tb(x1, v1),

x` =
1− (−1)`

2
x1 +

1 + (−1)`

2
x2,

v `+1 = (−1)`+1v

In all cases we define the backward trajectory as

Xcl(s; t, x , v) =
∑
`

1[t`+1,t`)(s)
{
x` − (t` − s)v `

}
,

Vcl(s; t, x , v) =
∑
`

1[t`+1,t`)(s)v `
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∂tG + v · ∇xG = 0

G (0, x , v) = G0(x , v)

In the case of in-flow BC G (t, x , v) = g(t, x , v) ∀(x , v)γ− then for
0 ≤ s ≤ t ≤ tb(x , v)

G (t, x , v) = G (s, x − (t − s)v , v) = G0(x − tv , v).

while for for tb(x , v) ≤ s ≤ t

G (t, x , v) = G (s, x − (t − s)v , v) = g(t − tb(x , v), xb(x , v), v)

In the case of specular or bounce-back reflection BC, then for
0 ≤ s ≤ t

G (t, x , v) = G (s,Xcl(s; t, x , v),Vcl(s; t, x , v))

= G0(Xcl(0; t, x , v),Vcl(0; t, x , v))

In the case of diffuse reflection BC, it is more difficult to explicit the
solution
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We define: the concave (singular) grazing boundary as

γS0 := {(x , v) ∈ γ0 : tb(x , v) 6= 0 and tb(x ,−v) 6= 0},

the outward inflection grazing boundary as

γI+0 := {(x , v) ∈ γ0 : tb(x , v) 6= 0, tb(x ,−v) = 0

and ∃δ > 0 s.t. x + τv ∈ Ω̄c , ∀τ ∈ (0, δ)},

the inward inflection grazing boundary as

γ
I−
0 := {(x , v) ∈ γ0 : tb(x , v) = 0, tb(x ,−v) 6= 0

and ∃δ > 0 s.t. x − τv ∈ Ω̄c , ∀τ ∈ (0, δ)},

and the convex grazing boundary as

γV0 := {(x , v) ∈ γ0 : tb(x , v) = 0 and tb(x ,−v) = 0}
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Sb := {(x , v) ∈ Ω̄× R3 : n(xb(x , v)) · v = 0}

we have
Sb = γV0 ∪SS

b ∪S
I−
b ,

where
SS

b :=
{

(x , v) ∈ Sb : (xb(x , v), v) ∈ γS0
}
+ γS0 ,

and
S

I−
b :=

{
(x , v) ∈ Sb : (xb(x , v), v) ∈ γI−0

}
⊇ γI−0 ,

while {
(x , v) ∈ Sb : (xb(x , v), v) ∈ γV0

}
= γV0

and {
(x , v) ∈ Sb : (xb(x , v), v) ∈ γI+0

}
= ∅,
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Lemma (Guo10, Kim11)
tb(x , v) is lower semicontinuous;

if v · n(xb(x , v)) < 0 then (tb(x , v), xb(x , v)) are smooth functions
of (x , v)

Assume (x0, v0) ∈ Sb, with v0 6= 0 and 0 < tb(x0, v0) < +∞

If (x0, v0) ∈ S
I−
b then tb(x , v) is continuous around (x0, v0)

If (x0, v0) ∈ SS
b then tb(x , v) is not continuous around (x0, v0)



Introduction Boundary conditions Known results Linear transport in-flow Existence Convex case Non convex case

Define the discontinuity set

D := D0 ∪Di

where
D0 :=

{
(0,+∞)× [γS0 ∪ γV0 ∪ γ

I+
0 ]
}
,

Di :=
{

(t, x , v) ∈ (0,+∞)× {Ω× R3 ∪ γ+} : t ≥ tb(x , v)

and (xb(x , v), v) ∈ γS0
}
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Define the continuity set

C = C0 ∪ C− ∪ C0,−

where
C0 :=

{
{0} × Ω̄× R3} ,

C− :=
{

(0,+∞)× [γ− ∪ γI−0 ]
}
,

C0,− :=
{

(t, x , v) ∈ (0,+∞)× {Ω× R3 ∪ γ+} : t < tb(x , v)

or (xb(x , v), v) ∈ γ− ∪ γI−0
}



Introduction Boundary conditions Known results Linear transport in-flow Existence Convex case Non convex case

Reference case: Linear transport equation with in-flow BC

{∂t + v · ∇x + ν}f = H,

f (0, x , v) = f0(x , v), f (t, x , v)|γ− = g(t, x , v),

where ν(t, x , v) ≥ 0

compatibility conditions:

f0(x , v) = g(0, x , v) for (x , v) ∈ γ−

By Duhamel formula, denoting ν(s) = ν(s, x − (t − s)v , v), we have

f (t, x , v) =1{t≤tb}e
−

∫ t
0 ν(s)ds f0(x − tv , v) + 1{t>tb}e

−
∫ tb
0 ν(s)dsg(t − tb, xb, v)

+

∫ min(t,tb)

0
e−

∫ s
0 ν(τ)dτH(t − s, x − sv , v)ds
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Assume Ω is a smooth bounded domain.

Theorem (Guo10)
Let ω(v) be a weight function, and suppose that f0 ≥ 0 is s.t.

||ωf0||∞ + sup
0≤t<+∞

eλt ||ωg(t)||∞ < δ

for a λ, δ > 0,
then ∃! a solution f s.t.

sup
0≤t<+∞

||eλ
′t f (t)||∞ . ||ωf0||∞ + sup

0≤t<+∞
eλt ||ωg(t)||∞,

for 0 < λ′ < λ

Suppose Ω is strictly convex and f0, g continuous then

f is continuous on [0,+∞)×
[
{Ω̄× R3} \ γ0

]
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Let now Ω be strictly convex

{∂t +v ·∇x +ν}f = H, f (0, x , v) = f0(x , v), f (t, x , v)|γ− = g(t, x , v),

where ν(t, x , v) ≥ 0 and

f0(x , v) = g(0, x , v) for (x , v) ∈ γ−

∇x f0,∇v f0, ∂tg , ∂τig ,∇vg can be obtained directly

∂t f0 := −v · ∇x f0 − ν(0, x , v)f0 + H(0, x , v),

∂ng :=
1

n · v

{
− ∂tg −

2∑
i=1

(v · τi )∂τig − νg + H
}

Note

∇xg :=
n

n · v

{
− ∂tg −

2∑
i=1

(v · τi )∂τig − νg + H
}

+
2∑

i=1

τi∂τig
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Theorem (GKTT17)
For any fixed p ∈ [1,∞), assume

∂t f0,∇x f0,∇v f0, ∈ Lp(Ω× R3),

〈v〉g , ∂tg ,∇vg , ∂τig , ∂ng ∈ Lp([0,T ]× γ−),

and some conditions on the integrability of H.

Then for sufficiently small T > 0 ∃!f s.t.

f , ∂t f ,∇x f ,∇v f ∈ C 0([0,T ]; Lp(Ω× R3))

and the traces are compatible with initial datum and boundary conditions

∂t f |γ− = ∂tg , ∇v f |γ− = ∇vg , ∇x f |γ− = ∇xg , on γ−,

∇x f (0, x , v) = ∇x f0, ∇v f (0, x , v) = ∇v f0, ∂t f (0, x , v) = ∂t f0, in Ω× R3

Here 〈v〉 =
√

1 + |v |2
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By direct computation for t 6= tb, we can compute

∂t f (t, x , v)1{t 6=tb}, ∇x f (t, x , v)1{t 6=tb} and ∇v f (t, x , v)1{t 6=tb}

using

∇x tb =
n(xb)

v · n(xb)
, ∇v tb = − tbn(xb)

v · n(xb)
,

∇xxb = I − n(xb)

v · n(xb)
⊗ v , ∇vxb = −tbI +

tbn(xb)

v · n(xb)
⊗ v
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Through estimates we can prove that

∂f 1{t 6=tb} ≡
[
∂t f 1{t 6=tb},∇x f 1{t 6=tb},∇v f 1{t 6=tb}

]
∈ L∞([0,T ]; Lp(Ω×R3))

On the other hand, thanks to the compatibility condition, we need to
show f has the same trace on the set

M≡ {(tb(x , v), x , v) ∈ [0,T ]× Ω× R3}

Main fact: Let φ(t, x , v) ∈ C∞c ((0,T )× Ω× R3) then∫ T

0

∫∫
Ω×R3

f ∂φ = −
∫ T

0

∫∫
Ω×R3

∂f 1{t 6=tb}φ,

so that f ∈W 1,p with weak derivatives given by ∂f 1{t 6=tb}
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Note that for ∂ = [∂t , ∂xi , ∂vi ] i = 1, 2, 3 the derivative ∂f satisfies

{∂t+v ·∇x+ν}∂f = H, ∂f (0, x , v) = ∂f0(x , v), ∂f (t, x , v)|γ− = ∂g(t, x , v),

where
H = −[∂v ] · ∇x f − ∂νf + ∂H

and ∂xig are given by

∇xg =
n

n · v

{
− ∂tg −

2∑
i=1

(v · τi )∂τig − νg + H
}

+
2∑

i=1

τi∂τig

Idea: Previous estimates can be applied to this case

||∂f (t)||pp+

∫ t

0
|∂f |pγ+,p . ||∂f0||pp+

∫ t

0
|∂g |pγ−,p+p

∫ t

0

∫∫
Ω×R3

|∂H||∂f |p−1
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Existence theorem for diffuse, specular reflection, or
bounce-back reflection BC

Assume Ω = {ξ < 0} is a smooth bounded domain.
Suppose f0 ≥ 0 satisfies the compatibility conditions and for 0 < θ < 1/4

||eθ|v |
2
f0||∞ < +∞

Theorem (Existence/Uniqueness (Guo10), (GKTT16))
There exists a unique solution F =

√
µf ≥ 0 of the Boltzmann equation

on [0,T ∗] with T ∗ = T ∗(||eθ|v |2 f0||∞). Furthermore

sup
0≤t≤T∗

||eθ
′|v |2 f (t)||∞ . P(||eθ|v |

2
f0||∞),

for 0 < θ′ < θ < 1/4 and some polynomial P.

If ‖eθ|v |2{f0 −
√
µ}‖∞ << 1 then T ∗ = +∞.

(ξ has to be real analytic in the specular reflection case).
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Idea of the proof: use a positive preserving iteration

Fm :=
√
µf m, for all m ∈ N

∂t f
m+1 + v · ∇x f

m+1 + ν(
√
µf m)f m+1 = Γgain(f m, f m),

f m+1|t=0 = f0 ≥ 0, f 0 ≡ f0 ≥ 0

NOTE: for every step m we are considering a linear transport equation

ν = ν(
√
µf m), H = Γgain(f m, f m)

with in-flow BC

∀(x , v) ∈ γ− f m+1(t, x , v) = gm(t, x , v)
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Diffuse reflection boundary condition, on (x , v) ∈ γ−,

f m+1(t, x , v) = cµ
√
µ(v)

∫
n(x)·u>0

f m(t, x , u)
√
µ(u){n(x) · u}du

=: gm(t, x , v),

Specular reflection boundary condition, on (x , v) ∈ γ−,

f m+1(t, x , v) = f m(t, x ,Rxv) =: gm(t, x , v),

where Rxv = v − 2n(x)(n(x) · v).

Bounce-back reflection boundary condition, on (x , v) ∈ γ−,

f m+1(t, x , v) = f m(t, x ,−v) =: gm(t, x , v)
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For all m ∈ N

∂t f
m+1 + v · ∇x f

m+1 + ν(
√
µf m)f m+1 = Γgain(f m, f m),

f m+1|t=0 = f0 ≥ 0, f 0 ≡ f0 ≥ 0,

∀(x , v) ∈ γ− f m+1(t, x , v) = gm(t, x , v)

By Duhamel formula

f m+1(t, x , v) =1{t≤tb}e
−

∫ t
0 ν(
√
µf m)f0(x − tv , v)

+ 1{t>tb}e
−

∫ tb
0 ν(

√
µf m)gm(t − tb, xb, v)

+

∫ min(t,tb)

0
e−

∫ s
0 ν(
√
µf m)Γgain(f m, f m)(t − s, x − vs, v)ds
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Note: by Grad estimates for 0 < θ < 1/4, p ∈ [1,+∞)

||Γgain(g1, g2)||p .θ,p ||eθ|v |
2
g1||∞||g2||p

and
||ν(
√
µg1)g2||p .θ,p ||eθ|v |

2
g2||∞||g1||p

Use an L2 − L∞ interpolation argument to find estimates

sup
0≤t≤T

||eθ
′|v |2 f m+1(t)||∞ . ||eθ|v |

2
f0||∞,

for some 0 < θ′ < θ
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Convex case

In this part we concentrate on a strictly convex domain

Let Ω be a bounded open subset of R3, i.e.

Ω = {x ∈ R3 : ξ(x) < 0}, and ∂Ω = {x ∈ R3 : ξ(x) = 0}

for a smooth ξ : R3 → R

For all x ∈ Ω̄ = Ω ∪ ∂Ω we assume the domain is strictly convex :∑
i,j

∂ijξ(x)ζiζj ≥ Cξ|ζ|2 for all ζ ∈ R3

We assume that ∇ξ(x) 6= 0 when |ξ(x)| � 1 and we define the unit
outward normal as n(x) = ∇ξ(x)

|∇ξ(x)|
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Time derivative for diffuse, specular reflection, or
bounce-back reflection BC

Suppose f0 ≥ 0 satisfies the compatibility conditions and for
0 < θ̄, θ < 1/4

||eθ|v |
2
f0||∞ + ||e θ̄|v |

2
∂t f0||∞ < +∞

Recall ∂t f0 := −v · ∇x f0 − ν(
√
µf0)f0 + Γgain(f0, f0)

Theorem (Time derivative regularity (GKTT16))

sup
0≤t≤T∗

||e θ̄|v |
2
∂t f (t)||∞ . P(||e θ̄|v |

2
∂t f0||∞) + P(||eθ|v |

2
f0||∞),

for 0 < θ′ < min{θ̄, θ} < 1/4 and some polynomial P.
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IDEA: Use again the positive preserving iteration

∂t f
m+1(t, x , v)1{t 6=tb} =

− 1{t<tb}e
−

∫ t
0 ν(
√
µf m)[ν(

√
µf m)f0 +

∫ t

0
∂tν(
√
µf m) f0 + v · ∇x f0](x − tv , v)

+ 1{t>tb}e
−

∫ tb
0 ν(

√
µf m)[∂tg

m −
∫ tb

0
∂tν(
√
µf m)](t − tb, xb, v)

−
∫ min(t,tb)

0
e−

∫ s
0 ν(
√
µf m)

∫ s

0
∂tν(
√
µf m) Γgain(f m, f m)(t − s, x − vs, v)ds

+

∫ min(t,tb)

0
e−

∫ s
0 ν(
√
µf m)∂tΓgain(f m, f m)(t − s, x − vs, v)ds

+ 1{t<tb}e
−

∫ t
0 ν(
√
µf m)Γgain(f m, f m)|t=0(x − tv , v)
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How to deal with space and velocity derivatives ?

One of the crucial ingredient for our results is the construction of a
distance function towards the grazing set γ0

Definition (Kinetic Distance)

For (x , v) ∈ Ω̄× R3,

α(x , v) := |v · ∇ξ(x)|2 − 2{v · ∇2ξ(x) · v}ξ(x).

Properties:
vanishes exactly on the grazing boundary
invariant along the characteristics (up to some quantity in |v |)
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Velocity Lemma

Lemma (Velocity Lemma (Guo10))
Along the backward trajectory Xcl,Vcl we define

α(s; t, x , v) := α(Xcl(s; t, x , v),Vcl(s; t, x , v)).

Then there exists C = C(ξ) > 0 such that, for all 0 ≤ s1, s2 ≤ t,

e−C|v ||s1−s2|α(s1; t, x , v) ≤ α(s2; t, x , v) ≤ eC|v ||s1−s2|α(s1; t, x , v).

This Lemma implies that in a strictly convex domain, the singular set γ0
cannot be reached via the trajectories starting from interior points inside
the domain, and hence γ0 does not really participate in or interfere with
the interior dynamics
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Main IDEA : for (x , v) ∈ γ−,

∇v f (t, x , v) = cµ∇v

√
µ(v)

∫
n(x)·u>0

f (t, x , u)
√
µ(u){n(x) · u}du

IDEM for tangential derivatives ∂τi f (t, x , v)

PROBLEM : How to control the normal spatial derivative close to γ−?

∂nf (t, x , v) = − 1
n(x) · v

{
∂t f +

2∑
i=1

(v · τi )∂τi f −Γgain(f , f ) + ν(
√
µf )f

}
,

and ∫
γ−

|∂nf |p|v · n|dv .
∫
R3
|v · n|1−p︸ ︷︷ ︸

<∞ when p<2
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Diffuse boundary conditions, convex case

Suppose f0 ≥ 0 satisfies the diffuse BC compatibility conditions and for
0 < θ < 1/4, 1 < p < 2,

||∇x f0||p + ||∇v f0||p + ||eθ|v |
2
f0||∞ < +∞

Theorem (W 1,p propagation (GKTT16))

f ∈ L∞loc([0,T ∗];W 1,p(Ω× R3))

and for all 0 ≤ t ≤ T

||∇x f (t)||pp + ||∇v f (t)||pp +

∫ t

0

[
|∇x f (s)|pγ,p + |∇v f (s)|pγ,p

]
ds

.t ||∇x f0||pp + ||∇v f0||pp + P(||eθ|v |
2
f0||∞),

where P is some polynomial.

Here |f (s)|pγ,p =
∫
∂Ω×R3 |f (s, x , v)|p|n(x) · v |dSx dv
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Idea of the proof: For ∂e = [∂x , ∂v ], ∂f m satisfies

{∂t + v · ∇x + ν(
√
µf m)}∂f m+1 = Hm, ∂f m+1(0, x , v) = ∂f0(x , v),

∂f m+1(t, x , v)|γ− = ∂gm(t, x , v)

where

Hm = −[∂v ] · ∇x f
m+1 − ∂[ν(

√
µf m)]f m+1 + ∂[Γgain(f m, f m)],

||∂f m+1(t)||pp +

∫ t

0
|∂f m+1|pγ+,p

. ||∂f0||pp +

∫ t

0
|∂gm|pγ−,p + p

∫ t

0

∫∫
Ω×R3

|∂Hm||∂f m+1|p−1

p < 2 to bound the red term
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Idea of the proof: For ∂e = [∂x , ∂v ], ∂f m satisfies

{∂t + v · ∇x + ν(
√
µf m)}∂f m+1 = Hm, ∂f m+1(0, x , v) = ∂f0(x , v),

∂f m+1(t, x , v)|γ− = ∂gm(t, x , v)

where

Hm = −[∂v ] · ∇x f
m+1 − ∂[ν(

√
µf m)]f m+1 + ∂[Γgain(f m, f m)],

sup
0≤t≤T∗

||∂f m||pp +

∫ T∗

0
|∂f m|pγ,p .Ω,T∗ ||∂f0||pp + P(||eθ|v |

2
f0||∞),

for some polynomial P =⇒ weak convergence for p > 1
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Suppose f0 ≥ 0 satisfies the diffuse BC compatibility conditions and for
0 < θ < 1/4, 2 ≤ p < +∞, and p−2

2p < β < p−1
2p ,

||αβ∇x f0||p + ||αβ∇v f0||p + ||eθ|v |
2
f0||∞ <∞

Theorem (W 1,p propagation (GKTT16))

There exists $ > 0 s.t. e−$〈v〉tαβ∇x,v f ∈ L∞loc([0,T ∗]; Lp(Ω× R3))
and for all 0 ≤ t ≤ T

||e−$〈v〉tαβ∇x,v f (t)||pp +

∫ t

0
|e−$〈v〉tαβ∇x,v f (s)|pγ,pds

.t ||αβ∇x,v f0||pp + P(||eθ|v |
2
f0||∞),

where P is some polynomial.

Note: ∂f (t) ∼ e$〈v〉t , for a $ > 0 that is determined by the geometry of
∂Ω, for example if ξ is quadratic we can set $ = 0
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Suppose f0 ≥ 0 satisfies the compatibility conditions and for 0 < θ < 1/4

||α1/2∇x,v f0||∞ + ||eθ|v |
2
f0||∞ < +∞

Theorem (W 1,∞ and C 1 propagation (GKTT16))
There exists $ > 0 s.t.

e−$〈v〉tα1/2∇x,v f ∈ L∞([0,T ∗]; L∞(Ω× R3))

and for all 0 ≤ t ≤ T ∗,

||e−$〈v〉tα1/2∇x,v f (t)||∞ .t ||α1/2∇x,v f0||∞ + P(||eθ|v |
2
f0||∞)

where P is some polynomial.

If α1/2∇x,v f0 ∈ C 0(Ω̄× R3) and

∂t f0 = cµ
√
µ

∫
n·u>0

{
u · ∇x f0 + ν(

√
µ(u)f0)f0 − Γ(f0, f0)

}√
µ{n · u}du,

is valid for γ− ∪ γ0, then f ∈ C 1 away from the grazing set γ0.
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Diffuse boundary conditions, non convex case

The singular set

Sb := {(x , v) ∈ Ω̄× R3 : n(xb(x , v)) · v = 0},

is a set of co-dimension 1 in Ω× R3 : We look for BV regularity

IDEA : remove a tubular neighborhood of Sb using cut off functions in
order to obtain W 1,1 estimates

Notation:

||f ||BV := ||f ||L1(Ω) + ||f ||B̃V ,

where

||f ||B̃V := sup
{∫∫

Ω×R3
f divϕdxdv : ϕ ∈ C 1

c (Ω×R3;R3×R3), |ϕ| ≤ 1
}
<∞
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Suppose f0 ≥ 0 satisfies the compatibility conditions and for 0 < θ < 1/4

||f0||BV + ||eθ|v |
2
f0||∞ < +∞

Theorem (BV propagation (GKTT15))

f ∈ L∞([0,T ∗];BV (Ω× R3))

and ∇x,v f dγ is a Radon measure on ∂Ω× R3. Moreover, for all
0 ≤ t ≤ T ∗

||f (t)||BV .T∗,Ω ||f0||BV + P(||eθ|v |
2
f0||∞),

for some polynomial P and ∇x,v fγ(t) is a Radon measure σt on ∂Ω×R3

such that∫ T∗

0
|σt(∂Ω× R3)|dt .T∗,Ω ||f0||BV + P(||eθ|v |

2
f0||∞).

Here fγ is the trace of f on γ
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Idea of the proof: we reduce, as usual to a simpler linear problem

∂t f + v · ∇x f + νf = H, f |t=0 = f0,

where ν = ν(t, x , v) ≥ 0, H, are smooth enough, with the in-flow
boundary condition

f (t, x , v) = g(t, x , v) (x , v) ∈ γ−

Then as usual we could apply the positive preserving iteration scheme to
produce W 1,1 estimates for the sequence

PROBLEM: Solutions of such a transport equation are discontinuous on
Sb
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=⇒ use a smooth cut-off function χε(x , v) vanishing on an open
neighborhood of Sb:

∂t f
ε + v · ∇x f

ε + νf ε = χεH in (x , v) ∈ Ω× R3,

f ε|t=0 = χεf0 in (x , v) ∈ Ω× R3,

f ε(t, x , v) = χεg(t, x , v) (x , v) ∈ γ−.

A uniform-in-ε bound of ∂f ε = [∇x f
ε,∇v f

ε] in L1(Ω× R3) will be
enough to prove the thesis

sup
0≤s≤t

||∂f ε(s)||1 +

∫ t

0
|∂f ε(s)|γ,1 . ||f0||BV + P(||eθ|v |

2
f0||∞)

where P is a polynomial
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Recap and optimality of results

In convex domains In non-convex domains

C 0 away from γ0 NO C 0 Discontinuity created on γ0
and propagated along the

W 1,p for 1 ≤ p < 2 grazing trajectories [Kim 11]

NO H1 : c-ex (transport eq.) BV regularity

Weighted W 1,p for p ∈ [2,+∞]

C 1 away from γ0

NO W 2,1: c-ex
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Further results

Other boundary conditions
Specular boundary conditions : in convex domains, propagation of
C 1 regularity away from γ0 (with the help of the kinetic distance)
[GKTT16]
Bounce-back boundary conditions : same [GKTT16], in non-convex
domains: propagation of discontinuity [Kim 11]
Maxwell boundary conditions: continuity away from the grazing
trajectories [Briant Guo 15]

Non-isothermal boundary Results of existence of strong solutions,
uniqueness and stability (exponential convergence towards the solution of
the stationnary problem) for a (not too much) varying boundary
temperature. Continuity propagation in convex domains [Esposito Guo
Kim Marra 13].
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